Properties

Label 9280.2.a.cj.1.3
Level $9280$
Weight $2$
Character 9280.1
Self dual yes
Analytic conductor $74.101$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9280,2,Mod(1,9280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9280.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9280 = 2^{6} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9280.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,1,0,-5,0,-1,0,12,0,4,0,-13,0,-1,0,3,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.1011730757\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.6083172.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 13x^{3} + 10x^{2} + 40x - 28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1160)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.689426\) of defining polynomial
Character \(\chi\) \(=\) 9280.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.689426 q^{3} -1.00000 q^{5} +4.55109 q^{7} -2.52469 q^{9} +0.973602 q^{11} -2.28418 q^{13} -0.689426 q^{15} +5.82707 q^{17} +0.302375 q^{19} +3.13764 q^{21} -1.41345 q^{23} +1.00000 q^{25} -3.80887 q^{27} +1.00000 q^{29} -2.55109 q^{31} +0.671227 q^{33} -4.55109 q^{35} -1.02640 q^{37} -1.57477 q^{39} +4.65483 q^{41} +3.92994 q^{43} +2.52469 q^{45} +1.07648 q^{47} +13.7124 q^{49} +4.01733 q^{51} +4.85075 q^{53} -0.973602 q^{55} +0.208465 q^{57} -1.66303 q^{59} -12.1969 q^{61} -11.4901 q^{63} +2.28418 q^{65} -0.352455 q^{67} -0.974469 q^{69} -6.94651 q^{71} +16.9793 q^{73} +0.689426 q^{75} +4.43095 q^{77} +9.96540 q^{79} +4.94814 q^{81} +13.9201 q^{83} -5.82707 q^{85} +0.689426 q^{87} +4.82690 q^{89} -10.3955 q^{91} -1.75879 q^{93} -0.302375 q^{95} +13.7388 q^{97} -2.45805 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{3} - 5 q^{5} - q^{7} + 12 q^{9} + 4 q^{11} - 13 q^{13} - q^{15} + 3 q^{17} - 8 q^{21} - 7 q^{23} + 5 q^{25} + 4 q^{27} + 5 q^{29} + 11 q^{31} + 4 q^{33} + q^{35} - 6 q^{37} + 21 q^{39} + 16 q^{41}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.689426 0.398040 0.199020 0.979995i \(-0.436224\pi\)
0.199020 + 0.979995i \(0.436224\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 4.55109 1.72015 0.860075 0.510168i \(-0.170417\pi\)
0.860075 + 0.510168i \(0.170417\pi\)
\(8\) 0 0
\(9\) −2.52469 −0.841564
\(10\) 0 0
\(11\) 0.973602 0.293552 0.146776 0.989170i \(-0.453110\pi\)
0.146776 + 0.989170i \(0.453110\pi\)
\(12\) 0 0
\(13\) −2.28418 −0.633516 −0.316758 0.948506i \(-0.602594\pi\)
−0.316758 + 0.948506i \(0.602594\pi\)
\(14\) 0 0
\(15\) −0.689426 −0.178009
\(16\) 0 0
\(17\) 5.82707 1.41327 0.706636 0.707578i \(-0.250212\pi\)
0.706636 + 0.707578i \(0.250212\pi\)
\(18\) 0 0
\(19\) 0.302375 0.0693697 0.0346848 0.999398i \(-0.488957\pi\)
0.0346848 + 0.999398i \(0.488957\pi\)
\(20\) 0 0
\(21\) 3.13764 0.684689
\(22\) 0 0
\(23\) −1.41345 −0.294724 −0.147362 0.989083i \(-0.547078\pi\)
−0.147362 + 0.989083i \(0.547078\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −3.80887 −0.733017
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −2.55109 −0.458189 −0.229095 0.973404i \(-0.573577\pi\)
−0.229095 + 0.973404i \(0.573577\pi\)
\(32\) 0 0
\(33\) 0.671227 0.116846
\(34\) 0 0
\(35\) −4.55109 −0.769274
\(36\) 0 0
\(37\) −1.02640 −0.168739 −0.0843694 0.996435i \(-0.526888\pi\)
−0.0843694 + 0.996435i \(0.526888\pi\)
\(38\) 0 0
\(39\) −1.57477 −0.252165
\(40\) 0 0
\(41\) 4.65483 0.726962 0.363481 0.931602i \(-0.381588\pi\)
0.363481 + 0.931602i \(0.381588\pi\)
\(42\) 0 0
\(43\) 3.92994 0.599310 0.299655 0.954048i \(-0.403128\pi\)
0.299655 + 0.954048i \(0.403128\pi\)
\(44\) 0 0
\(45\) 2.52469 0.376359
\(46\) 0 0
\(47\) 1.07648 0.157020 0.0785102 0.996913i \(-0.474984\pi\)
0.0785102 + 0.996913i \(0.474984\pi\)
\(48\) 0 0
\(49\) 13.7124 1.95892
\(50\) 0 0
\(51\) 4.01733 0.562539
\(52\) 0 0
\(53\) 4.85075 0.666302 0.333151 0.942874i \(-0.391888\pi\)
0.333151 + 0.942874i \(0.391888\pi\)
\(54\) 0 0
\(55\) −0.973602 −0.131281
\(56\) 0 0
\(57\) 0.208465 0.0276119
\(58\) 0 0
\(59\) −1.66303 −0.216508 −0.108254 0.994123i \(-0.534526\pi\)
−0.108254 + 0.994123i \(0.534526\pi\)
\(60\) 0 0
\(61\) −12.1969 −1.56165 −0.780824 0.624752i \(-0.785200\pi\)
−0.780824 + 0.624752i \(0.785200\pi\)
\(62\) 0 0
\(63\) −11.4901 −1.44762
\(64\) 0 0
\(65\) 2.28418 0.283317
\(66\) 0 0
\(67\) −0.352455 −0.0430592 −0.0215296 0.999768i \(-0.506854\pi\)
−0.0215296 + 0.999768i \(0.506854\pi\)
\(68\) 0 0
\(69\) −0.974469 −0.117312
\(70\) 0 0
\(71\) −6.94651 −0.824399 −0.412199 0.911094i \(-0.635239\pi\)
−0.412199 + 0.911094i \(0.635239\pi\)
\(72\) 0 0
\(73\) 16.9793 1.98728 0.993640 0.112605i \(-0.0359195\pi\)
0.993640 + 0.112605i \(0.0359195\pi\)
\(74\) 0 0
\(75\) 0.689426 0.0796081
\(76\) 0 0
\(77\) 4.43095 0.504954
\(78\) 0 0
\(79\) 9.96540 1.12120 0.560598 0.828088i \(-0.310571\pi\)
0.560598 + 0.828088i \(0.310571\pi\)
\(80\) 0 0
\(81\) 4.94814 0.549793
\(82\) 0 0
\(83\) 13.9201 1.52793 0.763965 0.645257i \(-0.223250\pi\)
0.763965 + 0.645257i \(0.223250\pi\)
\(84\) 0 0
\(85\) −5.82707 −0.632034
\(86\) 0 0
\(87\) 0.689426 0.0739143
\(88\) 0 0
\(89\) 4.82690 0.511650 0.255825 0.966723i \(-0.417653\pi\)
0.255825 + 0.966723i \(0.417653\pi\)
\(90\) 0 0
\(91\) −10.3955 −1.08974
\(92\) 0 0
\(93\) −1.75879 −0.182378
\(94\) 0 0
\(95\) −0.302375 −0.0310231
\(96\) 0 0
\(97\) 13.7388 1.39496 0.697482 0.716602i \(-0.254304\pi\)
0.697482 + 0.716602i \(0.254304\pi\)
\(98\) 0 0
\(99\) −2.45805 −0.247043
\(100\) 0 0
\(101\) −1.50736 −0.149988 −0.0749939 0.997184i \(-0.523894\pi\)
−0.0749939 + 0.997184i \(0.523894\pi\)
\(102\) 0 0
\(103\) −3.64755 −0.359403 −0.179702 0.983721i \(-0.557513\pi\)
−0.179702 + 0.983721i \(0.557513\pi\)
\(104\) 0 0
\(105\) −3.13764 −0.306202
\(106\) 0 0
\(107\) −8.78341 −0.849124 −0.424562 0.905399i \(-0.639572\pi\)
−0.424562 + 0.905399i \(0.639572\pi\)
\(108\) 0 0
\(109\) −3.34517 −0.320409 −0.160205 0.987084i \(-0.551215\pi\)
−0.160205 + 0.987084i \(0.551215\pi\)
\(110\) 0 0
\(111\) −0.707626 −0.0671648
\(112\) 0 0
\(113\) 7.79160 0.732972 0.366486 0.930423i \(-0.380561\pi\)
0.366486 + 0.930423i \(0.380561\pi\)
\(114\) 0 0
\(115\) 1.41345 0.131805
\(116\) 0 0
\(117\) 5.76684 0.533145
\(118\) 0 0
\(119\) 26.5195 2.43104
\(120\) 0 0
\(121\) −10.0521 −0.913827
\(122\) 0 0
\(123\) 3.20916 0.289360
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −12.5231 −1.11125 −0.555624 0.831434i \(-0.687521\pi\)
−0.555624 + 0.831434i \(0.687521\pi\)
\(128\) 0 0
\(129\) 2.70941 0.238550
\(130\) 0 0
\(131\) −7.24617 −0.633101 −0.316550 0.948576i \(-0.602525\pi\)
−0.316550 + 0.948576i \(0.602525\pi\)
\(132\) 0 0
\(133\) 1.37614 0.119326
\(134\) 0 0
\(135\) 3.80887 0.327815
\(136\) 0 0
\(137\) −16.1170 −1.37697 −0.688483 0.725253i \(-0.741723\pi\)
−0.688483 + 0.725253i \(0.741723\pi\)
\(138\) 0 0
\(139\) 5.36902 0.455394 0.227697 0.973732i \(-0.426880\pi\)
0.227697 + 0.973732i \(0.426880\pi\)
\(140\) 0 0
\(141\) 0.742152 0.0625005
\(142\) 0 0
\(143\) −2.22388 −0.185970
\(144\) 0 0
\(145\) −1.00000 −0.0830455
\(146\) 0 0
\(147\) 9.45370 0.779728
\(148\) 0 0
\(149\) 18.0824 1.48137 0.740683 0.671855i \(-0.234502\pi\)
0.740683 + 0.671855i \(0.234502\pi\)
\(150\) 0 0
\(151\) 10.3782 0.844562 0.422281 0.906465i \(-0.361229\pi\)
0.422281 + 0.906465i \(0.361229\pi\)
\(152\) 0 0
\(153\) −14.7115 −1.18936
\(154\) 0 0
\(155\) 2.55109 0.204908
\(156\) 0 0
\(157\) −0.923523 −0.0737051 −0.0368526 0.999321i \(-0.511733\pi\)
−0.0368526 + 0.999321i \(0.511733\pi\)
\(158\) 0 0
\(159\) 3.34423 0.265215
\(160\) 0 0
\(161\) −6.43273 −0.506970
\(162\) 0 0
\(163\) 22.9695 1.79911 0.899555 0.436808i \(-0.143891\pi\)
0.899555 + 0.436808i \(0.143891\pi\)
\(164\) 0 0
\(165\) −0.671227 −0.0522550
\(166\) 0 0
\(167\) −5.79067 −0.448095 −0.224048 0.974578i \(-0.571927\pi\)
−0.224048 + 0.974578i \(0.571927\pi\)
\(168\) 0 0
\(169\) −7.78254 −0.598657
\(170\) 0 0
\(171\) −0.763404 −0.0583790
\(172\) 0 0
\(173\) 1.14747 0.0872407 0.0436203 0.999048i \(-0.486111\pi\)
0.0436203 + 0.999048i \(0.486111\pi\)
\(174\) 0 0
\(175\) 4.55109 0.344030
\(176\) 0 0
\(177\) −1.14654 −0.0861789
\(178\) 0 0
\(179\) 3.95882 0.295896 0.147948 0.988995i \(-0.452733\pi\)
0.147948 + 0.988995i \(0.452733\pi\)
\(180\) 0 0
\(181\) 11.2068 0.832994 0.416497 0.909137i \(-0.363258\pi\)
0.416497 + 0.909137i \(0.363258\pi\)
\(182\) 0 0
\(183\) −8.40883 −0.621599
\(184\) 0 0
\(185\) 1.02640 0.0754623
\(186\) 0 0
\(187\) 5.67325 0.414869
\(188\) 0 0
\(189\) −17.3345 −1.26090
\(190\) 0 0
\(191\) −23.3047 −1.68627 −0.843134 0.537704i \(-0.819292\pi\)
−0.843134 + 0.537704i \(0.819292\pi\)
\(192\) 0 0
\(193\) −14.8383 −1.06808 −0.534041 0.845459i \(-0.679327\pi\)
−0.534041 + 0.845459i \(0.679327\pi\)
\(194\) 0 0
\(195\) 1.57477 0.112772
\(196\) 0 0
\(197\) 21.9556 1.56427 0.782137 0.623106i \(-0.214129\pi\)
0.782137 + 0.623106i \(0.214129\pi\)
\(198\) 0 0
\(199\) 24.8592 1.76222 0.881110 0.472910i \(-0.156797\pi\)
0.881110 + 0.472910i \(0.156797\pi\)
\(200\) 0 0
\(201\) −0.242992 −0.0171393
\(202\) 0 0
\(203\) 4.55109 0.319424
\(204\) 0 0
\(205\) −4.65483 −0.325107
\(206\) 0 0
\(207\) 3.56852 0.248029
\(208\) 0 0
\(209\) 0.294393 0.0203636
\(210\) 0 0
\(211\) 0.368852 0.0253928 0.0126964 0.999919i \(-0.495959\pi\)
0.0126964 + 0.999919i \(0.495959\pi\)
\(212\) 0 0
\(213\) −4.78911 −0.328144
\(214\) 0 0
\(215\) −3.92994 −0.268020
\(216\) 0 0
\(217\) −11.6102 −0.788154
\(218\) 0 0
\(219\) 11.7060 0.791018
\(220\) 0 0
\(221\) −13.3100 −0.895331
\(222\) 0 0
\(223\) 16.6853 1.11733 0.558666 0.829393i \(-0.311313\pi\)
0.558666 + 0.829393i \(0.311313\pi\)
\(224\) 0 0
\(225\) −2.52469 −0.168313
\(226\) 0 0
\(227\) 12.6805 0.841636 0.420818 0.907145i \(-0.361743\pi\)
0.420818 + 0.907145i \(0.361743\pi\)
\(228\) 0 0
\(229\) −17.5274 −1.15824 −0.579122 0.815241i \(-0.696604\pi\)
−0.579122 + 0.815241i \(0.696604\pi\)
\(230\) 0 0
\(231\) 3.05481 0.200992
\(232\) 0 0
\(233\) 20.0988 1.31671 0.658357 0.752706i \(-0.271252\pi\)
0.658357 + 0.752706i \(0.271252\pi\)
\(234\) 0 0
\(235\) −1.07648 −0.0702216
\(236\) 0 0
\(237\) 6.87041 0.446281
\(238\) 0 0
\(239\) −3.42893 −0.221799 −0.110900 0.993832i \(-0.535373\pi\)
−0.110900 + 0.993832i \(0.535373\pi\)
\(240\) 0 0
\(241\) −27.2126 −1.75291 −0.876457 0.481479i \(-0.840100\pi\)
−0.876457 + 0.481479i \(0.840100\pi\)
\(242\) 0 0
\(243\) 14.8380 0.951857
\(244\) 0 0
\(245\) −13.7124 −0.876054
\(246\) 0 0
\(247\) −0.690678 −0.0439468
\(248\) 0 0
\(249\) 9.59689 0.608178
\(250\) 0 0
\(251\) 19.6604 1.24095 0.620476 0.784225i \(-0.286939\pi\)
0.620476 + 0.784225i \(0.286939\pi\)
\(252\) 0 0
\(253\) −1.37614 −0.0865170
\(254\) 0 0
\(255\) −4.01733 −0.251575
\(256\) 0 0
\(257\) 12.6006 0.786006 0.393003 0.919537i \(-0.371436\pi\)
0.393003 + 0.919537i \(0.371436\pi\)
\(258\) 0 0
\(259\) −4.67123 −0.290256
\(260\) 0 0
\(261\) −2.52469 −0.156274
\(262\) 0 0
\(263\) 12.5905 0.776363 0.388182 0.921583i \(-0.373103\pi\)
0.388182 + 0.921583i \(0.373103\pi\)
\(264\) 0 0
\(265\) −4.85075 −0.297979
\(266\) 0 0
\(267\) 3.32779 0.203657
\(268\) 0 0
\(269\) 1.31894 0.0804173 0.0402086 0.999191i \(-0.487198\pi\)
0.0402086 + 0.999191i \(0.487198\pi\)
\(270\) 0 0
\(271\) −9.43824 −0.573332 −0.286666 0.958031i \(-0.592547\pi\)
−0.286666 + 0.958031i \(0.592547\pi\)
\(272\) 0 0
\(273\) −7.16692 −0.433762
\(274\) 0 0
\(275\) 0.973602 0.0587104
\(276\) 0 0
\(277\) −9.15226 −0.549906 −0.274953 0.961458i \(-0.588662\pi\)
−0.274953 + 0.961458i \(0.588662\pi\)
\(278\) 0 0
\(279\) 6.44071 0.385595
\(280\) 0 0
\(281\) −13.8164 −0.824215 −0.412108 0.911135i \(-0.635207\pi\)
−0.412108 + 0.911135i \(0.635207\pi\)
\(282\) 0 0
\(283\) 28.5404 1.69655 0.848276 0.529555i \(-0.177641\pi\)
0.848276 + 0.529555i \(0.177641\pi\)
\(284\) 0 0
\(285\) −0.208465 −0.0123484
\(286\) 0 0
\(287\) 21.1845 1.25048
\(288\) 0 0
\(289\) 16.9547 0.997336
\(290\) 0 0
\(291\) 9.47190 0.555252
\(292\) 0 0
\(293\) 9.92011 0.579539 0.289770 0.957096i \(-0.406421\pi\)
0.289770 + 0.957096i \(0.406421\pi\)
\(294\) 0 0
\(295\) 1.66303 0.0968253
\(296\) 0 0
\(297\) −3.70832 −0.215179
\(298\) 0 0
\(299\) 3.22857 0.186713
\(300\) 0 0
\(301\) 17.8855 1.03090
\(302\) 0 0
\(303\) −1.03921 −0.0597012
\(304\) 0 0
\(305\) 12.1969 0.698390
\(306\) 0 0
\(307\) 8.52313 0.486441 0.243220 0.969971i \(-0.421796\pi\)
0.243220 + 0.969971i \(0.421796\pi\)
\(308\) 0 0
\(309\) −2.51471 −0.143057
\(310\) 0 0
\(311\) 16.4437 0.932438 0.466219 0.884669i \(-0.345616\pi\)
0.466219 + 0.884669i \(0.345616\pi\)
\(312\) 0 0
\(313\) −5.68964 −0.321598 −0.160799 0.986987i \(-0.551407\pi\)
−0.160799 + 0.986987i \(0.551407\pi\)
\(314\) 0 0
\(315\) 11.4901 0.647394
\(316\) 0 0
\(317\) 9.35447 0.525400 0.262700 0.964878i \(-0.415387\pi\)
0.262700 + 0.964878i \(0.415387\pi\)
\(318\) 0 0
\(319\) 0.973602 0.0545113
\(320\) 0 0
\(321\) −6.05551 −0.337986
\(322\) 0 0
\(323\) 1.76196 0.0980381
\(324\) 0 0
\(325\) −2.28418 −0.126703
\(326\) 0 0
\(327\) −2.30625 −0.127536
\(328\) 0 0
\(329\) 4.89914 0.270099
\(330\) 0 0
\(331\) −34.1245 −1.87565 −0.937825 0.347108i \(-0.887164\pi\)
−0.937825 + 0.347108i \(0.887164\pi\)
\(332\) 0 0
\(333\) 2.59134 0.142004
\(334\) 0 0
\(335\) 0.352455 0.0192567
\(336\) 0 0
\(337\) 27.4240 1.49388 0.746939 0.664893i \(-0.231523\pi\)
0.746939 + 0.664893i \(0.231523\pi\)
\(338\) 0 0
\(339\) 5.37174 0.291753
\(340\) 0 0
\(341\) −2.48375 −0.134502
\(342\) 0 0
\(343\) 30.5488 1.64948
\(344\) 0 0
\(345\) 0.974469 0.0524636
\(346\) 0 0
\(347\) 14.8362 0.796449 0.398225 0.917288i \(-0.369626\pi\)
0.398225 + 0.917288i \(0.369626\pi\)
\(348\) 0 0
\(349\) −9.61773 −0.514826 −0.257413 0.966302i \(-0.582870\pi\)
−0.257413 + 0.966302i \(0.582870\pi\)
\(350\) 0 0
\(351\) 8.70012 0.464378
\(352\) 0 0
\(353\) −20.6698 −1.10014 −0.550072 0.835117i \(-0.685400\pi\)
−0.550072 + 0.835117i \(0.685400\pi\)
\(354\) 0 0
\(355\) 6.94651 0.368682
\(356\) 0 0
\(357\) 18.2832 0.967652
\(358\) 0 0
\(359\) −16.8577 −0.889717 −0.444858 0.895601i \(-0.646746\pi\)
−0.444858 + 0.895601i \(0.646746\pi\)
\(360\) 0 0
\(361\) −18.9086 −0.995188
\(362\) 0 0
\(363\) −6.93018 −0.363740
\(364\) 0 0
\(365\) −16.9793 −0.888738
\(366\) 0 0
\(367\) −6.45533 −0.336965 −0.168483 0.985705i \(-0.553887\pi\)
−0.168483 + 0.985705i \(0.553887\pi\)
\(368\) 0 0
\(369\) −11.7520 −0.611785
\(370\) 0 0
\(371\) 22.0762 1.14614
\(372\) 0 0
\(373\) 26.7447 1.38479 0.692395 0.721518i \(-0.256555\pi\)
0.692395 + 0.721518i \(0.256555\pi\)
\(374\) 0 0
\(375\) −0.689426 −0.0356018
\(376\) 0 0
\(377\) −2.28418 −0.117641
\(378\) 0 0
\(379\) 12.6260 0.648554 0.324277 0.945962i \(-0.394879\pi\)
0.324277 + 0.945962i \(0.394879\pi\)
\(380\) 0 0
\(381\) −8.63377 −0.442322
\(382\) 0 0
\(383\) −5.29596 −0.270611 −0.135305 0.990804i \(-0.543202\pi\)
−0.135305 + 0.990804i \(0.543202\pi\)
\(384\) 0 0
\(385\) −4.43095 −0.225822
\(386\) 0 0
\(387\) −9.92189 −0.504358
\(388\) 0 0
\(389\) 7.63685 0.387204 0.193602 0.981080i \(-0.437983\pi\)
0.193602 + 0.981080i \(0.437983\pi\)
\(390\) 0 0
\(391\) −8.23626 −0.416526
\(392\) 0 0
\(393\) −4.99570 −0.252000
\(394\) 0 0
\(395\) −9.96540 −0.501414
\(396\) 0 0
\(397\) −10.5090 −0.527431 −0.263716 0.964600i \(-0.584948\pi\)
−0.263716 + 0.964600i \(0.584948\pi\)
\(398\) 0 0
\(399\) 0.948745 0.0474967
\(400\) 0 0
\(401\) −31.3631 −1.56620 −0.783100 0.621896i \(-0.786363\pi\)
−0.783100 + 0.621896i \(0.786363\pi\)
\(402\) 0 0
\(403\) 5.82714 0.290270
\(404\) 0 0
\(405\) −4.94814 −0.245875
\(406\) 0 0
\(407\) −0.999303 −0.0495336
\(408\) 0 0
\(409\) −4.79139 −0.236919 −0.118459 0.992959i \(-0.537796\pi\)
−0.118459 + 0.992959i \(0.537796\pi\)
\(410\) 0 0
\(411\) −11.1115 −0.548088
\(412\) 0 0
\(413\) −7.56859 −0.372426
\(414\) 0 0
\(415\) −13.9201 −0.683311
\(416\) 0 0
\(417\) 3.70154 0.181265
\(418\) 0 0
\(419\) 2.03068 0.0992050 0.0496025 0.998769i \(-0.484205\pi\)
0.0496025 + 0.998769i \(0.484205\pi\)
\(420\) 0 0
\(421\) 8.13601 0.396525 0.198262 0.980149i \(-0.436470\pi\)
0.198262 + 0.980149i \(0.436470\pi\)
\(422\) 0 0
\(423\) −2.71777 −0.132143
\(424\) 0 0
\(425\) 5.82707 0.282654
\(426\) 0 0
\(427\) −55.5090 −2.68627
\(428\) 0 0
\(429\) −1.53320 −0.0740236
\(430\) 0 0
\(431\) 30.7727 1.48227 0.741135 0.671356i \(-0.234288\pi\)
0.741135 + 0.671356i \(0.234288\pi\)
\(432\) 0 0
\(433\) 10.1231 0.486487 0.243244 0.969965i \(-0.421789\pi\)
0.243244 + 0.969965i \(0.421789\pi\)
\(434\) 0 0
\(435\) −0.689426 −0.0330555
\(436\) 0 0
\(437\) −0.427392 −0.0204449
\(438\) 0 0
\(439\) 22.9298 1.09438 0.547189 0.837009i \(-0.315698\pi\)
0.547189 + 0.837009i \(0.315698\pi\)
\(440\) 0 0
\(441\) −34.6196 −1.64855
\(442\) 0 0
\(443\) −10.0833 −0.479071 −0.239536 0.970888i \(-0.576995\pi\)
−0.239536 + 0.970888i \(0.576995\pi\)
\(444\) 0 0
\(445\) −4.82690 −0.228817
\(446\) 0 0
\(447\) 12.4665 0.589643
\(448\) 0 0
\(449\) 15.3911 0.726353 0.363176 0.931720i \(-0.381692\pi\)
0.363176 + 0.931720i \(0.381692\pi\)
\(450\) 0 0
\(451\) 4.53195 0.213401
\(452\) 0 0
\(453\) 7.15497 0.336170
\(454\) 0 0
\(455\) 10.3955 0.487348
\(456\) 0 0
\(457\) −9.15226 −0.428125 −0.214062 0.976820i \(-0.568670\pi\)
−0.214062 + 0.976820i \(0.568670\pi\)
\(458\) 0 0
\(459\) −22.1945 −1.03595
\(460\) 0 0
\(461\) −16.9227 −0.788167 −0.394083 0.919075i \(-0.628938\pi\)
−0.394083 + 0.919075i \(0.628938\pi\)
\(462\) 0 0
\(463\) −32.1236 −1.49291 −0.746456 0.665435i \(-0.768246\pi\)
−0.746456 + 0.665435i \(0.768246\pi\)
\(464\) 0 0
\(465\) 1.75879 0.0815618
\(466\) 0 0
\(467\) −39.0981 −1.80924 −0.904622 0.426215i \(-0.859847\pi\)
−0.904622 + 0.426215i \(0.859847\pi\)
\(468\) 0 0
\(469\) −1.60405 −0.0740683
\(470\) 0 0
\(471\) −0.636701 −0.0293376
\(472\) 0 0
\(473\) 3.82620 0.175929
\(474\) 0 0
\(475\) 0.302375 0.0138739
\(476\) 0 0
\(477\) −12.2466 −0.560735
\(478\) 0 0
\(479\) −13.4631 −0.615143 −0.307572 0.951525i \(-0.599516\pi\)
−0.307572 + 0.951525i \(0.599516\pi\)
\(480\) 0 0
\(481\) 2.34447 0.106899
\(482\) 0 0
\(483\) −4.43489 −0.201795
\(484\) 0 0
\(485\) −13.7388 −0.623847
\(486\) 0 0
\(487\) 35.1691 1.59366 0.796831 0.604202i \(-0.206508\pi\)
0.796831 + 0.604202i \(0.206508\pi\)
\(488\) 0 0
\(489\) 15.8358 0.716118
\(490\) 0 0
\(491\) 20.3333 0.917631 0.458815 0.888532i \(-0.348274\pi\)
0.458815 + 0.888532i \(0.348274\pi\)
\(492\) 0 0
\(493\) 5.82707 0.262438
\(494\) 0 0
\(495\) 2.45805 0.110481
\(496\) 0 0
\(497\) −31.6142 −1.41809
\(498\) 0 0
\(499\) −17.2453 −0.772004 −0.386002 0.922498i \(-0.626144\pi\)
−0.386002 + 0.922498i \(0.626144\pi\)
\(500\) 0 0
\(501\) −3.99224 −0.178360
\(502\) 0 0
\(503\) −18.5377 −0.826555 −0.413278 0.910605i \(-0.635616\pi\)
−0.413278 + 0.910605i \(0.635616\pi\)
\(504\) 0 0
\(505\) 1.50736 0.0670766
\(506\) 0 0
\(507\) −5.36549 −0.238290
\(508\) 0 0
\(509\) −0.549240 −0.0243446 −0.0121723 0.999926i \(-0.503875\pi\)
−0.0121723 + 0.999926i \(0.503875\pi\)
\(510\) 0 0
\(511\) 77.2744 3.41842
\(512\) 0 0
\(513\) −1.15171 −0.0508491
\(514\) 0 0
\(515\) 3.64755 0.160730
\(516\) 0 0
\(517\) 1.04806 0.0460937
\(518\) 0 0
\(519\) 0.791097 0.0347253
\(520\) 0 0
\(521\) 22.4194 0.982211 0.491106 0.871100i \(-0.336593\pi\)
0.491106 + 0.871100i \(0.336593\pi\)
\(522\) 0 0
\(523\) −26.6988 −1.16746 −0.583729 0.811949i \(-0.698407\pi\)
−0.583729 + 0.811949i \(0.698407\pi\)
\(524\) 0 0
\(525\) 3.13764 0.136938
\(526\) 0 0
\(527\) −14.8654 −0.647546
\(528\) 0 0
\(529\) −21.0022 −0.913138
\(530\) 0 0
\(531\) 4.19863 0.182205
\(532\) 0 0
\(533\) −10.6325 −0.460543
\(534\) 0 0
\(535\) 8.78341 0.379740
\(536\) 0 0
\(537\) 2.72931 0.117778
\(538\) 0 0
\(539\) 13.3504 0.575044
\(540\) 0 0
\(541\) 12.6310 0.543048 0.271524 0.962432i \(-0.412472\pi\)
0.271524 + 0.962432i \(0.412472\pi\)
\(542\) 0 0
\(543\) 7.72625 0.331565
\(544\) 0 0
\(545\) 3.34517 0.143291
\(546\) 0 0
\(547\) −23.4737 −1.00366 −0.501832 0.864965i \(-0.667341\pi\)
−0.501832 + 0.864965i \(0.667341\pi\)
\(548\) 0 0
\(549\) 30.7933 1.31423
\(550\) 0 0
\(551\) 0.302375 0.0128816
\(552\) 0 0
\(553\) 45.3534 1.92862
\(554\) 0 0
\(555\) 0.707626 0.0300370
\(556\) 0 0
\(557\) 40.2073 1.70364 0.851819 0.523836i \(-0.175499\pi\)
0.851819 + 0.523836i \(0.175499\pi\)
\(558\) 0 0
\(559\) −8.97668 −0.379673
\(560\) 0 0
\(561\) 3.91128 0.165135
\(562\) 0 0
\(563\) 45.4917 1.91725 0.958623 0.284677i \(-0.0918864\pi\)
0.958623 + 0.284677i \(0.0918864\pi\)
\(564\) 0 0
\(565\) −7.79160 −0.327795
\(566\) 0 0
\(567\) 22.5194 0.945727
\(568\) 0 0
\(569\) −10.1338 −0.424833 −0.212416 0.977179i \(-0.568133\pi\)
−0.212416 + 0.977179i \(0.568133\pi\)
\(570\) 0 0
\(571\) 0.503946 0.0210895 0.0105447 0.999944i \(-0.496643\pi\)
0.0105447 + 0.999944i \(0.496643\pi\)
\(572\) 0 0
\(573\) −16.0669 −0.671203
\(574\) 0 0
\(575\) −1.41345 −0.0589449
\(576\) 0 0
\(577\) 7.22914 0.300953 0.150477 0.988614i \(-0.451919\pi\)
0.150477 + 0.988614i \(0.451919\pi\)
\(578\) 0 0
\(579\) −10.2299 −0.425140
\(580\) 0 0
\(581\) 63.3517 2.62827
\(582\) 0 0
\(583\) 4.72270 0.195594
\(584\) 0 0
\(585\) −5.76684 −0.238429
\(586\) 0 0
\(587\) 46.6409 1.92508 0.962538 0.271146i \(-0.0874026\pi\)
0.962538 + 0.271146i \(0.0874026\pi\)
\(588\) 0 0
\(589\) −0.771386 −0.0317844
\(590\) 0 0
\(591\) 15.1368 0.622645
\(592\) 0 0
\(593\) 38.0320 1.56179 0.780893 0.624665i \(-0.214765\pi\)
0.780893 + 0.624665i \(0.214765\pi\)
\(594\) 0 0
\(595\) −26.5195 −1.08719
\(596\) 0 0
\(597\) 17.1386 0.701435
\(598\) 0 0
\(599\) 4.53380 0.185246 0.0926231 0.995701i \(-0.470475\pi\)
0.0926231 + 0.995701i \(0.470475\pi\)
\(600\) 0 0
\(601\) −12.7897 −0.521701 −0.260850 0.965379i \(-0.584003\pi\)
−0.260850 + 0.965379i \(0.584003\pi\)
\(602\) 0 0
\(603\) 0.889840 0.0362371
\(604\) 0 0
\(605\) 10.0521 0.408676
\(606\) 0 0
\(607\) −18.5377 −0.752422 −0.376211 0.926534i \(-0.622773\pi\)
−0.376211 + 0.926534i \(0.622773\pi\)
\(608\) 0 0
\(609\) 3.13764 0.127144
\(610\) 0 0
\(611\) −2.45886 −0.0994750
\(612\) 0 0
\(613\) 21.5184 0.869121 0.434560 0.900643i \(-0.356904\pi\)
0.434560 + 0.900643i \(0.356904\pi\)
\(614\) 0 0
\(615\) −3.20916 −0.129406
\(616\) 0 0
\(617\) 33.6646 1.35528 0.677642 0.735392i \(-0.263002\pi\)
0.677642 + 0.735392i \(0.263002\pi\)
\(618\) 0 0
\(619\) 35.9652 1.44556 0.722782 0.691076i \(-0.242863\pi\)
0.722782 + 0.691076i \(0.242863\pi\)
\(620\) 0 0
\(621\) 5.38364 0.216038
\(622\) 0 0
\(623\) 21.9676 0.880115
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0.202962 0.00810554
\(628\) 0 0
\(629\) −5.98089 −0.238474
\(630\) 0 0
\(631\) 15.0130 0.597657 0.298829 0.954307i \(-0.403404\pi\)
0.298829 + 0.954307i \(0.403404\pi\)
\(632\) 0 0
\(633\) 0.254296 0.0101074
\(634\) 0 0
\(635\) 12.5231 0.496965
\(636\) 0 0
\(637\) −31.3216 −1.24101
\(638\) 0 0
\(639\) 17.5378 0.693784
\(640\) 0 0
\(641\) 21.2382 0.838858 0.419429 0.907788i \(-0.362230\pi\)
0.419429 + 0.907788i \(0.362230\pi\)
\(642\) 0 0
\(643\) 19.0214 0.750133 0.375066 0.926998i \(-0.377620\pi\)
0.375066 + 0.926998i \(0.377620\pi\)
\(644\) 0 0
\(645\) −2.70941 −0.106683
\(646\) 0 0
\(647\) −20.1477 −0.792087 −0.396044 0.918232i \(-0.629617\pi\)
−0.396044 + 0.918232i \(0.629617\pi\)
\(648\) 0 0
\(649\) −1.61913 −0.0635564
\(650\) 0 0
\(651\) −8.00440 −0.313717
\(652\) 0 0
\(653\) −29.0601 −1.13721 −0.568604 0.822611i \(-0.692516\pi\)
−0.568604 + 0.822611i \(0.692516\pi\)
\(654\) 0 0
\(655\) 7.24617 0.283131
\(656\) 0 0
\(657\) −42.8676 −1.67242
\(658\) 0 0
\(659\) −13.0420 −0.508042 −0.254021 0.967199i \(-0.581753\pi\)
−0.254021 + 0.967199i \(0.581753\pi\)
\(660\) 0 0
\(661\) −51.0275 −1.98474 −0.992370 0.123299i \(-0.960652\pi\)
−0.992370 + 0.123299i \(0.960652\pi\)
\(662\) 0 0
\(663\) −9.17630 −0.356378
\(664\) 0 0
\(665\) −1.37614 −0.0533643
\(666\) 0 0
\(667\) −1.41345 −0.0547289
\(668\) 0 0
\(669\) 11.5033 0.444743
\(670\) 0 0
\(671\) −11.8749 −0.458425
\(672\) 0 0
\(673\) −5.96004 −0.229743 −0.114871 0.993380i \(-0.536646\pi\)
−0.114871 + 0.993380i \(0.536646\pi\)
\(674\) 0 0
\(675\) −3.80887 −0.146603
\(676\) 0 0
\(677\) 22.2465 0.855001 0.427500 0.904015i \(-0.359394\pi\)
0.427500 + 0.904015i \(0.359394\pi\)
\(678\) 0 0
\(679\) 62.5265 2.39955
\(680\) 0 0
\(681\) 8.74229 0.335005
\(682\) 0 0
\(683\) 47.2308 1.80723 0.903617 0.428341i \(-0.140902\pi\)
0.903617 + 0.428341i \(0.140902\pi\)
\(684\) 0 0
\(685\) 16.1170 0.615798
\(686\) 0 0
\(687\) −12.0839 −0.461028
\(688\) 0 0
\(689\) −11.0800 −0.422113
\(690\) 0 0
\(691\) −24.9859 −0.950509 −0.475254 0.879848i \(-0.657644\pi\)
−0.475254 + 0.879848i \(0.657644\pi\)
\(692\) 0 0
\(693\) −11.1868 −0.424951
\(694\) 0 0
\(695\) −5.36902 −0.203659
\(696\) 0 0
\(697\) 27.1240 1.02739
\(698\) 0 0
\(699\) 13.8566 0.524105
\(700\) 0 0
\(701\) 15.5135 0.585936 0.292968 0.956122i \(-0.405357\pi\)
0.292968 + 0.956122i \(0.405357\pi\)
\(702\) 0 0
\(703\) −0.310357 −0.0117053
\(704\) 0 0
\(705\) −0.742152 −0.0279511
\(706\) 0 0
\(707\) −6.86012 −0.258001
\(708\) 0 0
\(709\) −44.7814 −1.68180 −0.840901 0.541189i \(-0.817974\pi\)
−0.840901 + 0.541189i \(0.817974\pi\)
\(710\) 0 0
\(711\) −25.1596 −0.943558
\(712\) 0 0
\(713\) 3.60583 0.135040
\(714\) 0 0
\(715\) 2.22388 0.0831684
\(716\) 0 0
\(717\) −2.36400 −0.0882850
\(718\) 0 0
\(719\) 30.9233 1.15324 0.576622 0.817011i \(-0.304371\pi\)
0.576622 + 0.817011i \(0.304371\pi\)
\(720\) 0 0
\(721\) −16.6003 −0.618228
\(722\) 0 0
\(723\) −18.7611 −0.697731
\(724\) 0 0
\(725\) 1.00000 0.0371391
\(726\) 0 0
\(727\) −44.0771 −1.63473 −0.817365 0.576121i \(-0.804566\pi\)
−0.817365 + 0.576121i \(0.804566\pi\)
\(728\) 0 0
\(729\) −4.61473 −0.170916
\(730\) 0 0
\(731\) 22.9000 0.846988
\(732\) 0 0
\(733\) −16.8154 −0.621089 −0.310545 0.950559i \(-0.600511\pi\)
−0.310545 + 0.950559i \(0.600511\pi\)
\(734\) 0 0
\(735\) −9.45370 −0.348705
\(736\) 0 0
\(737\) −0.343151 −0.0126401
\(738\) 0 0
\(739\) −32.7803 −1.20584 −0.602921 0.797801i \(-0.705997\pi\)
−0.602921 + 0.797801i \(0.705997\pi\)
\(740\) 0 0
\(741\) −0.476172 −0.0174926
\(742\) 0 0
\(743\) 1.90184 0.0697718 0.0348859 0.999391i \(-0.488893\pi\)
0.0348859 + 0.999391i \(0.488893\pi\)
\(744\) 0 0
\(745\) −18.0824 −0.662487
\(746\) 0 0
\(747\) −35.1440 −1.28585
\(748\) 0 0
\(749\) −39.9741 −1.46062
\(750\) 0 0
\(751\) 21.3282 0.778277 0.389138 0.921179i \(-0.372773\pi\)
0.389138 + 0.921179i \(0.372773\pi\)
\(752\) 0 0
\(753\) 13.5544 0.493949
\(754\) 0 0
\(755\) −10.3782 −0.377700
\(756\) 0 0
\(757\) 14.5631 0.529304 0.264652 0.964344i \(-0.414743\pi\)
0.264652 + 0.964344i \(0.414743\pi\)
\(758\) 0 0
\(759\) −0.948745 −0.0344373
\(760\) 0 0
\(761\) 53.6193 1.94370 0.971850 0.235601i \(-0.0757058\pi\)
0.971850 + 0.235601i \(0.0757058\pi\)
\(762\) 0 0
\(763\) −15.2242 −0.551152
\(764\) 0 0
\(765\) 14.7115 0.531897
\(766\) 0 0
\(767\) 3.79865 0.137161
\(768\) 0 0
\(769\) −20.1352 −0.726093 −0.363046 0.931771i \(-0.618263\pi\)
−0.363046 + 0.931771i \(0.618263\pi\)
\(770\) 0 0
\(771\) 8.68721 0.312862
\(772\) 0 0
\(773\) −33.1762 −1.19327 −0.596633 0.802514i \(-0.703495\pi\)
−0.596633 + 0.802514i \(0.703495\pi\)
\(774\) 0 0
\(775\) −2.55109 −0.0916378
\(776\) 0 0
\(777\) −3.22047 −0.115534
\(778\) 0 0
\(779\) 1.40751 0.0504291
\(780\) 0 0
\(781\) −6.76314 −0.242004
\(782\) 0 0
\(783\) −3.80887 −0.136118
\(784\) 0 0
\(785\) 0.923523 0.0329619
\(786\) 0 0
\(787\) −19.4683 −0.693970 −0.346985 0.937871i \(-0.612795\pi\)
−0.346985 + 0.937871i \(0.612795\pi\)
\(788\) 0 0
\(789\) 8.68022 0.309024
\(790\) 0 0
\(791\) 35.4603 1.26082
\(792\) 0 0
\(793\) 27.8598 0.989329
\(794\) 0 0
\(795\) −3.34423 −0.118608
\(796\) 0 0
\(797\) 33.4032 1.18320 0.591600 0.806231i \(-0.298496\pi\)
0.591600 + 0.806231i \(0.298496\pi\)
\(798\) 0 0
\(799\) 6.27270 0.221912
\(800\) 0 0
\(801\) −12.1864 −0.430586
\(802\) 0 0
\(803\) 16.5311 0.583370
\(804\) 0 0
\(805\) 6.43273 0.226724
\(806\) 0 0
\(807\) 0.909313 0.0320093
\(808\) 0 0
\(809\) −26.2208 −0.921874 −0.460937 0.887433i \(-0.652487\pi\)
−0.460937 + 0.887433i \(0.652487\pi\)
\(810\) 0 0
\(811\) −22.5751 −0.792717 −0.396359 0.918096i \(-0.629726\pi\)
−0.396359 + 0.918096i \(0.629726\pi\)
\(812\) 0 0
\(813\) −6.50697 −0.228209
\(814\) 0 0
\(815\) −22.9695 −0.804586
\(816\) 0 0
\(817\) 1.18832 0.0415740
\(818\) 0 0
\(819\) 26.2454 0.917089
\(820\) 0 0
\(821\) 6.46276 0.225552 0.112776 0.993620i \(-0.464026\pi\)
0.112776 + 0.993620i \(0.464026\pi\)
\(822\) 0 0
\(823\) 8.76701 0.305599 0.152799 0.988257i \(-0.451171\pi\)
0.152799 + 0.988257i \(0.451171\pi\)
\(824\) 0 0
\(825\) 0.671227 0.0233691
\(826\) 0 0
\(827\) 27.1637 0.944574 0.472287 0.881445i \(-0.343429\pi\)
0.472287 + 0.881445i \(0.343429\pi\)
\(828\) 0 0
\(829\) 28.3498 0.984628 0.492314 0.870418i \(-0.336151\pi\)
0.492314 + 0.870418i \(0.336151\pi\)
\(830\) 0 0
\(831\) −6.30981 −0.218885
\(832\) 0 0
\(833\) 79.9031 2.76848
\(834\) 0 0
\(835\) 5.79067 0.200394
\(836\) 0 0
\(837\) 9.71676 0.335860
\(838\) 0 0
\(839\) 9.73165 0.335974 0.167987 0.985789i \(-0.446273\pi\)
0.167987 + 0.985789i \(0.446273\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) −9.52537 −0.328071
\(844\) 0 0
\(845\) 7.78254 0.267728
\(846\) 0 0
\(847\) −45.7480 −1.57192
\(848\) 0 0
\(849\) 19.6765 0.675296
\(850\) 0 0
\(851\) 1.45076 0.0497314
\(852\) 0 0
\(853\) 21.9885 0.752870 0.376435 0.926443i \(-0.377150\pi\)
0.376435 + 0.926443i \(0.377150\pi\)
\(854\) 0 0
\(855\) 0.763404 0.0261079
\(856\) 0 0
\(857\) −14.1578 −0.483622 −0.241811 0.970323i \(-0.577741\pi\)
−0.241811 + 0.970323i \(0.577741\pi\)
\(858\) 0 0
\(859\) 33.6722 1.14888 0.574440 0.818547i \(-0.305220\pi\)
0.574440 + 0.818547i \(0.305220\pi\)
\(860\) 0 0
\(861\) 14.6052 0.497743
\(862\) 0 0
\(863\) 56.3189 1.91712 0.958560 0.284892i \(-0.0919578\pi\)
0.958560 + 0.284892i \(0.0919578\pi\)
\(864\) 0 0
\(865\) −1.14747 −0.0390152
\(866\) 0 0
\(867\) 11.6890 0.396980
\(868\) 0 0
\(869\) 9.70234 0.329129
\(870\) 0 0
\(871\) 0.805069 0.0272787
\(872\) 0 0
\(873\) −34.6863 −1.17395
\(874\) 0 0
\(875\) −4.55109 −0.153855
\(876\) 0 0
\(877\) −36.2864 −1.22530 −0.612652 0.790353i \(-0.709897\pi\)
−0.612652 + 0.790353i \(0.709897\pi\)
\(878\) 0 0
\(879\) 6.83918 0.230680
\(880\) 0 0
\(881\) 21.5495 0.726022 0.363011 0.931785i \(-0.381749\pi\)
0.363011 + 0.931785i \(0.381749\pi\)
\(882\) 0 0
\(883\) −9.49375 −0.319490 −0.159745 0.987158i \(-0.551067\pi\)
−0.159745 + 0.987158i \(0.551067\pi\)
\(884\) 0 0
\(885\) 1.14654 0.0385404
\(886\) 0 0
\(887\) 10.5323 0.353639 0.176819 0.984243i \(-0.443419\pi\)
0.176819 + 0.984243i \(0.443419\pi\)
\(888\) 0 0
\(889\) −56.9939 −1.91151
\(890\) 0 0
\(891\) 4.81752 0.161393
\(892\) 0 0
\(893\) 0.325500 0.0108924
\(894\) 0 0
\(895\) −3.95882 −0.132329
\(896\) 0 0
\(897\) 2.22586 0.0743192
\(898\) 0 0
\(899\) −2.55109 −0.0850836
\(900\) 0 0
\(901\) 28.2656 0.941665
\(902\) 0 0
\(903\) 12.3307 0.410341
\(904\) 0 0
\(905\) −11.2068 −0.372526
\(906\) 0 0
\(907\) −37.9285 −1.25940 −0.629698 0.776840i \(-0.716822\pi\)
−0.629698 + 0.776840i \(0.716822\pi\)
\(908\) 0 0
\(909\) 3.80561 0.126224
\(910\) 0 0
\(911\) 40.5953 1.34498 0.672491 0.740105i \(-0.265224\pi\)
0.672491 + 0.740105i \(0.265224\pi\)
\(912\) 0 0
\(913\) 13.5527 0.448527
\(914\) 0 0
\(915\) 8.40883 0.277987
\(916\) 0 0
\(917\) −32.9780 −1.08903
\(918\) 0 0
\(919\) 6.56890 0.216688 0.108344 0.994113i \(-0.465445\pi\)
0.108344 + 0.994113i \(0.465445\pi\)
\(920\) 0 0
\(921\) 5.87607 0.193623
\(922\) 0 0
\(923\) 15.8670 0.522270
\(924\) 0 0
\(925\) −1.02640 −0.0337477
\(926\) 0 0
\(927\) 9.20893 0.302461
\(928\) 0 0
\(929\) 4.77110 0.156535 0.0782673 0.996932i \(-0.475061\pi\)
0.0782673 + 0.996932i \(0.475061\pi\)
\(930\) 0 0
\(931\) 4.14629 0.135889
\(932\) 0 0
\(933\) 11.3367 0.371148
\(934\) 0 0
\(935\) −5.67325 −0.185535
\(936\) 0 0
\(937\) −7.45076 −0.243406 −0.121703 0.992567i \(-0.538835\pi\)
−0.121703 + 0.992567i \(0.538835\pi\)
\(938\) 0 0
\(939\) −3.92259 −0.128009
\(940\) 0 0
\(941\) −30.9656 −1.00945 −0.504725 0.863280i \(-0.668406\pi\)
−0.504725 + 0.863280i \(0.668406\pi\)
\(942\) 0 0
\(943\) −6.57936 −0.214254
\(944\) 0 0
\(945\) 17.3345 0.563891
\(946\) 0 0
\(947\) 21.3943 0.695223 0.347611 0.937639i \(-0.386993\pi\)
0.347611 + 0.937639i \(0.386993\pi\)
\(948\) 0 0
\(949\) −38.7838 −1.25897
\(950\) 0 0
\(951\) 6.44922 0.209130
\(952\) 0 0
\(953\) −55.9522 −1.81247 −0.906234 0.422776i \(-0.861056\pi\)
−0.906234 + 0.422776i \(0.861056\pi\)
\(954\) 0 0
\(955\) 23.3047 0.754122
\(956\) 0 0
\(957\) 0.671227 0.0216977
\(958\) 0 0
\(959\) −73.3497 −2.36859
\(960\) 0 0
\(961\) −24.4919 −0.790063
\(962\) 0 0
\(963\) 22.1754 0.714592
\(964\) 0 0
\(965\) 14.8383 0.477661
\(966\) 0 0
\(967\) 9.93468 0.319478 0.159739 0.987159i \(-0.448935\pi\)
0.159739 + 0.987159i \(0.448935\pi\)
\(968\) 0 0
\(969\) 1.21474 0.0390231
\(970\) 0 0
\(971\) 22.0481 0.707558 0.353779 0.935329i \(-0.384897\pi\)
0.353779 + 0.935329i \(0.384897\pi\)
\(972\) 0 0
\(973\) 24.4349 0.783347
\(974\) 0 0
\(975\) −1.57477 −0.0504330
\(976\) 0 0
\(977\) 5.39441 0.172582 0.0862912 0.996270i \(-0.472498\pi\)
0.0862912 + 0.996270i \(0.472498\pi\)
\(978\) 0 0
\(979\) 4.69948 0.150196
\(980\) 0 0
\(981\) 8.44552 0.269645
\(982\) 0 0
\(983\) −62.0136 −1.97793 −0.988963 0.148162i \(-0.952664\pi\)
−0.988963 + 0.148162i \(0.952664\pi\)
\(984\) 0 0
\(985\) −21.9556 −0.699565
\(986\) 0 0
\(987\) 3.37760 0.107510
\(988\) 0 0
\(989\) −5.55477 −0.176631
\(990\) 0 0
\(991\) 35.5441 1.12910 0.564548 0.825400i \(-0.309051\pi\)
0.564548 + 0.825400i \(0.309051\pi\)
\(992\) 0 0
\(993\) −23.5263 −0.746585
\(994\) 0 0
\(995\) −24.8592 −0.788089
\(996\) 0 0
\(997\) 17.8032 0.563833 0.281917 0.959439i \(-0.409030\pi\)
0.281917 + 0.959439i \(0.409030\pi\)
\(998\) 0 0
\(999\) 3.90941 0.123688
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9280.2.a.cj.1.3 5
4.3 odd 2 9280.2.a.ch.1.3 5
8.3 odd 2 2320.2.a.w.1.3 5
8.5 even 2 1160.2.a.i.1.3 5
40.29 even 2 5800.2.a.v.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.2.a.i.1.3 5 8.5 even 2
2320.2.a.w.1.3 5 8.3 odd 2
5800.2.a.v.1.3 5 40.29 even 2
9280.2.a.ch.1.3 5 4.3 odd 2
9280.2.a.cj.1.3 5 1.1 even 1 trivial