Properties

Label 925.2.f.f.43.15
Level $925$
Weight $2$
Character 925.43
Analytic conductor $7.386$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [925,2,Mod(43,925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(925, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("925.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.15
Character \(\chi\) \(=\) 925.43
Dual form 925.2.f.f.882.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.715481i q^{2} +(-0.0427756 + 0.0427756i) q^{3} +1.48809 q^{4} +(-0.0306051 - 0.0306051i) q^{6} +(0.0275714 - 0.0275714i) q^{7} +2.49566i q^{8} +2.99634i q^{9} +5.26598i q^{11} +(-0.0636538 + 0.0636538i) q^{12} -4.18897i q^{13} +(0.0197268 + 0.0197268i) q^{14} +1.19058 q^{16} -0.926314 q^{17} -2.14382 q^{18} +(-4.88259 + 4.88259i) q^{19} +0.00235876i q^{21} -3.76771 q^{22} -2.22938i q^{23} +(-0.106753 - 0.106753i) q^{24} +2.99713 q^{26} +(-0.256497 - 0.256497i) q^{27} +(0.0410286 - 0.0410286i) q^{28} +(-0.240739 - 0.240739i) q^{29} +(4.46100 - 4.46100i) q^{31} +5.84315i q^{32} +(-0.225255 - 0.225255i) q^{33} -0.662760i q^{34} +4.45882i q^{36} +(1.61350 + 5.86486i) q^{37} +(-3.49340 - 3.49340i) q^{38} +(0.179186 + 0.179186i) q^{39} -2.57150i q^{41} -0.00168765 q^{42} -2.51937i q^{43} +7.83623i q^{44} +1.59508 q^{46} +(-5.85521 + 5.85521i) q^{47} +(-0.0509276 + 0.0509276i) q^{48} +6.99848i q^{49} +(0.0396236 - 0.0396236i) q^{51} -6.23356i q^{52} +(9.82144 + 9.82144i) q^{53} +(0.183519 - 0.183519i) q^{54} +(0.0688088 + 0.0688088i) q^{56} -0.417712i q^{57} +(0.172244 - 0.172244i) q^{58} +(2.74050 - 2.74050i) q^{59} +(8.05038 - 8.05038i) q^{61} +(3.19176 + 3.19176i) q^{62} +(0.0826132 + 0.0826132i) q^{63} -1.79951 q^{64} +(0.161166 - 0.161166i) q^{66} +(-7.34282 - 7.34282i) q^{67} -1.37844 q^{68} +(0.0953629 + 0.0953629i) q^{69} +5.42263 q^{71} -7.47785 q^{72} +(9.24390 - 9.24390i) q^{73} +(-4.19620 + 1.15443i) q^{74} +(-7.26572 + 7.26572i) q^{76} +(0.145190 + 0.145190i) q^{77} +(-0.128204 + 0.128204i) q^{78} +(-2.23842 + 2.23842i) q^{79} -8.96708 q^{81} +1.83986 q^{82} +(5.68166 + 5.68166i) q^{83} +0.00351005i q^{84} +1.80256 q^{86} +0.0205955 q^{87} -13.1421 q^{88} +(5.42270 + 5.42270i) q^{89} +(-0.115496 - 0.115496i) q^{91} -3.31751i q^{92} +0.381644i q^{93} +(-4.18929 - 4.18929i) q^{94} +(-0.249945 - 0.249945i) q^{96} -6.18329 q^{97} -5.00728 q^{98} -15.7787 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 40 q^{4} + 8 q^{14} + 64 q^{16} + 12 q^{19} - 52 q^{24} - 16 q^{26} + 20 q^{31} + 32 q^{39} - 24 q^{46} - 36 q^{51} - 116 q^{54} - 28 q^{56} + 28 q^{59} - 20 q^{61} - 24 q^{64} - 76 q^{66} + 68 q^{69}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.715481i 0.505921i 0.967477 + 0.252961i \(0.0814044\pi\)
−0.967477 + 0.252961i \(0.918596\pi\)
\(3\) −0.0427756 + 0.0427756i −0.0246965 + 0.0246965i −0.719347 0.694651i \(-0.755559\pi\)
0.694651 + 0.719347i \(0.255559\pi\)
\(4\) 1.48809 0.744043
\(5\) 0 0
\(6\) −0.0306051 0.0306051i −0.0124945 0.0124945i
\(7\) 0.0275714 0.0275714i 0.0104210 0.0104210i −0.701877 0.712298i \(-0.747654\pi\)
0.712298 + 0.701877i \(0.247654\pi\)
\(8\) 2.49566i 0.882349i
\(9\) 2.99634i 0.998780i
\(10\) 0 0
\(11\) 5.26598i 1.58775i 0.608080 + 0.793876i \(0.291940\pi\)
−0.608080 + 0.793876i \(0.708060\pi\)
\(12\) −0.0636538 + 0.0636538i −0.0183753 + 0.0183753i
\(13\) 4.18897i 1.16181i −0.813971 0.580906i \(-0.802698\pi\)
0.813971 0.580906i \(-0.197302\pi\)
\(14\) 0.0197268 + 0.0197268i 0.00527221 + 0.00527221i
\(15\) 0 0
\(16\) 1.19058 0.297644
\(17\) −0.926314 −0.224664 −0.112332 0.993671i \(-0.535832\pi\)
−0.112332 + 0.993671i \(0.535832\pi\)
\(18\) −2.14382 −0.505304
\(19\) −4.88259 + 4.88259i −1.12014 + 1.12014i −0.128424 + 0.991719i \(0.540992\pi\)
−0.991719 + 0.128424i \(0.959008\pi\)
\(20\) 0 0
\(21\) 0.00235876i 0.000514725i
\(22\) −3.76771 −0.803278
\(23\) 2.22938i 0.464857i −0.972613 0.232429i \(-0.925333\pi\)
0.972613 0.232429i \(-0.0746672\pi\)
\(24\) −0.106753 0.106753i −0.0217909 0.0217909i
\(25\) 0 0
\(26\) 2.99713 0.587786
\(27\) −0.256497 0.256497i −0.0493629 0.0493629i
\(28\) 0.0410286 0.0410286i 0.00775368 0.00775368i
\(29\) −0.240739 0.240739i −0.0447041 0.0447041i 0.684401 0.729105i \(-0.260064\pi\)
−0.729105 + 0.684401i \(0.760064\pi\)
\(30\) 0 0
\(31\) 4.46100 4.46100i 0.801220 0.801220i −0.182066 0.983286i \(-0.558279\pi\)
0.983286 + 0.182066i \(0.0582786\pi\)
\(32\) 5.84315i 1.03293i
\(33\) −0.225255 0.225255i −0.0392119 0.0392119i
\(34\) 0.662760i 0.113662i
\(35\) 0 0
\(36\) 4.45882i 0.743136i
\(37\) 1.61350 + 5.86486i 0.265257 + 0.964178i
\(38\) −3.49340 3.49340i −0.566705 0.566705i
\(39\) 0.179186 + 0.179186i 0.0286927 + 0.0286927i
\(40\) 0 0
\(41\) 2.57150i 0.401601i −0.979632 0.200801i \(-0.935646\pi\)
0.979632 0.200801i \(-0.0643543\pi\)
\(42\) −0.00168765 −0.000260410
\(43\) 2.51937i 0.384200i −0.981375 0.192100i \(-0.938470\pi\)
0.981375 0.192100i \(-0.0615298\pi\)
\(44\) 7.83623i 1.18136i
\(45\) 0 0
\(46\) 1.59508 0.235181
\(47\) −5.85521 + 5.85521i −0.854070 + 0.854070i −0.990632 0.136562i \(-0.956395\pi\)
0.136562 + 0.990632i \(0.456395\pi\)
\(48\) −0.0509276 + 0.0509276i −0.00735077 + 0.00735077i
\(49\) 6.99848i 0.999783i
\(50\) 0 0
\(51\) 0.0396236 0.0396236i 0.00554842 0.00554842i
\(52\) 6.23356i 0.864439i
\(53\) 9.82144 + 9.82144i 1.34908 + 1.34908i 0.886663 + 0.462416i \(0.153017\pi\)
0.462416 + 0.886663i \(0.346983\pi\)
\(54\) 0.183519 0.183519i 0.0249737 0.0249737i
\(55\) 0 0
\(56\) 0.0688088 + 0.0688088i 0.00919496 + 0.00919496i
\(57\) 0.417712i 0.0553273i
\(58\) 0.172244 0.172244i 0.0226168 0.0226168i
\(59\) 2.74050 2.74050i 0.356783 0.356783i −0.505843 0.862626i \(-0.668818\pi\)
0.862626 + 0.505843i \(0.168818\pi\)
\(60\) 0 0
\(61\) 8.05038 8.05038i 1.03075 1.03075i 0.0312335 0.999512i \(-0.490056\pi\)
0.999512 0.0312335i \(-0.00994355\pi\)
\(62\) 3.19176 + 3.19176i 0.405354 + 0.405354i
\(63\) 0.0826132 + 0.0826132i 0.0104083 + 0.0104083i
\(64\) −1.79951 −0.224939
\(65\) 0 0
\(66\) 0.161166 0.161166i 0.0198382 0.0198382i
\(67\) −7.34282 7.34282i −0.897068 0.897068i 0.0981075 0.995176i \(-0.468721\pi\)
−0.995176 + 0.0981075i \(0.968721\pi\)
\(68\) −1.37844 −0.167160
\(69\) 0.0953629 + 0.0953629i 0.0114803 + 0.0114803i
\(70\) 0 0
\(71\) 5.42263 0.643548 0.321774 0.946817i \(-0.395721\pi\)
0.321774 + 0.946817i \(0.395721\pi\)
\(72\) −7.47785 −0.881273
\(73\) 9.24390 9.24390i 1.08192 1.08192i 0.0855854 0.996331i \(-0.472724\pi\)
0.996331 0.0855854i \(-0.0272761\pi\)
\(74\) −4.19620 + 1.15443i −0.487798 + 0.134199i
\(75\) 0 0
\(76\) −7.26572 + 7.26572i −0.833435 + 0.833435i
\(77\) 0.145190 + 0.145190i 0.0165460 + 0.0165460i
\(78\) −0.128204 + 0.128204i −0.0145163 + 0.0145163i
\(79\) −2.23842 + 2.23842i −0.251842 + 0.251842i −0.821726 0.569883i \(-0.806988\pi\)
0.569883 + 0.821726i \(0.306988\pi\)
\(80\) 0 0
\(81\) −8.96708 −0.996342
\(82\) 1.83986 0.203179
\(83\) 5.68166 + 5.68166i 0.623643 + 0.623643i 0.946461 0.322818i \(-0.104630\pi\)
−0.322818 + 0.946461i \(0.604630\pi\)
\(84\) 0.00351005i 0.000382977i
\(85\) 0 0
\(86\) 1.80256 0.194375
\(87\) 0.0205955 0.00220807
\(88\) −13.1421 −1.40095
\(89\) 5.42270 + 5.42270i 0.574805 + 0.574805i 0.933467 0.358662i \(-0.116767\pi\)
−0.358662 + 0.933467i \(0.616767\pi\)
\(90\) 0 0
\(91\) −0.115496 0.115496i −0.0121072 0.0121072i
\(92\) 3.31751i 0.345874i
\(93\) 0.381644i 0.0395747i
\(94\) −4.18929 4.18929i −0.432092 0.432092i
\(95\) 0 0
\(96\) −0.249945 0.249945i −0.0255099 0.0255099i
\(97\) −6.18329 −0.627818 −0.313909 0.949453i \(-0.601639\pi\)
−0.313909 + 0.949453i \(0.601639\pi\)
\(98\) −5.00728 −0.505812
\(99\) −15.7787 −1.58582
\(100\) 0 0
\(101\) 6.08887i 0.605865i −0.953012 0.302932i \(-0.902034\pi\)
0.953012 0.302932i \(-0.0979656\pi\)
\(102\) 0.0283500 + 0.0283500i 0.00280706 + 0.00280706i
\(103\) −12.3217 −1.21409 −0.607047 0.794666i \(-0.707646\pi\)
−0.607047 + 0.794666i \(0.707646\pi\)
\(104\) 10.4543 1.02512
\(105\) 0 0
\(106\) −7.02706 + 7.02706i −0.682528 + 0.682528i
\(107\) −7.63887 + 7.63887i −0.738477 + 0.738477i −0.972283 0.233806i \(-0.924882\pi\)
0.233806 + 0.972283i \(0.424882\pi\)
\(108\) −0.381690 0.381690i −0.0367281 0.0367281i
\(109\) 9.60192 9.60192i 0.919697 0.919697i −0.0773097 0.997007i \(-0.524633\pi\)
0.997007 + 0.0773097i \(0.0246330\pi\)
\(110\) 0 0
\(111\) −0.319891 0.181855i −0.0303627 0.0172609i
\(112\) 0.0328258 0.0328258i 0.00310175 0.00310175i
\(113\) −14.1139 −1.32773 −0.663863 0.747854i \(-0.731084\pi\)
−0.663863 + 0.747854i \(0.731084\pi\)
\(114\) 0.298865 0.0279913
\(115\) 0 0
\(116\) −0.358241 0.358241i −0.0332618 0.0332618i
\(117\) 12.5516 1.16040
\(118\) 1.96078 + 1.96078i 0.180504 + 0.180504i
\(119\) −0.0255397 + 0.0255397i −0.00234122 + 0.00234122i
\(120\) 0 0
\(121\) −16.7305 −1.52096
\(122\) 5.75989 + 5.75989i 0.521476 + 0.521476i
\(123\) 0.109998 + 0.109998i 0.00991815 + 0.00991815i
\(124\) 6.63836 6.63836i 0.596142 0.596142i
\(125\) 0 0
\(126\) −0.0591082 + 0.0591082i −0.00526578 + 0.00526578i
\(127\) 1.17651 1.17651i 0.104399 0.104399i −0.652978 0.757377i \(-0.726481\pi\)
0.757377 + 0.652978i \(0.226481\pi\)
\(128\) 10.3988i 0.919132i
\(129\) 0.107768 + 0.107768i 0.00948840 + 0.00948840i
\(130\) 0 0
\(131\) 14.6623 14.6623i 1.28105 1.28105i 0.340978 0.940071i \(-0.389242\pi\)
0.940071 0.340978i \(-0.110758\pi\)
\(132\) −0.335200 0.335200i −0.0291754 0.0291754i
\(133\) 0.269240i 0.0233460i
\(134\) 5.25365 5.25365i 0.453846 0.453846i
\(135\) 0 0
\(136\) 2.31176i 0.198232i
\(137\) 10.8942 10.8942i 0.930757 0.930757i −0.0669964 0.997753i \(-0.521342\pi\)
0.997753 + 0.0669964i \(0.0213416\pi\)
\(138\) −0.0682304 + 0.0682304i −0.00580815 + 0.00580815i
\(139\) 5.55120 0.470846 0.235423 0.971893i \(-0.424352\pi\)
0.235423 + 0.971893i \(0.424352\pi\)
\(140\) 0 0
\(141\) 0.500920i 0.0421851i
\(142\) 3.87979i 0.325585i
\(143\) 22.0590 1.84467
\(144\) 3.56737i 0.297281i
\(145\) 0 0
\(146\) 6.61383 + 6.61383i 0.547365 + 0.547365i
\(147\) −0.299364 0.299364i −0.0246911 0.0246911i
\(148\) 2.40102 + 8.72743i 0.197363 + 0.717390i
\(149\) 11.1081i 0.910014i −0.890488 0.455007i \(-0.849637\pi\)
0.890488 0.455007i \(-0.150363\pi\)
\(150\) 0 0
\(151\) 14.0367i 1.14229i 0.820850 + 0.571144i \(0.193500\pi\)
−0.820850 + 0.571144i \(0.806500\pi\)
\(152\) −12.1853 12.1853i −0.988358 0.988358i
\(153\) 2.77555i 0.224390i
\(154\) −0.103881 + 0.103881i −0.00837096 + 0.00837096i
\(155\) 0 0
\(156\) 0.266644 + 0.266644i 0.0213486 + 0.0213486i
\(157\) 1.50319 1.50319i 0.119967 0.119967i −0.644574 0.764542i \(-0.722965\pi\)
0.764542 + 0.644574i \(0.222965\pi\)
\(158\) −1.60155 1.60155i −0.127412 0.127412i
\(159\) −0.840236 −0.0666351
\(160\) 0 0
\(161\) −0.0614669 0.0614669i −0.00484427 0.00484427i
\(162\) 6.41577i 0.504071i
\(163\) 22.1630 1.73594 0.867970 0.496617i \(-0.165425\pi\)
0.867970 + 0.496617i \(0.165425\pi\)
\(164\) 3.82662i 0.298809i
\(165\) 0 0
\(166\) −4.06512 + 4.06512i −0.315514 + 0.315514i
\(167\) 13.4294 1.03920 0.519599 0.854410i \(-0.326081\pi\)
0.519599 + 0.854410i \(0.326081\pi\)
\(168\) −0.00588667 −0.000454167
\(169\) −4.54750 −0.349808
\(170\) 0 0
\(171\) −14.6299 14.6299i −1.11878 1.11878i
\(172\) 3.74904i 0.285862i
\(173\) −0.347222 + 0.347222i −0.0263988 + 0.0263988i −0.720183 0.693784i \(-0.755942\pi\)
0.693784 + 0.720183i \(0.255942\pi\)
\(174\) 0.0147357i 0.00111711i
\(175\) 0 0
\(176\) 6.26955i 0.472585i
\(177\) 0.234453i 0.0176226i
\(178\) −3.87984 + 3.87984i −0.290806 + 0.290806i
\(179\) −4.95444 4.95444i −0.370312 0.370312i 0.497279 0.867591i \(-0.334333\pi\)
−0.867591 + 0.497279i \(0.834333\pi\)
\(180\) 0 0
\(181\) −8.10979 −0.602796 −0.301398 0.953498i \(-0.597453\pi\)
−0.301398 + 0.953498i \(0.597453\pi\)
\(182\) 0.0826350 0.0826350i 0.00612531 0.00612531i
\(183\) 0.688720i 0.0509116i
\(184\) 5.56376 0.410166
\(185\) 0 0
\(186\) −0.273059 −0.0200217
\(187\) 4.87795i 0.356711i
\(188\) −8.71306 + 8.71306i −0.635465 + 0.635465i
\(189\) −0.0141440 −0.00102882
\(190\) 0 0
\(191\) −2.19329 2.19329i −0.158701 0.158701i 0.623290 0.781991i \(-0.285796\pi\)
−0.781991 + 0.623290i \(0.785796\pi\)
\(192\) 0.0769753 0.0769753i 0.00555521 0.00555521i
\(193\) 14.0361i 1.01034i −0.863021 0.505169i \(-0.831430\pi\)
0.863021 0.505169i \(-0.168570\pi\)
\(194\) 4.42402i 0.317626i
\(195\) 0 0
\(196\) 10.4143i 0.743882i
\(197\) 15.1249 15.1249i 1.07761 1.07761i 0.0808819 0.996724i \(-0.474226\pi\)
0.996724 0.0808819i \(-0.0257736\pi\)
\(198\) 11.2893i 0.802298i
\(199\) 5.62952 + 5.62952i 0.399066 + 0.399066i 0.877904 0.478837i \(-0.158942\pi\)
−0.478837 + 0.877904i \(0.658942\pi\)
\(200\) 0 0
\(201\) 0.628187 0.0443089
\(202\) 4.35647 0.306520
\(203\) −0.0132750 −0.000931723
\(204\) 0.0589634 0.0589634i 0.00412826 0.00412826i
\(205\) 0 0
\(206\) 8.81595i 0.614236i
\(207\) 6.67997 0.464290
\(208\) 4.98729i 0.345807i
\(209\) −25.7116 25.7116i −1.77851 1.77851i
\(210\) 0 0
\(211\) −3.08351 −0.212277 −0.106139 0.994351i \(-0.533849\pi\)
−0.106139 + 0.994351i \(0.533849\pi\)
\(212\) 14.6152 + 14.6152i 1.00377 + 1.00377i
\(213\) −0.231956 + 0.231956i −0.0158934 + 0.0158934i
\(214\) −5.46547 5.46547i −0.373612 0.373612i
\(215\) 0 0
\(216\) 0.640130 0.640130i 0.0435553 0.0435553i
\(217\) 0.245992i 0.0166990i
\(218\) 6.86999 + 6.86999i 0.465295 + 0.465295i
\(219\) 0.790827i 0.0534391i
\(220\) 0 0
\(221\) 3.88030i 0.261017i
\(222\) 0.130114 0.228876i 0.00873266 0.0153612i
\(223\) −14.6332 14.6332i −0.979913 0.979913i 0.0198893 0.999802i \(-0.493669\pi\)
−0.999802 + 0.0198893i \(0.993669\pi\)
\(224\) 0.161104 + 0.161104i 0.0107642 + 0.0107642i
\(225\) 0 0
\(226\) 10.0982i 0.671726i
\(227\) −2.03489 −0.135060 −0.0675301 0.997717i \(-0.521512\pi\)
−0.0675301 + 0.997717i \(0.521512\pi\)
\(228\) 0.621591i 0.0411659i
\(229\) 4.75926i 0.314501i −0.987559 0.157250i \(-0.949737\pi\)
0.987559 0.157250i \(-0.0502630\pi\)
\(230\) 0 0
\(231\) −0.0124212 −0.000817255
\(232\) 0.600803 0.600803i 0.0394447 0.0394447i
\(233\) −0.227731 + 0.227731i −0.0149192 + 0.0149192i −0.714527 0.699608i \(-0.753358\pi\)
0.699608 + 0.714527i \(0.253358\pi\)
\(234\) 8.98043i 0.587069i
\(235\) 0 0
\(236\) 4.07811 4.07811i 0.265462 0.265462i
\(237\) 0.191500i 0.0124392i
\(238\) −0.0182732 0.0182732i −0.00118448 0.00118448i
\(239\) 6.93429 6.93429i 0.448542 0.448542i −0.446328 0.894869i \(-0.647268\pi\)
0.894869 + 0.446328i \(0.147268\pi\)
\(240\) 0 0
\(241\) −10.4973 10.4973i −0.676192 0.676192i 0.282944 0.959136i \(-0.408689\pi\)
−0.959136 + 0.282944i \(0.908689\pi\)
\(242\) 11.9704i 0.769485i
\(243\) 1.15306 1.15306i 0.0739691 0.0739691i
\(244\) 11.9797 11.9797i 0.766920 0.766920i
\(245\) 0 0
\(246\) −0.0787012 + 0.0787012i −0.00501780 + 0.00501780i
\(247\) 20.4531 + 20.4531i 1.30140 + 1.30140i
\(248\) 11.1331 + 11.1331i 0.706956 + 0.706956i
\(249\) −0.486073 −0.0308036
\(250\) 0 0
\(251\) 5.00819 5.00819i 0.316114 0.316114i −0.531158 0.847273i \(-0.678243\pi\)
0.847273 + 0.531158i \(0.178243\pi\)
\(252\) 0.122936 + 0.122936i 0.00774422 + 0.00774422i
\(253\) 11.7398 0.738078
\(254\) 0.841772 + 0.841772i 0.0528175 + 0.0528175i
\(255\) 0 0
\(256\) −11.0392 −0.689948
\(257\) −3.32518 −0.207419 −0.103710 0.994608i \(-0.533071\pi\)
−0.103710 + 0.994608i \(0.533071\pi\)
\(258\) −0.0771056 + 0.0771056i −0.00480039 + 0.00480039i
\(259\) 0.206189 + 0.117216i 0.0128119 + 0.00728345i
\(260\) 0 0
\(261\) 0.721336 0.721336i 0.0446496 0.0446496i
\(262\) 10.4906 + 10.4906i 0.648110 + 0.648110i
\(263\) 8.70082 8.70082i 0.536516 0.536516i −0.385988 0.922504i \(-0.626139\pi\)
0.922504 + 0.385988i \(0.126139\pi\)
\(264\) 0.562161 0.562161i 0.0345986 0.0345986i
\(265\) 0 0
\(266\) −0.192636 −0.0118113
\(267\) −0.463919 −0.0283914
\(268\) −10.9268 10.9268i −0.667458 0.667458i
\(269\) 14.5304i 0.885932i −0.896538 0.442966i \(-0.853926\pi\)
0.896538 0.442966i \(-0.146074\pi\)
\(270\) 0 0
\(271\) 14.6118 0.887605 0.443802 0.896125i \(-0.353629\pi\)
0.443802 + 0.896125i \(0.353629\pi\)
\(272\) −1.10285 −0.0668699
\(273\) 0.00988080 0.000598013
\(274\) 7.79461 + 7.79461i 0.470890 + 0.470890i
\(275\) 0 0
\(276\) 0.141908 + 0.141908i 0.00854188 + 0.00854188i
\(277\) 1.60224i 0.0962691i 0.998841 + 0.0481346i \(0.0153276\pi\)
−0.998841 + 0.0481346i \(0.984672\pi\)
\(278\) 3.97178i 0.238211i
\(279\) 13.3667 + 13.3667i 0.800243 + 0.800243i
\(280\) 0 0
\(281\) 13.1357 + 13.1357i 0.783609 + 0.783609i 0.980438 0.196829i \(-0.0630642\pi\)
−0.196829 + 0.980438i \(0.563064\pi\)
\(282\) 0.358399 0.0213423
\(283\) −19.4089 −1.15374 −0.576868 0.816837i \(-0.695725\pi\)
−0.576868 + 0.816837i \(0.695725\pi\)
\(284\) 8.06935 0.478828
\(285\) 0 0
\(286\) 15.7828i 0.933258i
\(287\) −0.0708998 0.0708998i −0.00418509 0.00418509i
\(288\) −17.5081 −1.03167
\(289\) −16.1419 −0.949526
\(290\) 0 0
\(291\) 0.264494 0.264494i 0.0155049 0.0155049i
\(292\) 13.7557 13.7557i 0.804993 0.804993i
\(293\) 18.7278 + 18.7278i 1.09409 + 1.09409i 0.995087 + 0.0990018i \(0.0315650\pi\)
0.0990018 + 0.995087i \(0.468435\pi\)
\(294\) 0.214189 0.214189i 0.0124918 0.0124918i
\(295\) 0 0
\(296\) −14.6367 + 4.02674i −0.850741 + 0.234049i
\(297\) 1.35071 1.35071i 0.0783760 0.0783760i
\(298\) 7.94766 0.460396
\(299\) −9.33880 −0.540077
\(300\) 0 0
\(301\) −0.0694624 0.0694624i −0.00400375 0.00400375i
\(302\) −10.0430 −0.577908
\(303\) 0.260455 + 0.260455i 0.0149627 + 0.0149627i
\(304\) −5.81310 + 5.81310i −0.333404 + 0.333404i
\(305\) 0 0
\(306\) 1.98585 0.113524
\(307\) −17.3114 17.3114i −0.988014 0.988014i 0.0119148 0.999929i \(-0.496207\pi\)
−0.999929 + 0.0119148i \(0.996207\pi\)
\(308\) 0.216056 + 0.216056i 0.0123109 + 0.0123109i
\(309\) 0.527068 0.527068i 0.0299839 0.0299839i
\(310\) 0 0
\(311\) 0.429170 0.429170i 0.0243360 0.0243360i −0.694834 0.719170i \(-0.744522\pi\)
0.719170 + 0.694834i \(0.244522\pi\)
\(312\) −0.447187 + 0.447187i −0.0253170 + 0.0253170i
\(313\) 14.4025i 0.814077i 0.913411 + 0.407039i \(0.133439\pi\)
−0.913411 + 0.407039i \(0.866561\pi\)
\(314\) 1.07550 + 1.07550i 0.0606940 + 0.0606940i
\(315\) 0 0
\(316\) −3.33097 + 3.33097i −0.187381 + 0.187381i
\(317\) −13.8484 13.8484i −0.777805 0.777805i 0.201652 0.979457i \(-0.435369\pi\)
−0.979457 + 0.201652i \(0.935369\pi\)
\(318\) 0.601173i 0.0337121i
\(319\) 1.26773 1.26773i 0.0709791 0.0709791i
\(320\) 0 0
\(321\) 0.653515i 0.0364756i
\(322\) 0.0439784 0.0439784i 0.00245082 0.00245082i
\(323\) 4.52281 4.52281i 0.251656 0.251656i
\(324\) −13.3438 −0.741322
\(325\) 0 0
\(326\) 15.8572i 0.878249i
\(327\) 0.821456i 0.0454266i
\(328\) 6.41760 0.354352
\(329\) 0.322872i 0.0178005i
\(330\) 0 0
\(331\) −7.97242 7.97242i −0.438204 0.438204i 0.453203 0.891407i \(-0.350281\pi\)
−0.891407 + 0.453203i \(0.850281\pi\)
\(332\) 8.45480 + 8.45480i 0.464017 + 0.464017i
\(333\) −17.5731 + 4.83458i −0.963002 + 0.264933i
\(334\) 9.60848i 0.525753i
\(335\) 0 0
\(336\) 0.00280829i 0.000153205i
\(337\) −4.31604 4.31604i −0.235110 0.235110i 0.579712 0.814822i \(-0.303165\pi\)
−0.814822 + 0.579712i \(0.803165\pi\)
\(338\) 3.25365i 0.176975i
\(339\) 0.603732 0.603732i 0.0327902 0.0327902i
\(340\) 0 0
\(341\) 23.4915 + 23.4915i 1.27214 + 1.27214i
\(342\) 10.4674 10.4674i 0.566013 0.566013i
\(343\) 0.385957 + 0.385957i 0.0208397 + 0.0208397i
\(344\) 6.28749 0.338999
\(345\) 0 0
\(346\) −0.248431 0.248431i −0.0133557 0.0133557i
\(347\) 31.5847i 1.69555i 0.530353 + 0.847777i \(0.322060\pi\)
−0.530353 + 0.847777i \(0.677940\pi\)
\(348\) 0.0306479 0.00164290
\(349\) 31.4804i 1.68511i −0.538614 0.842553i \(-0.681052\pi\)
0.538614 0.842553i \(-0.318948\pi\)
\(350\) 0 0
\(351\) −1.07446 + 1.07446i −0.0573504 + 0.0573504i
\(352\) −30.7699 −1.64004
\(353\) −4.40596 −0.234506 −0.117253 0.993102i \(-0.537409\pi\)
−0.117253 + 0.993102i \(0.537409\pi\)
\(354\) −0.167747 −0.00891565
\(355\) 0 0
\(356\) 8.06945 + 8.06945i 0.427680 + 0.427680i
\(357\) 0.00218496i 0.000115640i
\(358\) 3.54481 3.54481i 0.187349 0.187349i
\(359\) 26.2092i 1.38327i 0.722249 + 0.691634i \(0.243109\pi\)
−0.722249 + 0.691634i \(0.756891\pi\)
\(360\) 0 0
\(361\) 28.6794i 1.50944i
\(362\) 5.80240i 0.304967i
\(363\) 0.715658 0.715658i 0.0375623 0.0375623i
\(364\) −0.171868 0.171868i −0.00900832 0.00900832i
\(365\) 0 0
\(366\) −0.492766 −0.0257573
\(367\) −6.54048 + 6.54048i −0.341410 + 0.341410i −0.856897 0.515487i \(-0.827611\pi\)
0.515487 + 0.856897i \(0.327611\pi\)
\(368\) 2.65424i 0.138362i
\(369\) 7.70510 0.401111
\(370\) 0 0
\(371\) 0.541581 0.0281175
\(372\) 0.567920i 0.0294453i
\(373\) 11.2619 11.2619i 0.583119 0.583119i −0.352640 0.935759i \(-0.614716\pi\)
0.935759 + 0.352640i \(0.114716\pi\)
\(374\) 3.49008 0.180468
\(375\) 0 0
\(376\) −14.6126 14.6126i −0.753587 0.753587i
\(377\) −1.00845 + 1.00845i −0.0519378 + 0.0519378i
\(378\) 0.0101197i 0.000520503i
\(379\) 29.9982i 1.54090i 0.637498 + 0.770452i \(0.279970\pi\)
−0.637498 + 0.770452i \(0.720030\pi\)
\(380\) 0 0
\(381\) 0.100652i 0.00515656i
\(382\) 1.56926 1.56926i 0.0802903 0.0802903i
\(383\) 32.1226i 1.64139i 0.571366 + 0.820695i \(0.306414\pi\)
−0.571366 + 0.820695i \(0.693586\pi\)
\(384\) −0.444815 0.444815i −0.0226994 0.0226994i
\(385\) 0 0
\(386\) 10.0425 0.511151
\(387\) 7.54889 0.383731
\(388\) −9.20127 −0.467124
\(389\) 1.67677 1.67677i 0.0850155 0.0850155i −0.663320 0.748336i \(-0.730853\pi\)
0.748336 + 0.663320i \(0.230853\pi\)
\(390\) 0 0
\(391\) 2.06510i 0.104437i
\(392\) −17.4658 −0.882157
\(393\) 1.25438i 0.0632749i
\(394\) 10.8216 + 10.8216i 0.545184 + 0.545184i
\(395\) 0 0
\(396\) −23.4800 −1.17992
\(397\) 15.7557 + 15.7557i 0.790757 + 0.790757i 0.981617 0.190861i \(-0.0611278\pi\)
−0.190861 + 0.981617i \(0.561128\pi\)
\(398\) −4.02782 + 4.02782i −0.201896 + 0.201896i
\(399\) −0.0115169 0.0115169i −0.000576565 0.000576565i
\(400\) 0 0
\(401\) −4.22356 + 4.22356i −0.210915 + 0.210915i −0.804656 0.593741i \(-0.797650\pi\)
0.593741 + 0.804656i \(0.297650\pi\)
\(402\) 0.449456i 0.0224168i
\(403\) −18.6870 18.6870i −0.930867 0.930867i
\(404\) 9.06076i 0.450790i
\(405\) 0 0
\(406\) 0.00949802i 0.000471379i
\(407\) −30.8842 + 8.49663i −1.53088 + 0.421162i
\(408\) 0.0988871 + 0.0988871i 0.00489564 + 0.00489564i
\(409\) 0.710984 + 0.710984i 0.0351559 + 0.0351559i 0.724466 0.689310i \(-0.242086\pi\)
−0.689310 + 0.724466i \(0.742086\pi\)
\(410\) 0 0
\(411\) 0.932015i 0.0459729i
\(412\) −18.3358 −0.903338
\(413\) 0.151119i 0.00743608i
\(414\) 4.77939i 0.234894i
\(415\) 0 0
\(416\) 24.4768 1.20008
\(417\) −0.237456 + 0.237456i −0.0116283 + 0.0116283i
\(418\) 18.3962 18.3962i 0.899787 0.899787i
\(419\) 22.7576i 1.11178i 0.831256 + 0.555890i \(0.187622\pi\)
−0.831256 + 0.555890i \(0.812378\pi\)
\(420\) 0 0
\(421\) 4.90424 4.90424i 0.239018 0.239018i −0.577425 0.816443i \(-0.695943\pi\)
0.816443 + 0.577425i \(0.195943\pi\)
\(422\) 2.20619i 0.107396i
\(423\) −17.5442 17.5442i −0.853028 0.853028i
\(424\) −24.5110 + 24.5110i −1.19036 + 1.19036i
\(425\) 0 0
\(426\) −0.165960 0.165960i −0.00804081 0.00804081i
\(427\) 0.443920i 0.0214828i
\(428\) −11.3673 + 11.3673i −0.549459 + 0.549459i
\(429\) −0.943589 + 0.943589i −0.0455569 + 0.0455569i
\(430\) 0 0
\(431\) −7.09872 + 7.09872i −0.341933 + 0.341933i −0.857094 0.515160i \(-0.827732\pi\)
0.515160 + 0.857094i \(0.327732\pi\)
\(432\) −0.305379 0.305379i −0.0146926 0.0146926i
\(433\) −9.41111 9.41111i −0.452269 0.452269i 0.443838 0.896107i \(-0.353617\pi\)
−0.896107 + 0.443838i \(0.853617\pi\)
\(434\) 0.176003 0.00844839
\(435\) 0 0
\(436\) 14.2885 14.2885i 0.684295 0.684295i
\(437\) 10.8851 + 10.8851i 0.520707 + 0.520707i
\(438\) −0.565821 −0.0270360
\(439\) 20.2500 + 20.2500i 0.966482 + 0.966482i 0.999456 0.0329741i \(-0.0104979\pi\)
−0.0329741 + 0.999456i \(0.510498\pi\)
\(440\) 0 0
\(441\) −20.9698 −0.998563
\(442\) −2.77628 −0.132054
\(443\) −13.9273 + 13.9273i −0.661705 + 0.661705i −0.955782 0.294077i \(-0.904988\pi\)
0.294077 + 0.955782i \(0.404988\pi\)
\(444\) −0.476026 0.270616i −0.0225912 0.0128429i
\(445\) 0 0
\(446\) 10.4698 10.4698i 0.495759 0.495759i
\(447\) 0.475157 + 0.475157i 0.0224742 + 0.0224742i
\(448\) −0.0496151 + 0.0496151i −0.00234409 + 0.00234409i
\(449\) 19.0153 19.0153i 0.897387 0.897387i −0.0978171 0.995204i \(-0.531186\pi\)
0.995204 + 0.0978171i \(0.0311860\pi\)
\(450\) 0 0
\(451\) 13.5415 0.637643
\(452\) −21.0028 −0.987886
\(453\) −0.600427 0.600427i −0.0282105 0.0282105i
\(454\) 1.45592i 0.0683299i
\(455\) 0 0
\(456\) 1.04247 0.0488180
\(457\) 39.1978 1.83359 0.916797 0.399353i \(-0.130765\pi\)
0.916797 + 0.399353i \(0.130765\pi\)
\(458\) 3.40516 0.159113
\(459\) 0.237597 + 0.237597i 0.0110901 + 0.0110901i
\(460\) 0 0
\(461\) −16.5174 16.5174i −0.769291 0.769291i 0.208691 0.977982i \(-0.433080\pi\)
−0.977982 + 0.208691i \(0.933080\pi\)
\(462\) 0.00888713i 0.000413467i
\(463\) 9.95672i 0.462728i 0.972867 + 0.231364i \(0.0743188\pi\)
−0.972867 + 0.231364i \(0.925681\pi\)
\(464\) −0.286618 0.286618i −0.0133059 0.0133059i
\(465\) 0 0
\(466\) −0.162937 0.162937i −0.00754792 0.00754792i
\(467\) −35.9730 −1.66463 −0.832315 0.554302i \(-0.812985\pi\)
−0.832315 + 0.554302i \(0.812985\pi\)
\(468\) 18.6779 0.863384
\(469\) −0.404903 −0.0186967
\(470\) 0 0
\(471\) 0.128599i 0.00592555i
\(472\) 6.83937 + 6.83937i 0.314807 + 0.314807i
\(473\) 13.2669 0.610015
\(474\) 0.137014 0.00629328
\(475\) 0 0
\(476\) −0.0380053 + 0.0380053i −0.00174197 + 0.00174197i
\(477\) −29.4284 + 29.4284i −1.34743 + 1.34743i
\(478\) 4.96135 + 4.96135i 0.226927 + 0.226927i
\(479\) −12.3944 + 12.3944i −0.566314 + 0.566314i −0.931094 0.364780i \(-0.881144\pi\)
0.364780 + 0.931094i \(0.381144\pi\)
\(480\) 0 0
\(481\) 24.5678 6.75889i 1.12019 0.308179i
\(482\) 7.51064 7.51064i 0.342100 0.342100i
\(483\) 0.00525857 0.000239273
\(484\) −24.8965 −1.13166
\(485\) 0 0
\(486\) 0.824995 + 0.824995i 0.0374225 + 0.0374225i
\(487\) −30.4671 −1.38059 −0.690297 0.723526i \(-0.742520\pi\)
−0.690297 + 0.723526i \(0.742520\pi\)
\(488\) 20.0910 + 20.0910i 0.909477 + 0.909477i
\(489\) −0.948036 + 0.948036i −0.0428716 + 0.0428716i
\(490\) 0 0
\(491\) 18.9414 0.854816 0.427408 0.904059i \(-0.359427\pi\)
0.427408 + 0.904059i \(0.359427\pi\)
\(492\) 0.163686 + 0.163686i 0.00737953 + 0.00737953i
\(493\) 0.223000 + 0.223000i 0.0100434 + 0.0100434i
\(494\) −14.6338 + 14.6338i −0.658405 + 0.658405i
\(495\) 0 0
\(496\) 5.31117 5.31117i 0.238478 0.238478i
\(497\) 0.149509 0.149509i 0.00670641 0.00670641i
\(498\) 0.347776i 0.0155842i
\(499\) −13.6341 13.6341i −0.610347 0.610347i 0.332689 0.943037i \(-0.392044\pi\)
−0.943037 + 0.332689i \(0.892044\pi\)
\(500\) 0 0
\(501\) −0.574451 + 0.574451i −0.0256646 + 0.0256646i
\(502\) 3.58327 + 3.58327i 0.159929 + 0.159929i
\(503\) 18.0628i 0.805378i −0.915337 0.402689i \(-0.868076\pi\)
0.915337 0.402689i \(-0.131924\pi\)
\(504\) −0.206174 + 0.206174i −0.00918374 + 0.00918374i
\(505\) 0 0
\(506\) 8.39964i 0.373409i
\(507\) 0.194522 0.194522i 0.00863903 0.00863903i
\(508\) 1.75075 1.75075i 0.0776771 0.0776771i
\(509\) −40.5243 −1.79621 −0.898104 0.439783i \(-0.855055\pi\)
−0.898104 + 0.439783i \(0.855055\pi\)
\(510\) 0 0
\(511\) 0.509734i 0.0225493i
\(512\) 12.8993i 0.570073i
\(513\) 2.50474 0.110587
\(514\) 2.37910i 0.104938i
\(515\) 0 0
\(516\) 0.160367 + 0.160367i 0.00705978 + 0.00705978i
\(517\) −30.8334 30.8334i −1.35605 1.35605i
\(518\) −0.0838659 + 0.147524i −0.00368485 + 0.00648183i
\(519\) 0.0297053i 0.00130392i
\(520\) 0 0
\(521\) 18.1840i 0.796654i 0.917243 + 0.398327i \(0.130409\pi\)
−0.917243 + 0.398327i \(0.869591\pi\)
\(522\) 0.516103 + 0.516103i 0.0225892 + 0.0225892i
\(523\) 19.1713i 0.838300i −0.907917 0.419150i \(-0.862328\pi\)
0.907917 0.419150i \(-0.137672\pi\)
\(524\) 21.8187 21.8187i 0.953156 0.953156i
\(525\) 0 0
\(526\) 6.22527 + 6.22527i 0.271435 + 0.271435i
\(527\) −4.13229 + 4.13229i −0.180005 + 0.180005i
\(528\) −0.268184 0.268184i −0.0116712 0.0116712i
\(529\) 18.0299 0.783908
\(530\) 0 0
\(531\) 8.21148 + 8.21148i 0.356348 + 0.356348i
\(532\) 0.400652i 0.0173705i
\(533\) −10.7720 −0.466585
\(534\) 0.331925i 0.0143638i
\(535\) 0 0
\(536\) 18.3252 18.3252i 0.791527 0.791527i
\(537\) 0.423858 0.0182908
\(538\) 10.3962 0.448212
\(539\) −36.8538 −1.58741
\(540\) 0 0
\(541\) 7.46366 + 7.46366i 0.320888 + 0.320888i 0.849108 0.528220i \(-0.177140\pi\)
−0.528220 + 0.849108i \(0.677140\pi\)
\(542\) 10.4545i 0.449058i
\(543\) 0.346901 0.346901i 0.0148870 0.0148870i
\(544\) 5.41259i 0.232063i
\(545\) 0 0
\(546\) 0.00706953i 0.000302548i
\(547\) 14.0903i 0.602458i 0.953552 + 0.301229i \(0.0973969\pi\)
−0.953552 + 0.301229i \(0.902603\pi\)
\(548\) 16.2116 16.2116i 0.692523 0.692523i
\(549\) 24.1217 + 24.1217i 1.02949 + 1.02949i
\(550\) 0 0
\(551\) 2.35086 0.100150
\(552\) −0.237993 + 0.237993i −0.0101297 + 0.0101297i
\(553\) 0.123433i 0.00524889i
\(554\) −1.14637 −0.0487046
\(555\) 0 0
\(556\) 8.26066 0.350330
\(557\) 26.7903i 1.13514i −0.823325 0.567571i \(-0.807883\pi\)
0.823325 0.567571i \(-0.192117\pi\)
\(558\) −9.56361 + 9.56361i −0.404860 + 0.404860i
\(559\) −10.5536 −0.446368
\(560\) 0 0
\(561\) 0.208657 + 0.208657i 0.00880951 + 0.00880951i
\(562\) −9.39834 + 9.39834i −0.396445 + 0.396445i
\(563\) 33.0658i 1.39356i −0.717287 0.696778i \(-0.754616\pi\)
0.717287 0.696778i \(-0.245384\pi\)
\(564\) 0.745412i 0.0313875i
\(565\) 0 0
\(566\) 13.8867i 0.583700i
\(567\) −0.247235 + 0.247235i −0.0103829 + 0.0103829i
\(568\) 13.5330i 0.567834i
\(569\) 7.57201 + 7.57201i 0.317435 + 0.317435i 0.847781 0.530346i \(-0.177938\pi\)
−0.530346 + 0.847781i \(0.677938\pi\)
\(570\) 0 0
\(571\) −27.8328 −1.16477 −0.582383 0.812915i \(-0.697880\pi\)
−0.582383 + 0.812915i \(0.697880\pi\)
\(572\) 32.8258 1.37251
\(573\) 0.187639 0.00783872
\(574\) 0.0507275 0.0507275i 0.00211732 0.00211732i
\(575\) 0 0
\(576\) 5.39196i 0.224665i
\(577\) 8.46185 0.352271 0.176136 0.984366i \(-0.443640\pi\)
0.176136 + 0.984366i \(0.443640\pi\)
\(578\) 11.5493i 0.480386i
\(579\) 0.600401 + 0.600401i 0.0249518 + 0.0249518i
\(580\) 0 0
\(581\) 0.313302 0.0129980
\(582\) 0.189240 + 0.189240i 0.00784426 + 0.00784426i
\(583\) −51.7195 + 51.7195i −2.14200 + 2.14200i
\(584\) 23.0696 + 23.0696i 0.954628 + 0.954628i
\(585\) 0 0
\(586\) −13.3994 + 13.3994i −0.553523 + 0.553523i
\(587\) 3.25054i 0.134164i −0.997747 0.0670821i \(-0.978631\pi\)
0.997747 0.0670821i \(-0.0213690\pi\)
\(588\) −0.445480 0.445480i −0.0183713 0.0183713i
\(589\) 43.5625i 1.79496i
\(590\) 0 0
\(591\) 1.29395i 0.0532262i
\(592\) 1.92099 + 6.98257i 0.0789522 + 0.286982i
\(593\) 32.5909 + 32.5909i 1.33835 + 1.33835i 0.897660 + 0.440689i \(0.145266\pi\)
0.440689 + 0.897660i \(0.354734\pi\)
\(594\) 0.966406 + 0.966406i 0.0396521 + 0.0396521i
\(595\) 0 0
\(596\) 16.5299i 0.677090i
\(597\) −0.481612 −0.0197111
\(598\) 6.68173i 0.273236i
\(599\) 9.55942i 0.390587i −0.980745 0.195294i \(-0.937434\pi\)
0.980745 0.195294i \(-0.0625660\pi\)
\(600\) 0 0
\(601\) −28.6006 −1.16664 −0.583321 0.812242i \(-0.698247\pi\)
−0.583321 + 0.812242i \(0.698247\pi\)
\(602\) 0.0496991 0.0496991i 0.00202558 0.00202558i
\(603\) 22.0016 22.0016i 0.895974 0.895974i
\(604\) 20.8878i 0.849911i
\(605\) 0 0
\(606\) −0.186351 + 0.186351i −0.00756997 + 0.00756997i
\(607\) 4.13460i 0.167818i 0.996473 + 0.0839090i \(0.0267405\pi\)
−0.996473 + 0.0839090i \(0.973259\pi\)
\(608\) −28.5297 28.5297i −1.15703 1.15703i
\(609\) 0.000567847 0 0.000567847i 2.30103e−5 0 2.30103e-5i
\(610\) 0 0
\(611\) 24.5273 + 24.5273i 0.992269 + 0.992269i
\(612\) 4.13026i 0.166956i
\(613\) −3.45702 + 3.45702i −0.139628 + 0.139628i −0.773466 0.633838i \(-0.781479\pi\)
0.633838 + 0.773466i \(0.281479\pi\)
\(614\) 12.3860 12.3860i 0.499858 0.499858i
\(615\) 0 0
\(616\) −0.362345 + 0.362345i −0.0145993 + 0.0145993i
\(617\) −13.5894 13.5894i −0.547087 0.547087i 0.378510 0.925597i \(-0.376437\pi\)
−0.925597 + 0.378510i \(0.876437\pi\)
\(618\) 0.377107 + 0.377107i 0.0151695 + 0.0151695i
\(619\) 37.7003 1.51530 0.757651 0.652660i \(-0.226347\pi\)
0.757651 + 0.652660i \(0.226347\pi\)
\(620\) 0 0
\(621\) −0.571829 + 0.571829i −0.0229467 + 0.0229467i
\(622\) 0.307063 + 0.307063i 0.0123121 + 0.0123121i
\(623\) 0.299023 0.0119801
\(624\) 0.213335 + 0.213335i 0.00854022 + 0.00854022i
\(625\) 0 0
\(626\) −10.3047 −0.411859
\(627\) 2.19966 0.0878460
\(628\) 2.23687 2.23687i 0.0892609 0.0892609i
\(629\) −1.49460 5.43270i −0.0595937 0.216616i
\(630\) 0 0
\(631\) 8.07494 8.07494i 0.321458 0.321458i −0.527868 0.849326i \(-0.677008\pi\)
0.849326 + 0.527868i \(0.177008\pi\)
\(632\) −5.58634 5.58634i −0.222213 0.222213i
\(633\) 0.131899 0.131899i 0.00524251 0.00524251i
\(634\) 9.90829 9.90829i 0.393508 0.393508i
\(635\) 0 0
\(636\) −1.25034 −0.0495794
\(637\) 29.3164 1.16156
\(638\) 0.907035 + 0.907035i 0.0359098 + 0.0359098i
\(639\) 16.2480i 0.642763i
\(640\) 0 0
\(641\) −5.92418 −0.233991 −0.116995 0.993132i \(-0.537326\pi\)
−0.116995 + 0.993132i \(0.537326\pi\)
\(642\) 0.467577 0.0184538
\(643\) 20.1006 0.792689 0.396344 0.918102i \(-0.370279\pi\)
0.396344 + 0.918102i \(0.370279\pi\)
\(644\) −0.0914682 0.0914682i −0.00360435 0.00360435i
\(645\) 0 0
\(646\) 3.23599 + 3.23599i 0.127318 + 0.127318i
\(647\) 19.4845i 0.766016i 0.923745 + 0.383008i \(0.125112\pi\)
−0.923745 + 0.383008i \(0.874888\pi\)
\(648\) 22.3788i 0.879121i
\(649\) 14.4314 + 14.4314i 0.566483 + 0.566483i
\(650\) 0 0
\(651\) 0.0105225 + 0.0105225i 0.000412408 + 0.000412408i
\(652\) 32.9805 1.29161
\(653\) −37.6994 −1.47529 −0.737646 0.675187i \(-0.764063\pi\)
−0.737646 + 0.675187i \(0.764063\pi\)
\(654\) −0.587736 −0.0229823
\(655\) 0 0
\(656\) 3.06157i 0.119534i
\(657\) 27.6979 + 27.6979i 1.08060 + 1.08060i
\(658\) −0.231009 −0.00900566
\(659\) −49.3851 −1.92377 −0.961885 0.273455i \(-0.911833\pi\)
−0.961885 + 0.273455i \(0.911833\pi\)
\(660\) 0 0
\(661\) −15.0011 + 15.0011i −0.583475 + 0.583475i −0.935856 0.352382i \(-0.885372\pi\)
0.352382 + 0.935856i \(0.385372\pi\)
\(662\) 5.70412 5.70412i 0.221697 0.221697i
\(663\) −0.165982 0.165982i −0.00644622 0.00644622i
\(664\) −14.1795 + 14.1795i −0.550271 + 0.550271i
\(665\) 0 0
\(666\) −3.45905 12.5732i −0.134036 0.487203i
\(667\) −0.536698 + 0.536698i −0.0207810 + 0.0207810i
\(668\) 19.9841 0.773209
\(669\) 1.25189 0.0484009
\(670\) 0 0
\(671\) 42.3931 + 42.3931i 1.63657 + 1.63657i
\(672\) −0.0137826 −0.000531676
\(673\) 12.7892 + 12.7892i 0.492986 + 0.492986i 0.909246 0.416260i \(-0.136659\pi\)
−0.416260 + 0.909246i \(0.636659\pi\)
\(674\) 3.08805 3.08805i 0.118947 0.118947i
\(675\) 0 0
\(676\) −6.76708 −0.260272
\(677\) −22.1825 22.1825i −0.852544 0.852544i 0.137902 0.990446i \(-0.455964\pi\)
−0.990446 + 0.137902i \(0.955964\pi\)
\(678\) 0.431959 + 0.431959i 0.0165893 + 0.0165893i
\(679\) −0.170482 + 0.170482i −0.00654249 + 0.00654249i
\(680\) 0 0
\(681\) 0.0870436 0.0870436i 0.00333552 0.00333552i
\(682\) −16.8078 + 16.8078i −0.643602 + 0.643602i
\(683\) 29.6316i 1.13382i 0.823779 + 0.566912i \(0.191862\pi\)
−0.823779 + 0.566912i \(0.808138\pi\)
\(684\) −21.7706 21.7706i −0.832419 0.832419i
\(685\) 0 0
\(686\) −0.276145 + 0.276145i −0.0105433 + 0.0105433i
\(687\) 0.203580 + 0.203580i 0.00776707 + 0.00776707i
\(688\) 2.99950i 0.114355i
\(689\) 41.1418 41.1418i 1.56738 1.56738i
\(690\) 0 0
\(691\) 25.5929i 0.973602i 0.873513 + 0.486801i \(0.161836\pi\)
−0.873513 + 0.486801i \(0.838164\pi\)
\(692\) −0.516696 + 0.516696i −0.0196419 + 0.0196419i
\(693\) −0.435039 + 0.435039i −0.0165258 + 0.0165258i
\(694\) −22.5982 −0.857817
\(695\) 0 0
\(696\) 0.0513994i 0.00194829i
\(697\) 2.38202i 0.0902254i
\(698\) 22.5236 0.852531
\(699\) 0.0194827i 0.000736902i
\(700\) 0 0
\(701\) −13.1318 13.1318i −0.495982 0.495982i 0.414202 0.910185i \(-0.364061\pi\)
−0.910185 + 0.414202i \(0.864061\pi\)
\(702\) −0.768756 0.768756i −0.0290148 0.0290148i
\(703\) −36.5138 20.7577i −1.37714 0.782891i
\(704\) 9.47620i 0.357148i
\(705\) 0 0
\(706\) 3.15238i 0.118641i
\(707\) −0.167878 0.167878i −0.00631372 0.00631372i
\(708\) 0.348887i 0.0131120i
\(709\) 28.9060 28.9060i 1.08559 1.08559i 0.0896090 0.995977i \(-0.471438\pi\)
0.995977 0.0896090i \(-0.0285617\pi\)
\(710\) 0 0
\(711\) −6.70707 6.70707i −0.251535 0.251535i
\(712\) −13.5332 + 13.5332i −0.507179 + 0.507179i
\(713\) −9.94525 9.94525i −0.372453 0.372453i
\(714\) 0.00156329 5.85048e−5
\(715\) 0 0
\(716\) −7.37263 7.37263i −0.275528 0.275528i
\(717\) 0.593237i 0.0221548i
\(718\) −18.7522 −0.699825
\(719\) 33.9623i 1.26658i −0.773915 0.633289i \(-0.781704\pi\)
0.773915 0.633289i \(-0.218296\pi\)
\(720\) 0 0
\(721\) −0.339726 + 0.339726i −0.0126521 + 0.0126521i
\(722\) 20.5196 0.763660
\(723\) 0.898059 0.0333992
\(724\) −12.0681 −0.448506
\(725\) 0 0
\(726\) 0.512040 + 0.512040i 0.0190036 + 0.0190036i
\(727\) 43.4312i 1.61078i −0.592749 0.805388i \(-0.701957\pi\)
0.592749 0.805388i \(-0.298043\pi\)
\(728\) 0.288238 0.288238i 0.0106828 0.0106828i
\(729\) 26.8026i 0.992688i
\(730\) 0 0
\(731\) 2.33373i 0.0863160i
\(732\) 1.02487i 0.0378805i
\(733\) −26.7771 + 26.7771i −0.989033 + 0.989033i −0.999941 0.0109070i \(-0.996528\pi\)
0.0109070 + 0.999941i \(0.496528\pi\)
\(734\) −4.67959 4.67959i −0.172727 0.172727i
\(735\) 0 0
\(736\) 13.0266 0.480166
\(737\) 38.6671 38.6671i 1.42432 1.42432i
\(738\) 5.51285i 0.202931i
\(739\) −17.1319 −0.630209 −0.315104 0.949057i \(-0.602040\pi\)
−0.315104 + 0.949057i \(0.602040\pi\)
\(740\) 0 0
\(741\) −1.74978 −0.0642799
\(742\) 0.387491i 0.0142252i
\(743\) 0.820989 0.820989i 0.0301192 0.0301192i −0.691887 0.722006i \(-0.743220\pi\)
0.722006 + 0.691887i \(0.243220\pi\)
\(744\) −0.952454 −0.0349187
\(745\) 0 0
\(746\) 8.05768 + 8.05768i 0.295013 + 0.295013i
\(747\) −17.0242 + 17.0242i −0.622882 + 0.622882i
\(748\) 7.25881i 0.265408i
\(749\) 0.421228i 0.0153913i
\(750\) 0 0
\(751\) 1.31114i 0.0478442i 0.999714 + 0.0239221i \(0.00761537\pi\)
−0.999714 + 0.0239221i \(0.992385\pi\)
\(752\) −6.97107 + 6.97107i −0.254209 + 0.254209i
\(753\) 0.428457i 0.0156138i
\(754\) −0.721527 0.721527i −0.0262765 0.0262765i
\(755\) 0 0
\(756\) −0.0210474 −0.000765488
\(757\) 43.3288 1.57481 0.787406 0.616435i \(-0.211424\pi\)
0.787406 + 0.616435i \(0.211424\pi\)
\(758\) −21.4632 −0.779577
\(759\) −0.502179 + 0.502179i −0.0182279 + 0.0182279i
\(760\) 0 0
\(761\) 26.7584i 0.969990i 0.874517 + 0.484995i \(0.161179\pi\)
−0.874517 + 0.484995i \(0.838821\pi\)
\(762\) −0.0720146 −0.00260881
\(763\) 0.529476i 0.0191683i
\(764\) −3.26381 3.26381i −0.118080 0.118080i
\(765\) 0 0
\(766\) −22.9831 −0.830415
\(767\) −11.4799 11.4799i −0.414515 0.414515i
\(768\) 0.472207 0.472207i 0.0170393 0.0170393i
\(769\) −22.8580 22.8580i −0.824282 0.824282i 0.162437 0.986719i \(-0.448064\pi\)
−0.986719 + 0.162437i \(0.948064\pi\)
\(770\) 0 0
\(771\) 0.142237 0.142237i 0.00512253 0.00512253i
\(772\) 20.8869i 0.751735i
\(773\) 10.0121 + 10.0121i 0.360109 + 0.360109i 0.863853 0.503744i \(-0.168045\pi\)
−0.503744 + 0.863853i \(0.668045\pi\)
\(774\) 5.40108i 0.194138i
\(775\) 0 0
\(776\) 15.4314i 0.553954i
\(777\) −0.0138338 + 0.00380586i −0.000496286 + 0.000136534i
\(778\) 1.19970 + 1.19970i 0.0430112 + 0.0430112i
\(779\) 12.5556 + 12.5556i 0.449851 + 0.449851i
\(780\) 0 0
\(781\) 28.5555i 1.02179i
\(782\) −1.47754 −0.0528368
\(783\) 0.123498i 0.00441345i
\(784\) 8.33222i 0.297579i
\(785\) 0 0
\(786\) −0.897482 −0.0320121
\(787\) −0.222957 + 0.222957i −0.00794755 + 0.00794755i −0.711069 0.703122i \(-0.751789\pi\)
0.703122 + 0.711069i \(0.251789\pi\)
\(788\) 22.5072 22.5072i 0.801785 0.801785i
\(789\) 0.744366i 0.0265001i
\(790\) 0 0
\(791\) −0.389140 + 0.389140i −0.0138362 + 0.0138362i
\(792\) 39.3782i 1.39924i
\(793\) −33.7228 33.7228i −1.19753 1.19753i
\(794\) −11.2729 + 11.2729i −0.400061 + 0.400061i
\(795\) 0 0
\(796\) 8.37722 + 8.37722i 0.296923 + 0.296923i
\(797\) 21.5306i 0.762653i 0.924440 + 0.381326i \(0.124533\pi\)
−0.924440 + 0.381326i \(0.875467\pi\)
\(798\) 0.00824011 0.00824011i 0.000291697 0.000291697i
\(799\) 5.42376 5.42376i 0.191879 0.191879i
\(800\) 0 0
\(801\) −16.2483 + 16.2483i −0.574104 + 0.574104i
\(802\) −3.02188 3.02188i −0.106706 0.106706i
\(803\) 48.6782 + 48.6782i 1.71781 + 1.71781i
\(804\) 0.934797 0.0329678
\(805\) 0 0
\(806\) 13.3702 13.3702i 0.470946 0.470946i
\(807\) 0.621545 + 0.621545i 0.0218794 + 0.0218794i
\(808\) 15.1957 0.534584
\(809\) 19.6304 + 19.6304i 0.690170 + 0.690170i 0.962269 0.272100i \(-0.0877180\pi\)
−0.272100 + 0.962269i \(0.587718\pi\)
\(810\) 0 0
\(811\) 41.8784 1.47055 0.735275 0.677768i \(-0.237053\pi\)
0.735275 + 0.677768i \(0.237053\pi\)
\(812\) −0.0197544 −0.000693243
\(813\) −0.625029 + 0.625029i −0.0219207 + 0.0219207i
\(814\) −6.07918 22.0971i −0.213075 0.774503i
\(815\) 0 0
\(816\) 0.0471750 0.0471750i 0.00165145 0.00165145i
\(817\) 12.3011 + 12.3011i 0.430359 + 0.430359i
\(818\) −0.508695 + 0.508695i −0.0177861 + 0.0177861i
\(819\) 0.346065 0.346065i 0.0120925 0.0120925i
\(820\) 0 0
\(821\) −53.4952 −1.86699 −0.933497 0.358584i \(-0.883260\pi\)
−0.933497 + 0.358584i \(0.883260\pi\)
\(822\) −0.666839 −0.0232587
\(823\) 20.9538 + 20.9538i 0.730404 + 0.730404i 0.970700 0.240296i \(-0.0772444\pi\)
−0.240296 + 0.970700i \(0.577244\pi\)
\(824\) 30.7508i 1.07125i
\(825\) 0 0
\(826\) 0.108123 0.00376207
\(827\) 37.2295 1.29460 0.647299 0.762236i \(-0.275899\pi\)
0.647299 + 0.762236i \(0.275899\pi\)
\(828\) 9.94038 0.345452
\(829\) 12.8198 + 12.8198i 0.445249 + 0.445249i 0.893771 0.448523i \(-0.148050\pi\)
−0.448523 + 0.893771i \(0.648050\pi\)
\(830\) 0 0
\(831\) −0.0685367 0.0685367i −0.00237751 0.00237751i
\(832\) 7.53812i 0.261337i
\(833\) 6.48279i 0.224615i
\(834\) −0.169895 0.169895i −0.00588299 0.00588299i
\(835\) 0 0
\(836\) −38.2611 38.2611i −1.32329 1.32329i
\(837\) −2.28847 −0.0791011
\(838\) −16.2826 −0.562474
\(839\) 35.5391 1.22695 0.613473 0.789715i \(-0.289772\pi\)
0.613473 + 0.789715i \(0.289772\pi\)
\(840\) 0 0
\(841\) 28.8841i 0.996003i
\(842\) 3.50889 + 3.50889i 0.120924 + 0.120924i
\(843\) −1.12377 −0.0387048
\(844\) −4.58853 −0.157944
\(845\) 0 0
\(846\) 12.5525 12.5525i 0.431565 0.431565i
\(847\) −0.461283 + 0.461283i −0.0158499 + 0.0158499i
\(848\) 11.6932 + 11.6932i 0.401545 + 0.401545i
\(849\) 0.830225 0.830225i 0.0284933 0.0284933i
\(850\) 0 0
\(851\) 13.0750 3.59709i 0.448205 0.123307i
\(852\) −0.345171 + 0.345171i −0.0118254 + 0.0118254i
\(853\) 45.8043 1.56831 0.784155 0.620565i \(-0.213097\pi\)
0.784155 + 0.620565i \(0.213097\pi\)
\(854\) 0.317616 0.0108686
\(855\) 0 0
\(856\) −19.0640 19.0640i −0.651595 0.651595i
\(857\) 9.27829 0.316940 0.158470 0.987364i \(-0.449344\pi\)
0.158470 + 0.987364i \(0.449344\pi\)
\(858\) −0.675120 0.675120i −0.0230482 0.0230482i
\(859\) 28.7601 28.7601i 0.981280 0.981280i −0.0185476 0.999828i \(-0.505904\pi\)
0.999828 + 0.0185476i \(0.00590421\pi\)
\(860\) 0 0
\(861\) 0.00606557 0.000206714
\(862\) −5.07900 5.07900i −0.172991 0.172991i
\(863\) 14.4607 + 14.4607i 0.492247 + 0.492247i 0.909013 0.416767i \(-0.136837\pi\)
−0.416767 + 0.909013i \(0.636837\pi\)
\(864\) 1.49875 1.49875i 0.0509886 0.0509886i
\(865\) 0 0
\(866\) 6.73347 6.73347i 0.228813 0.228813i
\(867\) 0.690481 0.690481i 0.0234500 0.0234500i
\(868\) 0.366057i 0.0124248i
\(869\) −11.7875 11.7875i −0.399863 0.399863i
\(870\) 0 0
\(871\) −30.7589 + 30.7589i −1.04223 + 1.04223i
\(872\) 23.9631 + 23.9631i 0.811494 + 0.811494i
\(873\) 18.5272i 0.627052i
\(874\) −7.78811 + 7.78811i −0.263437 + 0.263437i
\(875\) 0 0
\(876\) 1.17682i 0.0397610i
\(877\) 37.4481 37.4481i 1.26453 1.26453i 0.315658 0.948873i \(-0.397775\pi\)
0.948873 0.315658i \(-0.102225\pi\)
\(878\) −14.4885 + 14.4885i −0.488964 + 0.488964i
\(879\) −1.60219 −0.0540404
\(880\) 0 0
\(881\) 8.89349i 0.299629i −0.988714 0.149815i \(-0.952132\pi\)
0.988714 0.149815i \(-0.0478677\pi\)
\(882\) 15.0035i 0.505195i
\(883\) 36.5732 1.23078 0.615392 0.788221i \(-0.288998\pi\)
0.615392 + 0.788221i \(0.288998\pi\)
\(884\) 5.77423i 0.194208i
\(885\) 0 0
\(886\) −9.96470 9.96470i −0.334771 0.334771i
\(887\) 10.0384 + 10.0384i 0.337056 + 0.337056i 0.855258 0.518202i \(-0.173399\pi\)
−0.518202 + 0.855258i \(0.673399\pi\)
\(888\) 0.453848 0.798340i 0.0152301 0.0267905i
\(889\) 0.0648761i 0.00217587i
\(890\) 0 0
\(891\) 47.2204i 1.58194i
\(892\) −21.7755 21.7755i −0.729098 0.729098i
\(893\) 57.1772i 1.91336i
\(894\) −0.339966 + 0.339966i −0.0113702 + 0.0113702i
\(895\) 0 0
\(896\) 0.286709 + 0.286709i 0.00957827 + 0.00957827i
\(897\) 0.399473 0.399473i 0.0133380 0.0133380i
\(898\) 13.6051 + 13.6051i 0.454008 + 0.454008i
\(899\) −2.14788 −0.0716357
\(900\) 0 0
\(901\) −9.09774 9.09774i −0.303090 0.303090i
\(902\) 9.68867i 0.322597i
\(903\) 0.00594260 0.000197757
\(904\) 35.2236i 1.17152i
\(905\) 0 0
\(906\) 0.429594 0.429594i 0.0142723 0.0142723i
\(907\) 10.8933 0.361706 0.180853 0.983510i \(-0.442114\pi\)
0.180853 + 0.983510i \(0.442114\pi\)
\(908\) −3.02809 −0.100491
\(909\) 18.2443 0.605126
\(910\) 0 0
\(911\) −3.61681 3.61681i −0.119830 0.119830i 0.644649 0.764479i \(-0.277004\pi\)
−0.764479 + 0.644649i \(0.777004\pi\)
\(912\) 0.497318i 0.0164678i
\(913\) −29.9195 + 29.9195i −0.990190 + 0.990190i
\(914\) 28.0453i 0.927655i
\(915\) 0 0
\(916\) 7.08219i 0.234002i
\(917\) 0.808518i 0.0266996i
\(918\) −0.169996 + 0.169996i −0.00561070 + 0.00561070i
\(919\) 26.7850 + 26.7850i 0.883555 + 0.883555i 0.993894 0.110339i \(-0.0351938\pi\)
−0.110339 + 0.993894i \(0.535194\pi\)
\(920\) 0 0
\(921\) 1.48101 0.0488010
\(922\) 11.8179 11.8179i 0.389201 0.389201i
\(923\) 22.7153i 0.747682i
\(924\) −0.0184838 −0.000608073
\(925\) 0 0
\(926\) −7.12384 −0.234104
\(927\) 36.9200i 1.21261i
\(928\) 1.40668 1.40668i 0.0461764 0.0461764i
\(929\) 22.1681 0.727313 0.363657 0.931533i \(-0.381528\pi\)
0.363657 + 0.931533i \(0.381528\pi\)
\(930\) 0 0
\(931\) −34.1707 34.1707i −1.11990 1.11990i
\(932\) −0.338884 + 0.338884i −0.0111005 + 0.0111005i
\(933\) 0.0367160i 0.00120203i
\(934\) 25.7380i 0.842173i
\(935\) 0 0
\(936\) 31.3245i 1.02387i
\(937\) −17.7996 + 17.7996i −0.581488 + 0.581488i −0.935312 0.353824i \(-0.884881\pi\)
0.353824 + 0.935312i \(0.384881\pi\)
\(938\) 0.289701i 0.00945906i
\(939\) −0.616076 0.616076i −0.0201049 0.0201049i
\(940\) 0 0
\(941\) −26.7051 −0.870562 −0.435281 0.900295i \(-0.643351\pi\)
−0.435281 + 0.900295i \(0.643351\pi\)
\(942\) −0.0920104 −0.00299786
\(943\) −5.73285 −0.186687
\(944\) 3.26278 3.26278i 0.106194 0.106194i
\(945\) 0 0
\(946\) 9.49224i 0.308619i
\(947\) −13.8301 −0.449417 −0.224709 0.974426i \(-0.572143\pi\)
−0.224709 + 0.974426i \(0.572143\pi\)
\(948\) 0.284968i 0.00925534i
\(949\) −38.7224 38.7224i −1.25698 1.25698i
\(950\) 0 0
\(951\) 1.18475 0.0384181
\(952\) −0.0637385 0.0637385i −0.00206578 0.00206578i
\(953\) −31.5118 + 31.5118i −1.02077 + 1.02077i −0.0209884 + 0.999780i \(0.506681\pi\)
−0.999780 + 0.0209884i \(0.993319\pi\)
\(954\) −21.0555 21.0555i −0.681696 0.681696i
\(955\) 0 0
\(956\) 10.3188 10.3188i 0.333734 0.333734i
\(957\) 0.108456i 0.00350587i
\(958\) −8.86796 8.86796i −0.286511 0.286511i
\(959\) 0.600738i 0.0193988i
\(960\) 0 0
\(961\) 8.80111i 0.283907i
\(962\) 4.83586 + 17.5778i 0.155914 + 0.566730i
\(963\) −22.8887 22.8887i −0.737577 0.737577i
\(964\) −15.6209 15.6209i −0.503116 0.503116i
\(965\) 0 0
\(966\) 0.00376241i 0.000121054i
\(967\) −3.80622 −0.122400 −0.0612000 0.998126i \(-0.519493\pi\)
−0.0612000 + 0.998126i \(0.519493\pi\)
\(968\) 41.7537i 1.34201i
\(969\) 0.386932i 0.0124300i
\(970\) 0 0
\(971\) 13.2020 0.423671 0.211836 0.977305i \(-0.432056\pi\)
0.211836 + 0.977305i \(0.432056\pi\)
\(972\) 1.71586 1.71586i 0.0550362 0.0550362i
\(973\) 0.153054 0.153054i 0.00490669 0.00490669i
\(974\) 21.7986i 0.698472i
\(975\) 0 0
\(976\) 9.58459 9.58459i 0.306795 0.306795i
\(977\) 31.9696i 1.02280i −0.859344 0.511398i \(-0.829128\pi\)
0.859344 0.511398i \(-0.170872\pi\)
\(978\) −0.678301 0.678301i −0.0216897 0.0216897i
\(979\) −28.5558 + 28.5558i −0.912648 + 0.912648i
\(980\) 0 0
\(981\) 28.7706 + 28.7706i 0.918576 + 0.918576i
\(982\) 13.5522i 0.432470i
\(983\) −27.7372 + 27.7372i −0.884678 + 0.884678i −0.994006 0.109327i \(-0.965130\pi\)
0.109327 + 0.994006i \(0.465130\pi\)
\(984\) −0.274517 + 0.274517i −0.00875127 + 0.00875127i
\(985\) 0 0
\(986\) −0.159552 + 0.159552i −0.00508118 + 0.00508118i
\(987\) −0.0138110 0.0138110i −0.000439611 0.000439611i
\(988\) 30.4359 + 30.4359i 0.968296 + 0.968296i
\(989\) −5.61662 −0.178598
\(990\) 0 0
\(991\) −28.8618 + 28.8618i −0.916825 + 0.916825i −0.996797 0.0799719i \(-0.974517\pi\)
0.0799719 + 0.996797i \(0.474517\pi\)
\(992\) 26.0663 + 26.0663i 0.827607 + 0.827607i
\(993\) 0.682051 0.0216442
\(994\) 0.106971 + 0.106971i 0.00339292 + 0.00339292i
\(995\) 0 0
\(996\) −0.723318 −0.0229192
\(997\) −0.533402 −0.0168930 −0.00844651 0.999964i \(-0.502689\pi\)
−0.00844651 + 0.999964i \(0.502689\pi\)
\(998\) 9.75496 9.75496i 0.308788 0.308788i
\(999\) 1.09046 1.91818i 0.0345007 0.0606885i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.f.f.43.15 yes 48
5.2 odd 4 925.2.k.f.857.10 yes 48
5.3 odd 4 925.2.k.f.857.15 yes 48
5.4 even 2 inner 925.2.f.f.43.10 48
37.31 odd 4 925.2.k.f.68.10 yes 48
185.68 even 4 inner 925.2.f.f.882.15 yes 48
185.142 even 4 inner 925.2.f.f.882.10 yes 48
185.179 odd 4 925.2.k.f.68.15 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
925.2.f.f.43.10 48 5.4 even 2 inner
925.2.f.f.43.15 yes 48 1.1 even 1 trivial
925.2.f.f.882.10 yes 48 185.142 even 4 inner
925.2.f.f.882.15 yes 48 185.68 even 4 inner
925.2.k.f.68.10 yes 48 37.31 odd 4
925.2.k.f.68.15 yes 48 185.179 odd 4
925.2.k.f.857.10 yes 48 5.2 odd 4
925.2.k.f.857.15 yes 48 5.3 odd 4