Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [925,2,Mod(43,925)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(925, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([3, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("925.43");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 925 = 5^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 925.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.38616218697\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(24\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
43.1 | − | 2.75472i | −1.09682 | + | 1.09682i | −5.58848 | 0 | 3.02143 | + | 3.02143i | −1.32452 | + | 1.32452i | 9.88526i | 0.593972i | 0 | |||||||||||
43.2 | − | 2.42940i | 1.67335 | − | 1.67335i | −3.90197 | 0 | −4.06524 | − | 4.06524i | 1.37550 | − | 1.37550i | 4.62064i | − | 2.60022i | 0 | ||||||||||
43.3 | − | 2.30263i | −1.40559 | + | 1.40559i | −3.30213 | 0 | 3.23656 | + | 3.23656i | 1.16450 | − | 1.16450i | 2.99832i | − | 0.951370i | 0 | ||||||||||
43.4 | − | 2.29119i | 0.219692 | − | 0.219692i | −3.24954 | 0 | −0.503355 | − | 0.503355i | −2.77283 | + | 2.77283i | 2.86294i | 2.90347i | 0 | |||||||||||
43.5 | − | 1.84351i | −1.23056 | + | 1.23056i | −1.39852 | 0 | 2.26855 | + | 2.26855i | 2.61463 | − | 2.61463i | − | 1.10884i | − | 0.0285668i | 0 | |||||||||
43.6 | − | 1.72281i | 1.57574 | − | 1.57574i | −0.968057 | 0 | −2.71470 | − | 2.71470i | −0.0954098 | + | 0.0954098i | − | 1.77784i | − | 1.96593i | 0 | |||||||||
43.7 | − | 1.23147i | −0.816861 | + | 0.816861i | 0.483484 | 0 | 1.00594 | + | 1.00594i | −2.25739 | + | 2.25739i | − | 3.05833i | 1.66548i | 0 | ||||||||||
43.8 | − | 0.892090i | 0.959592 | − | 0.959592i | 1.20418 | 0 | −0.856042 | − | 0.856042i | 2.14902 | − | 2.14902i | − | 2.85841i | 1.15837i | 0 | ||||||||||
43.9 | − | 0.749237i | 2.39550 | − | 2.39550i | 1.43864 | 0 | −1.79479 | − | 1.79479i | −2.74187 | + | 2.74187i | − | 2.57636i | − | 8.47680i | 0 | |||||||||
43.10 | − | 0.715481i | 0.0427756 | − | 0.0427756i | 1.48809 | 0 | −0.0306051 | − | 0.0306051i | −0.0275714 | + | 0.0275714i | − | 2.49566i | 2.99634i | 0 | ||||||||||
43.11 | − | 0.452300i | −0.789769 | + | 0.789769i | 1.79542 | 0 | 0.357213 | + | 0.357213i | 0.641403 | − | 0.641403i | − | 1.71667i | 1.75253i | 0 | ||||||||||
43.12 | − | 0.0334797i | −2.24135 | + | 2.24135i | 1.99888 | 0 | 0.0750395 | + | 0.0750395i | −0.905280 | + | 0.905280i | − | 0.133881i | − | 7.04726i | 0 | |||||||||
43.13 | 0.0334797i | 2.24135 | − | 2.24135i | 1.99888 | 0 | 0.0750395 | + | 0.0750395i | 0.905280 | − | 0.905280i | 0.133881i | − | 7.04726i | 0 | |||||||||||
43.14 | 0.452300i | 0.789769 | − | 0.789769i | 1.79542 | 0 | 0.357213 | + | 0.357213i | −0.641403 | + | 0.641403i | 1.71667i | 1.75253i | 0 | ||||||||||||
43.15 | 0.715481i | −0.0427756 | + | 0.0427756i | 1.48809 | 0 | −0.0306051 | − | 0.0306051i | 0.0275714 | − | 0.0275714i | 2.49566i | 2.99634i | 0 | ||||||||||||
43.16 | 0.749237i | −2.39550 | + | 2.39550i | 1.43864 | 0 | −1.79479 | − | 1.79479i | 2.74187 | − | 2.74187i | 2.57636i | − | 8.47680i | 0 | |||||||||||
43.17 | 0.892090i | −0.959592 | + | 0.959592i | 1.20418 | 0 | −0.856042 | − | 0.856042i | −2.14902 | + | 2.14902i | 2.85841i | 1.15837i | 0 | ||||||||||||
43.18 | 1.23147i | 0.816861 | − | 0.816861i | 0.483484 | 0 | 1.00594 | + | 1.00594i | 2.25739 | − | 2.25739i | 3.05833i | 1.66548i | 0 | ||||||||||||
43.19 | 1.72281i | −1.57574 | + | 1.57574i | −0.968057 | 0 | −2.71470 | − | 2.71470i | 0.0954098 | − | 0.0954098i | 1.77784i | − | 1.96593i | 0 | |||||||||||
43.20 | 1.84351i | 1.23056 | − | 1.23056i | −1.39852 | 0 | 2.26855 | + | 2.26855i | −2.61463 | + | 2.61463i | 1.10884i | − | 0.0285668i | 0 | |||||||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
185.f | even | 4 | 1 | inner |
185.k | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 925.2.f.f | ✓ | 48 |
5.b | even | 2 | 1 | inner | 925.2.f.f | ✓ | 48 |
5.c | odd | 4 | 2 | 925.2.k.f | yes | 48 | |
37.d | odd | 4 | 1 | 925.2.k.f | yes | 48 | |
185.f | even | 4 | 1 | inner | 925.2.f.f | ✓ | 48 |
185.j | odd | 4 | 1 | 925.2.k.f | yes | 48 | |
185.k | even | 4 | 1 | inner | 925.2.f.f | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
925.2.f.f | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
925.2.f.f | ✓ | 48 | 5.b | even | 2 | 1 | inner |
925.2.f.f | ✓ | 48 | 185.f | even | 4 | 1 | inner |
925.2.f.f | ✓ | 48 | 185.k | even | 4 | 1 | inner |
925.2.k.f | yes | 48 | 5.c | odd | 4 | 2 | |
925.2.k.f | yes | 48 | 37.d | odd | 4 | 1 | |
925.2.k.f | yes | 48 | 185.j | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(925, [\chi])\):
\( T_{2}^{24} + 34 T_{2}^{22} + 492 T_{2}^{20} + 3962 T_{2}^{18} + 19498 T_{2}^{16} + 60710 T_{2}^{14} + \cdots + 1 \)
|
\( T_{3}^{48} + 326 T_{3}^{44} + 38383 T_{3}^{40} + 2085720 T_{3}^{36} + 59465183 T_{3}^{32} + 942180736 T_{3}^{28} + \cdots + 10000 \)
|