Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [925,2,Mod(43,925)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(925, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([3, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("925.43");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 925 = 5^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 925.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.38616218697\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(14\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
43.1 | − | 2.54912i | 0.0578304 | − | 0.0578304i | −4.49802 | 0 | −0.147417 | − | 0.147417i | 2.62099 | − | 2.62099i | 6.36776i | 2.99331i | 0 | |||||||||||
43.2 | − | 2.32678i | −1.90626 | + | 1.90626i | −3.41392 | 0 | 4.43546 | + | 4.43546i | −1.66625 | + | 1.66625i | 3.28988i | − | 4.26769i | 0 | ||||||||||
43.3 | − | 2.21947i | 0.837300 | − | 0.837300i | −2.92604 | 0 | −1.85836 | − | 1.85836i | −2.71073 | + | 2.71073i | 2.05533i | 1.59786i | 0 | |||||||||||
43.4 | − | 1.95162i | 2.31819 | − | 2.31819i | −1.80883 | 0 | −4.52423 | − | 4.52423i | 2.88408 | − | 2.88408i | − | 0.373100i | − | 7.74804i | 0 | |||||||||
43.5 | − | 1.11789i | −1.84398 | + | 1.84398i | 0.750316 | 0 | 2.06138 | + | 2.06138i | 3.21238 | − | 3.21238i | − | 3.07456i | − | 3.80055i | 0 | |||||||||
43.6 | − | 1.03074i | 0.234013 | − | 0.234013i | 0.937573 | 0 | −0.241206 | − | 0.241206i | −0.639240 | + | 0.639240i | − | 3.02788i | 2.89048i | 0 | ||||||||||
43.7 | − | 0.202680i | −1.35377 | + | 1.35377i | 1.95892 | 0 | 0.274381 | + | 0.274381i | −1.72047 | + | 1.72047i | − | 0.802393i | − | 0.665378i | 0 | |||||||||
43.8 | 0.202680i | 1.35377 | − | 1.35377i | 1.95892 | 0 | 0.274381 | + | 0.274381i | 1.72047 | − | 1.72047i | 0.802393i | − | 0.665378i | 0 | |||||||||||
43.9 | 1.03074i | −0.234013 | + | 0.234013i | 0.937573 | 0 | −0.241206 | − | 0.241206i | 0.639240 | − | 0.639240i | 3.02788i | 2.89048i | 0 | ||||||||||||
43.10 | 1.11789i | 1.84398 | − | 1.84398i | 0.750316 | 0 | 2.06138 | + | 2.06138i | −3.21238 | + | 3.21238i | 3.07456i | − | 3.80055i | 0 | |||||||||||
43.11 | 1.95162i | −2.31819 | + | 2.31819i | −1.80883 | 0 | −4.52423 | − | 4.52423i | −2.88408 | + | 2.88408i | 0.373100i | − | 7.74804i | 0 | |||||||||||
43.12 | 2.21947i | −0.837300 | + | 0.837300i | −2.92604 | 0 | −1.85836 | − | 1.85836i | 2.71073 | − | 2.71073i | − | 2.05533i | 1.59786i | 0 | |||||||||||
43.13 | 2.32678i | 1.90626 | − | 1.90626i | −3.41392 | 0 | 4.43546 | + | 4.43546i | 1.66625 | − | 1.66625i | − | 3.28988i | − | 4.26769i | 0 | ||||||||||
43.14 | 2.54912i | −0.0578304 | + | 0.0578304i | −4.49802 | 0 | −0.147417 | − | 0.147417i | −2.62099 | + | 2.62099i | − | 6.36776i | 2.99331i | 0 | |||||||||||
882.1 | − | 2.54912i | −0.0578304 | − | 0.0578304i | −4.49802 | 0 | −0.147417 | + | 0.147417i | −2.62099 | − | 2.62099i | 6.36776i | − | 2.99331i | 0 | ||||||||||
882.2 | − | 2.32678i | 1.90626 | + | 1.90626i | −3.41392 | 0 | 4.43546 | − | 4.43546i | 1.66625 | + | 1.66625i | 3.28988i | 4.26769i | 0 | |||||||||||
882.3 | − | 2.21947i | −0.837300 | − | 0.837300i | −2.92604 | 0 | −1.85836 | + | 1.85836i | 2.71073 | + | 2.71073i | 2.05533i | − | 1.59786i | 0 | ||||||||||
882.4 | − | 1.95162i | −2.31819 | − | 2.31819i | −1.80883 | 0 | −4.52423 | + | 4.52423i | −2.88408 | − | 2.88408i | − | 0.373100i | 7.74804i | 0 | ||||||||||
882.5 | − | 1.11789i | 1.84398 | + | 1.84398i | 0.750316 | 0 | 2.06138 | − | 2.06138i | −3.21238 | − | 3.21238i | − | 3.07456i | 3.80055i | 0 | ||||||||||
882.6 | − | 1.03074i | −0.234013 | − | 0.234013i | 0.937573 | 0 | −0.241206 | + | 0.241206i | 0.639240 | + | 0.639240i | − | 3.02788i | − | 2.89048i | 0 | |||||||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
185.f | even | 4 | 1 | inner |
185.k | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 925.2.f.e | ✓ | 28 |
5.b | even | 2 | 1 | inner | 925.2.f.e | ✓ | 28 |
5.c | odd | 4 | 2 | 925.2.k.e | yes | 28 | |
37.d | odd | 4 | 1 | 925.2.k.e | yes | 28 | |
185.f | even | 4 | 1 | inner | 925.2.f.e | ✓ | 28 |
185.j | odd | 4 | 1 | 925.2.k.e | yes | 28 | |
185.k | even | 4 | 1 | inner | 925.2.f.e | ✓ | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
925.2.f.e | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
925.2.f.e | ✓ | 28 | 5.b | even | 2 | 1 | inner |
925.2.f.e | ✓ | 28 | 185.f | even | 4 | 1 | inner |
925.2.f.e | ✓ | 28 | 185.k | even | 4 | 1 | inner |
925.2.k.e | yes | 28 | 5.c | odd | 4 | 2 | |
925.2.k.e | yes | 28 | 37.d | odd | 4 | 1 | |
925.2.k.e | yes | 28 | 185.j | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(925, [\chi])\):
\( T_{2}^{14} + 23T_{2}^{12} + 208T_{2}^{10} + 932T_{2}^{8} + 2135T_{2}^{6} + 2317T_{2}^{4} + 968T_{2}^{2} + 36 \)
|
\( T_{3}^{28} + 230T_{3}^{24} + 17221T_{3}^{20} + 501936T_{3}^{16} + 4718812T_{3}^{12} + 7510232T_{3}^{8} + 89744T_{3}^{4} + 4 \)
|