Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [925,2,Mod(43,925)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(925, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([3, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("925.43");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 925 = 5^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 925.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.38616218697\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | no (minimal twist has level 185) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
43.1 | − | 2.69386i | 0.437197 | − | 0.437197i | −5.25686 | 0 | −1.17775 | − | 1.17775i | −0.705745 | + | 0.705745i | 8.77351i | 2.61772i | 0 | |||||||||||
43.2 | − | 2.35455i | −2.15478 | + | 2.15478i | −3.54389 | 0 | 5.07354 | + | 5.07354i | −0.853954 | + | 0.853954i | 3.63515i | − | 6.28619i | 0 | ||||||||||
43.3 | − | 1.89107i | 1.70537 | − | 1.70537i | −1.57614 | 0 | −3.22498 | − | 3.22498i | −0.431915 | + | 0.431915i | − | 0.801541i | − | 2.81659i | 0 | |||||||||
43.4 | − | 1.55778i | −0.374562 | + | 0.374562i | −0.426681 | 0 | 0.583485 | + | 0.583485i | −2.24838 | + | 2.24838i | − | 2.45089i | 2.71941i | 0 | ||||||||||
43.5 | − | 0.165127i | 1.77117 | − | 1.77117i | 1.97273 | 0 | −0.292468 | − | 0.292468i | 0.477215 | − | 0.477215i | − | 0.656006i | − | 3.27410i | 0 | |||||||||
43.6 | − | 0.0562904i | 0.608697 | − | 0.608697i | 1.99683 | 0 | −0.0342638 | − | 0.0342638i | −3.37670 | + | 3.37670i | − | 0.224983i | 2.25898i | 0 | ||||||||||
43.7 | 0.917493i | −1.17965 | + | 1.17965i | 1.15821 | 0 | −1.08232 | − | 1.08232i | 2.45118 | − | 2.45118i | 2.89763i | 0.216841i | 0 | ||||||||||||
43.8 | 1.40625i | −1.57253 | + | 1.57253i | 0.0224648 | 0 | −2.21137 | − | 2.21137i | 0.0416138 | − | 0.0416138i | 2.84409i | − | 1.94570i | 0 | |||||||||||
43.9 | 1.64338i | 1.31039 | − | 1.31039i | −0.700698 | 0 | 2.15347 | + | 2.15347i | 2.64033 | − | 2.64033i | 2.13525i | − | 0.434259i | 0 | |||||||||||
43.10 | 1.72182i | 0.229804 | − | 0.229804i | −0.964650 | 0 | 0.395681 | + | 0.395681i | −1.16936 | + | 1.16936i | 1.78268i | 2.89438i | 0 | ||||||||||||
43.11 | 2.38796i | −0.646256 | + | 0.646256i | −3.70235 | 0 | −1.54323 | − | 1.54323i | −2.20744 | + | 2.20744i | − | 4.06513i | 2.16471i | 0 | |||||||||||
43.12 | 2.64177i | −2.13485 | + | 2.13485i | −4.97897 | 0 | −5.63980 | − | 5.63980i | 2.38316 | − | 2.38316i | − | 7.86977i | − | 6.11519i | 0 | ||||||||||
882.1 | − | 2.64177i | −2.13485 | − | 2.13485i | −4.97897 | 0 | −5.63980 | + | 5.63980i | 2.38316 | + | 2.38316i | 7.86977i | 6.11519i | 0 | |||||||||||
882.2 | − | 2.38796i | −0.646256 | − | 0.646256i | −3.70235 | 0 | −1.54323 | + | 1.54323i | −2.20744 | − | 2.20744i | 4.06513i | − | 2.16471i | 0 | ||||||||||
882.3 | − | 1.72182i | 0.229804 | + | 0.229804i | −0.964650 | 0 | 0.395681 | − | 0.395681i | −1.16936 | − | 1.16936i | − | 1.78268i | − | 2.89438i | 0 | |||||||||
882.4 | − | 1.64338i | 1.31039 | + | 1.31039i | −0.700698 | 0 | 2.15347 | − | 2.15347i | 2.64033 | + | 2.64033i | − | 2.13525i | 0.434259i | 0 | ||||||||||
882.5 | − | 1.40625i | −1.57253 | − | 1.57253i | 0.0224648 | 0 | −2.21137 | + | 2.21137i | 0.0416138 | + | 0.0416138i | − | 2.84409i | 1.94570i | 0 | ||||||||||
882.6 | − | 0.917493i | −1.17965 | − | 1.17965i | 1.15821 | 0 | −1.08232 | + | 1.08232i | 2.45118 | + | 2.45118i | − | 2.89763i | − | 0.216841i | 0 | |||||||||
882.7 | 0.0562904i | 0.608697 | + | 0.608697i | 1.99683 | 0 | −0.0342638 | + | 0.0342638i | −3.37670 | − | 3.37670i | 0.224983i | − | 2.25898i | 0 | |||||||||||
882.8 | 0.165127i | 1.77117 | + | 1.77117i | 1.97273 | 0 | −0.292468 | + | 0.292468i | 0.477215 | + | 0.477215i | 0.656006i | 3.27410i | 0 | ||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
185.f | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 925.2.f.d | 24 | |
5.b | even | 2 | 1 | 185.2.f.d | ✓ | 24 | |
5.c | odd | 4 | 1 | 185.2.k.d | yes | 24 | |
5.c | odd | 4 | 1 | 925.2.k.d | 24 | ||
37.d | odd | 4 | 1 | 925.2.k.d | 24 | ||
185.f | even | 4 | 1 | inner | 925.2.f.d | 24 | |
185.j | odd | 4 | 1 | 185.2.k.d | yes | 24 | |
185.k | even | 4 | 1 | 185.2.f.d | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
185.2.f.d | ✓ | 24 | 5.b | even | 2 | 1 | |
185.2.f.d | ✓ | 24 | 185.k | even | 4 | 1 | |
185.2.k.d | yes | 24 | 5.c | odd | 4 | 1 | |
185.2.k.d | yes | 24 | 185.j | odd | 4 | 1 | |
925.2.f.d | 24 | 1.a | even | 1 | 1 | trivial | |
925.2.f.d | 24 | 185.f | even | 4 | 1 | inner | |
925.2.k.d | 24 | 5.c | odd | 4 | 1 | ||
925.2.k.d | 24 | 37.d | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(925, [\chi])\):
\( T_{2}^{24} + 40 T_{2}^{22} + 698 T_{2}^{20} + 6984 T_{2}^{18} + 44289 T_{2}^{16} + 185636 T_{2}^{14} + \cdots + 16 \)
|
\( T_{3}^{24} + 4 T_{3}^{23} + 8 T_{3}^{22} - 6 T_{3}^{21} + 88 T_{3}^{20} + 344 T_{3}^{19} + 690 T_{3}^{18} + \cdots + 1024 \)
|