Properties

Label 925.2.f.b.882.1
Level $925$
Weight $2$
Character 925.882
Analytic conductor $7.386$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [925,2,Mod(43,925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(925, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("925.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 882.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 925.882
Dual form 925.2.f.b.43.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(1.00000 + 1.00000i) q^{3} +1.00000 q^{4} +(-1.00000 + 1.00000i) q^{6} +(3.00000 + 3.00000i) q^{7} +3.00000i q^{8} -1.00000i q^{9} +2.00000i q^{11} +(1.00000 + 1.00000i) q^{12} +2.00000i q^{13} +(-3.00000 + 3.00000i) q^{14} -1.00000 q^{16} -4.00000 q^{17} +1.00000 q^{18} +(-3.00000 - 3.00000i) q^{19} +6.00000i q^{21} -2.00000 q^{22} -8.00000i q^{23} +(-3.00000 + 3.00000i) q^{24} -2.00000 q^{26} +(4.00000 - 4.00000i) q^{27} +(3.00000 + 3.00000i) q^{28} +(7.00000 - 7.00000i) q^{29} +(3.00000 + 3.00000i) q^{31} +5.00000i q^{32} +(-2.00000 + 2.00000i) q^{33} -4.00000i q^{34} -1.00000i q^{36} +(-6.00000 + 1.00000i) q^{37} +(3.00000 - 3.00000i) q^{38} +(-2.00000 + 2.00000i) q^{39} -6.00000 q^{42} +12.0000i q^{43} +2.00000i q^{44} +8.00000 q^{46} +(-5.00000 - 5.00000i) q^{47} +(-1.00000 - 1.00000i) q^{48} +11.0000i q^{49} +(-4.00000 - 4.00000i) q^{51} +2.00000i q^{52} +(3.00000 - 3.00000i) q^{53} +(4.00000 + 4.00000i) q^{54} +(-9.00000 + 9.00000i) q^{56} -6.00000i q^{57} +(7.00000 + 7.00000i) q^{58} +(-7.00000 - 7.00000i) q^{59} +(1.00000 + 1.00000i) q^{61} +(-3.00000 + 3.00000i) q^{62} +(3.00000 - 3.00000i) q^{63} -7.00000 q^{64} +(-2.00000 - 2.00000i) q^{66} +(3.00000 - 3.00000i) q^{67} -4.00000 q^{68} +(8.00000 - 8.00000i) q^{69} +8.00000 q^{71} +3.00000 q^{72} +(1.00000 + 1.00000i) q^{73} +(-1.00000 - 6.00000i) q^{74} +(-3.00000 - 3.00000i) q^{76} +(-6.00000 + 6.00000i) q^{77} +(-2.00000 - 2.00000i) q^{78} +(-3.00000 - 3.00000i) q^{79} +5.00000 q^{81} +(5.00000 - 5.00000i) q^{83} +6.00000i q^{84} -12.0000 q^{86} +14.0000 q^{87} -6.00000 q^{88} +(-5.00000 + 5.00000i) q^{89} +(-6.00000 + 6.00000i) q^{91} -8.00000i q^{92} +6.00000i q^{93} +(5.00000 - 5.00000i) q^{94} +(-5.00000 + 5.00000i) q^{96} +8.00000 q^{97} -11.0000 q^{98} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{4} - 2 q^{6} + 6 q^{7} + 2 q^{12} - 6 q^{14} - 2 q^{16} - 8 q^{17} + 2 q^{18} - 6 q^{19} - 4 q^{22} - 6 q^{24} - 4 q^{26} + 8 q^{27} + 6 q^{28} + 14 q^{29} + 6 q^{31} - 4 q^{33} - 12 q^{37}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i 0.935414 + 0.353553i \(0.115027\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) 1.00000 + 1.00000i 0.577350 + 0.577350i 0.934172 0.356822i \(-0.116140\pi\)
−0.356822 + 0.934172i \(0.616140\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 + 1.00000i −0.408248 + 0.408248i
\(7\) 3.00000 + 3.00000i 1.13389 + 1.13389i 0.989524 + 0.144370i \(0.0461154\pi\)
0.144370 + 0.989524i \(0.453885\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 2.00000i 0.603023i 0.953463 + 0.301511i \(0.0974911\pi\)
−0.953463 + 0.301511i \(0.902509\pi\)
\(12\) 1.00000 + 1.00000i 0.288675 + 0.288675i
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) −3.00000 + 3.00000i −0.801784 + 0.801784i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 1.00000 0.235702
\(19\) −3.00000 3.00000i −0.688247 0.688247i 0.273597 0.961844i \(-0.411786\pi\)
−0.961844 + 0.273597i \(0.911786\pi\)
\(20\) 0 0
\(21\) 6.00000i 1.30931i
\(22\) −2.00000 −0.426401
\(23\) 8.00000i 1.66812i −0.551677 0.834058i \(-0.686012\pi\)
0.551677 0.834058i \(-0.313988\pi\)
\(24\) −3.00000 + 3.00000i −0.612372 + 0.612372i
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) 4.00000 4.00000i 0.769800 0.769800i
\(28\) 3.00000 + 3.00000i 0.566947 + 0.566947i
\(29\) 7.00000 7.00000i 1.29987 1.29987i 0.371391 0.928477i \(-0.378881\pi\)
0.928477 0.371391i \(-0.121119\pi\)
\(30\) 0 0
\(31\) 3.00000 + 3.00000i 0.538816 + 0.538816i 0.923181 0.384365i \(-0.125580\pi\)
−0.384365 + 0.923181i \(0.625580\pi\)
\(32\) 5.00000i 0.883883i
\(33\) −2.00000 + 2.00000i −0.348155 + 0.348155i
\(34\) 4.00000i 0.685994i
\(35\) 0 0
\(36\) 1.00000i 0.166667i
\(37\) −6.00000 + 1.00000i −0.986394 + 0.164399i
\(38\) 3.00000 3.00000i 0.486664 0.486664i
\(39\) −2.00000 + 2.00000i −0.320256 + 0.320256i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) −6.00000 −0.925820
\(43\) 12.0000i 1.82998i 0.403473 + 0.914991i \(0.367803\pi\)
−0.403473 + 0.914991i \(0.632197\pi\)
\(44\) 2.00000i 0.301511i
\(45\) 0 0
\(46\) 8.00000 1.17954
\(47\) −5.00000 5.00000i −0.729325 0.729325i 0.241160 0.970485i \(-0.422472\pi\)
−0.970485 + 0.241160i \(0.922472\pi\)
\(48\) −1.00000 1.00000i −0.144338 0.144338i
\(49\) 11.0000i 1.57143i
\(50\) 0 0
\(51\) −4.00000 4.00000i −0.560112 0.560112i
\(52\) 2.00000i 0.277350i
\(53\) 3.00000 3.00000i 0.412082 0.412082i −0.470381 0.882463i \(-0.655884\pi\)
0.882463 + 0.470381i \(0.155884\pi\)
\(54\) 4.00000 + 4.00000i 0.544331 + 0.544331i
\(55\) 0 0
\(56\) −9.00000 + 9.00000i −1.20268 + 1.20268i
\(57\) 6.00000i 0.794719i
\(58\) 7.00000 + 7.00000i 0.919145 + 0.919145i
\(59\) −7.00000 7.00000i −0.911322 0.911322i 0.0850540 0.996376i \(-0.472894\pi\)
−0.996376 + 0.0850540i \(0.972894\pi\)
\(60\) 0 0
\(61\) 1.00000 + 1.00000i 0.128037 + 0.128037i 0.768221 0.640184i \(-0.221142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) −3.00000 + 3.00000i −0.381000 + 0.381000i
\(63\) 3.00000 3.00000i 0.377964 0.377964i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) −2.00000 2.00000i −0.246183 0.246183i
\(67\) 3.00000 3.00000i 0.366508 0.366508i −0.499694 0.866202i \(-0.666554\pi\)
0.866202 + 0.499694i \(0.166554\pi\)
\(68\) −4.00000 −0.485071
\(69\) 8.00000 8.00000i 0.963087 0.963087i
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 3.00000 0.353553
\(73\) 1.00000 + 1.00000i 0.117041 + 0.117041i 0.763202 0.646160i \(-0.223626\pi\)
−0.646160 + 0.763202i \(0.723626\pi\)
\(74\) −1.00000 6.00000i −0.116248 0.697486i
\(75\) 0 0
\(76\) −3.00000 3.00000i −0.344124 0.344124i
\(77\) −6.00000 + 6.00000i −0.683763 + 0.683763i
\(78\) −2.00000 2.00000i −0.226455 0.226455i
\(79\) −3.00000 3.00000i −0.337526 0.337526i 0.517909 0.855436i \(-0.326710\pi\)
−0.855436 + 0.517909i \(0.826710\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) 0 0
\(83\) 5.00000 5.00000i 0.548821 0.548821i −0.377279 0.926100i \(-0.623140\pi\)
0.926100 + 0.377279i \(0.123140\pi\)
\(84\) 6.00000i 0.654654i
\(85\) 0 0
\(86\) −12.0000 −1.29399
\(87\) 14.0000 1.50096
\(88\) −6.00000 −0.639602
\(89\) −5.00000 + 5.00000i −0.529999 + 0.529999i −0.920572 0.390573i \(-0.872277\pi\)
0.390573 + 0.920572i \(0.372277\pi\)
\(90\) 0 0
\(91\) −6.00000 + 6.00000i −0.628971 + 0.628971i
\(92\) 8.00000i 0.834058i
\(93\) 6.00000i 0.622171i
\(94\) 5.00000 5.00000i 0.515711 0.515711i
\(95\) 0 0
\(96\) −5.00000 + 5.00000i −0.510310 + 0.510310i
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) −11.0000 −1.11117
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 4.00000 4.00000i 0.396059 0.396059i
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) 3.00000 + 3.00000i 0.291386 + 0.291386i
\(107\) 3.00000 + 3.00000i 0.290021 + 0.290021i 0.837088 0.547068i \(-0.184256\pi\)
−0.547068 + 0.837088i \(0.684256\pi\)
\(108\) 4.00000 4.00000i 0.384900 0.384900i
\(109\) 3.00000 + 3.00000i 0.287348 + 0.287348i 0.836031 0.548683i \(-0.184871\pi\)
−0.548683 + 0.836031i \(0.684871\pi\)
\(110\) 0 0
\(111\) −7.00000 5.00000i −0.664411 0.474579i
\(112\) −3.00000 3.00000i −0.283473 0.283473i
\(113\) −4.00000 −0.376288 −0.188144 0.982141i \(-0.560247\pi\)
−0.188144 + 0.982141i \(0.560247\pi\)
\(114\) 6.00000 0.561951
\(115\) 0 0
\(116\) 7.00000 7.00000i 0.649934 0.649934i
\(117\) 2.00000 0.184900
\(118\) 7.00000 7.00000i 0.644402 0.644402i
\(119\) −12.0000 12.0000i −1.10004 1.10004i
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) −1.00000 + 1.00000i −0.0905357 + 0.0905357i
\(123\) 0 0
\(124\) 3.00000 + 3.00000i 0.269408 + 0.269408i
\(125\) 0 0
\(126\) 3.00000 + 3.00000i 0.267261 + 0.267261i
\(127\) −9.00000 9.00000i −0.798621 0.798621i 0.184257 0.982878i \(-0.441012\pi\)
−0.982878 + 0.184257i \(0.941012\pi\)
\(128\) 3.00000i 0.265165i
\(129\) −12.0000 + 12.0000i −1.05654 + 1.05654i
\(130\) 0 0
\(131\) −5.00000 5.00000i −0.436852 0.436852i 0.454099 0.890951i \(-0.349961\pi\)
−0.890951 + 0.454099i \(0.849961\pi\)
\(132\) −2.00000 + 2.00000i −0.174078 + 0.174078i
\(133\) 18.0000i 1.56080i
\(134\) 3.00000 + 3.00000i 0.259161 + 0.259161i
\(135\) 0 0
\(136\) 12.0000i 1.02899i
\(137\) 7.00000 + 7.00000i 0.598050 + 0.598050i 0.939793 0.341743i \(-0.111017\pi\)
−0.341743 + 0.939793i \(0.611017\pi\)
\(138\) 8.00000 + 8.00000i 0.681005 + 0.681005i
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 10.0000i 0.842152i
\(142\) 8.00000i 0.671345i
\(143\) −4.00000 −0.334497
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) −1.00000 + 1.00000i −0.0827606 + 0.0827606i
\(147\) −11.0000 + 11.0000i −0.907265 + 0.907265i
\(148\) −6.00000 + 1.00000i −0.493197 + 0.0821995i
\(149\) 16.0000i 1.31077i 0.755295 + 0.655386i \(0.227494\pi\)
−0.755295 + 0.655386i \(0.772506\pi\)
\(150\) 0 0
\(151\) 2.00000i 0.162758i −0.996683 0.0813788i \(-0.974068\pi\)
0.996683 0.0813788i \(-0.0259324\pi\)
\(152\) 9.00000 9.00000i 0.729996 0.729996i
\(153\) 4.00000i 0.323381i
\(154\) −6.00000 6.00000i −0.483494 0.483494i
\(155\) 0 0
\(156\) −2.00000 + 2.00000i −0.160128 + 0.160128i
\(157\) 3.00000 + 3.00000i 0.239426 + 0.239426i 0.816612 0.577186i \(-0.195849\pi\)
−0.577186 + 0.816612i \(0.695849\pi\)
\(158\) 3.00000 3.00000i 0.238667 0.238667i
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 24.0000 24.0000i 1.89146 1.89146i
\(162\) 5.00000i 0.392837i
\(163\) −10.0000 −0.783260 −0.391630 0.920123i \(-0.628089\pi\)
−0.391630 + 0.920123i \(0.628089\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 5.00000 + 5.00000i 0.388075 + 0.388075i
\(167\) 6.00000 0.464294 0.232147 0.972681i \(-0.425425\pi\)
0.232147 + 0.972681i \(0.425425\pi\)
\(168\) −18.0000 −1.38873
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) −3.00000 + 3.00000i −0.229416 + 0.229416i
\(172\) 12.0000i 0.914991i
\(173\) 1.00000 + 1.00000i 0.0760286 + 0.0760286i 0.744099 0.668070i \(-0.232879\pi\)
−0.668070 + 0.744099i \(0.732879\pi\)
\(174\) 14.0000i 1.06134i
\(175\) 0 0
\(176\) 2.00000i 0.150756i
\(177\) 14.0000i 1.05230i
\(178\) −5.00000 5.00000i −0.374766 0.374766i
\(179\) 7.00000 7.00000i 0.523205 0.523205i −0.395333 0.918538i \(-0.629371\pi\)
0.918538 + 0.395333i \(0.129371\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) −6.00000 6.00000i −0.444750 0.444750i
\(183\) 2.00000i 0.147844i
\(184\) 24.0000 1.76930
\(185\) 0 0
\(186\) −6.00000 −0.439941
\(187\) 8.00000i 0.585018i
\(188\) −5.00000 5.00000i −0.364662 0.364662i
\(189\) 24.0000 1.74574
\(190\) 0 0
\(191\) −11.0000 + 11.0000i −0.795932 + 0.795932i −0.982451 0.186519i \(-0.940279\pi\)
0.186519 + 0.982451i \(0.440279\pi\)
\(192\) −7.00000 7.00000i −0.505181 0.505181i
\(193\) 2.00000i 0.143963i 0.997406 + 0.0719816i \(0.0229323\pi\)
−0.997406 + 0.0719816i \(0.977068\pi\)
\(194\) 8.00000i 0.574367i
\(195\) 0 0
\(196\) 11.0000i 0.785714i
\(197\) −1.00000 1.00000i −0.0712470 0.0712470i 0.670585 0.741832i \(-0.266043\pi\)
−0.741832 + 0.670585i \(0.766043\pi\)
\(198\) 2.00000i 0.142134i
\(199\) 15.0000 15.0000i 1.06332 1.06332i 0.0654671 0.997855i \(-0.479146\pi\)
0.997855 0.0654671i \(-0.0208537\pi\)
\(200\) 0 0
\(201\) 6.00000 0.423207
\(202\) 0 0
\(203\) 42.0000 2.94782
\(204\) −4.00000 4.00000i −0.280056 0.280056i
\(205\) 0 0
\(206\) 14.0000i 0.975426i
\(207\) −8.00000 −0.556038
\(208\) 2.00000i 0.138675i
\(209\) 6.00000 6.00000i 0.415029 0.415029i
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 3.00000 3.00000i 0.206041 0.206041i
\(213\) 8.00000 + 8.00000i 0.548151 + 0.548151i
\(214\) −3.00000 + 3.00000i −0.205076 + 0.205076i
\(215\) 0 0
\(216\) 12.0000 + 12.0000i 0.816497 + 0.816497i
\(217\) 18.0000i 1.22192i
\(218\) −3.00000 + 3.00000i −0.203186 + 0.203186i
\(219\) 2.00000i 0.135147i
\(220\) 0 0
\(221\) 8.00000i 0.538138i
\(222\) 5.00000 7.00000i 0.335578 0.469809i
\(223\) 1.00000 1.00000i 0.0669650 0.0669650i −0.672831 0.739796i \(-0.734922\pi\)
0.739796 + 0.672831i \(0.234922\pi\)
\(224\) −15.0000 + 15.0000i −1.00223 + 1.00223i
\(225\) 0 0
\(226\) 4.00000i 0.266076i
\(227\) 2.00000 0.132745 0.0663723 0.997795i \(-0.478857\pi\)
0.0663723 + 0.997795i \(0.478857\pi\)
\(228\) 6.00000i 0.397360i
\(229\) 4.00000i 0.264327i 0.991228 + 0.132164i \(0.0421925\pi\)
−0.991228 + 0.132164i \(0.957808\pi\)
\(230\) 0 0
\(231\) −12.0000 −0.789542
\(232\) 21.0000 + 21.0000i 1.37872 + 1.37872i
\(233\) 1.00000 + 1.00000i 0.0655122 + 0.0655122i 0.739104 0.673592i \(-0.235249\pi\)
−0.673592 + 0.739104i \(0.735249\pi\)
\(234\) 2.00000i 0.130744i
\(235\) 0 0
\(236\) −7.00000 7.00000i −0.455661 0.455661i
\(237\) 6.00000i 0.389742i
\(238\) 12.0000 12.0000i 0.777844 0.777844i
\(239\) −7.00000 7.00000i −0.452792 0.452792i 0.443488 0.896280i \(-0.353741\pi\)
−0.896280 + 0.443488i \(0.853741\pi\)
\(240\) 0 0
\(241\) 1.00000 1.00000i 0.0644157 0.0644157i −0.674165 0.738581i \(-0.735496\pi\)
0.738581 + 0.674165i \(0.235496\pi\)
\(242\) 7.00000i 0.449977i
\(243\) −7.00000 7.00000i −0.449050 0.449050i
\(244\) 1.00000 + 1.00000i 0.0640184 + 0.0640184i
\(245\) 0 0
\(246\) 0 0
\(247\) 6.00000 6.00000i 0.381771 0.381771i
\(248\) −9.00000 + 9.00000i −0.571501 + 0.571501i
\(249\) 10.0000 0.633724
\(250\) 0 0
\(251\) −5.00000 5.00000i −0.315597 0.315597i 0.531476 0.847073i \(-0.321638\pi\)
−0.847073 + 0.531476i \(0.821638\pi\)
\(252\) 3.00000 3.00000i 0.188982 0.188982i
\(253\) 16.0000 1.00591
\(254\) 9.00000 9.00000i 0.564710 0.564710i
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −28.0000 −1.74659 −0.873296 0.487190i \(-0.838022\pi\)
−0.873296 + 0.487190i \(0.838022\pi\)
\(258\) −12.0000 12.0000i −0.747087 0.747087i
\(259\) −21.0000 15.0000i −1.30488 0.932055i
\(260\) 0 0
\(261\) −7.00000 7.00000i −0.433289 0.433289i
\(262\) 5.00000 5.00000i 0.308901 0.308901i
\(263\) −7.00000 7.00000i −0.431638 0.431638i 0.457547 0.889185i \(-0.348728\pi\)
−0.889185 + 0.457547i \(0.848728\pi\)
\(264\) −6.00000 6.00000i −0.369274 0.369274i
\(265\) 0 0
\(266\) 18.0000 1.10365
\(267\) −10.0000 −0.611990
\(268\) 3.00000 3.00000i 0.183254 0.183254i
\(269\) 16.0000i 0.975537i −0.872973 0.487769i \(-0.837811\pi\)
0.872973 0.487769i \(-0.162189\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 4.00000 0.242536
\(273\) −12.0000 −0.726273
\(274\) −7.00000 + 7.00000i −0.422885 + 0.422885i
\(275\) 0 0
\(276\) 8.00000 8.00000i 0.481543 0.481543i
\(277\) 26.0000i 1.56219i −0.624413 0.781094i \(-0.714662\pi\)
0.624413 0.781094i \(-0.285338\pi\)
\(278\) 4.00000i 0.239904i
\(279\) 3.00000 3.00000i 0.179605 0.179605i
\(280\) 0 0
\(281\) 9.00000 9.00000i 0.536895 0.536895i −0.385721 0.922616i \(-0.626047\pi\)
0.922616 + 0.385721i \(0.126047\pi\)
\(282\) 10.0000 0.595491
\(283\) 22.0000 1.30776 0.653882 0.756596i \(-0.273139\pi\)
0.653882 + 0.756596i \(0.273139\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) 4.00000i 0.236525i
\(287\) 0 0
\(288\) 5.00000 0.294628
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 8.00000 + 8.00000i 0.468968 + 0.468968i
\(292\) 1.00000 + 1.00000i 0.0585206 + 0.0585206i
\(293\) −1.00000 + 1.00000i −0.0584206 + 0.0584206i −0.735714 0.677293i \(-0.763153\pi\)
0.677293 + 0.735714i \(0.263153\pi\)
\(294\) −11.0000 11.0000i −0.641533 0.641533i
\(295\) 0 0
\(296\) −3.00000 18.0000i −0.174371 1.04623i
\(297\) 8.00000 + 8.00000i 0.464207 + 0.464207i
\(298\) −16.0000 −0.926855
\(299\) 16.0000 0.925304
\(300\) 0 0
\(301\) −36.0000 + 36.0000i −2.07501 + 2.07501i
\(302\) 2.00000 0.115087
\(303\) 0 0
\(304\) 3.00000 + 3.00000i 0.172062 + 0.172062i
\(305\) 0 0
\(306\) −4.00000 −0.228665
\(307\) −9.00000 + 9.00000i −0.513657 + 0.513657i −0.915645 0.401988i \(-0.868319\pi\)
0.401988 + 0.915645i \(0.368319\pi\)
\(308\) −6.00000 + 6.00000i −0.341882 + 0.341882i
\(309\) −14.0000 14.0000i −0.796432 0.796432i
\(310\) 0 0
\(311\) 3.00000 + 3.00000i 0.170114 + 0.170114i 0.787030 0.616915i \(-0.211618\pi\)
−0.616915 + 0.787030i \(0.711618\pi\)
\(312\) −6.00000 6.00000i −0.339683 0.339683i
\(313\) 30.0000i 1.69570i −0.530236 0.847850i \(-0.677897\pi\)
0.530236 0.847850i \(-0.322103\pi\)
\(314\) −3.00000 + 3.00000i −0.169300 + 0.169300i
\(315\) 0 0
\(316\) −3.00000 3.00000i −0.168763 0.168763i
\(317\) 17.0000 17.0000i 0.954815 0.954815i −0.0442073 0.999022i \(-0.514076\pi\)
0.999022 + 0.0442073i \(0.0140762\pi\)
\(318\) 6.00000i 0.336463i
\(319\) 14.0000 + 14.0000i 0.783850 + 0.783850i
\(320\) 0 0
\(321\) 6.00000i 0.334887i
\(322\) 24.0000 + 24.0000i 1.33747 + 1.33747i
\(323\) 12.0000 + 12.0000i 0.667698 + 0.667698i
\(324\) 5.00000 0.277778
\(325\) 0 0
\(326\) 10.0000i 0.553849i
\(327\) 6.00000i 0.331801i
\(328\) 0 0
\(329\) 30.0000i 1.65395i
\(330\) 0 0
\(331\) −7.00000 + 7.00000i −0.384755 + 0.384755i −0.872812 0.488057i \(-0.837706\pi\)
0.488057 + 0.872812i \(0.337706\pi\)
\(332\) 5.00000 5.00000i 0.274411 0.274411i
\(333\) 1.00000 + 6.00000i 0.0547997 + 0.328798i
\(334\) 6.00000i 0.328305i
\(335\) 0 0
\(336\) 6.00000i 0.327327i
\(337\) −15.0000 + 15.0000i −0.817102 + 0.817102i −0.985687 0.168585i \(-0.946080\pi\)
0.168585 + 0.985687i \(0.446080\pi\)
\(338\) 9.00000i 0.489535i
\(339\) −4.00000 4.00000i −0.217250 0.217250i
\(340\) 0 0
\(341\) −6.00000 + 6.00000i −0.324918 + 0.324918i
\(342\) −3.00000 3.00000i −0.162221 0.162221i
\(343\) −12.0000 + 12.0000i −0.647939 + 0.647939i
\(344\) −36.0000 −1.94099
\(345\) 0 0
\(346\) −1.00000 + 1.00000i −0.0537603 + 0.0537603i
\(347\) 4.00000i 0.214731i −0.994220 0.107366i \(-0.965758\pi\)
0.994220 0.107366i \(-0.0342415\pi\)
\(348\) 14.0000 0.750479
\(349\) 32.0000i 1.71292i 0.516213 + 0.856460i \(0.327341\pi\)
−0.516213 + 0.856460i \(0.672659\pi\)
\(350\) 0 0
\(351\) 8.00000 + 8.00000i 0.427008 + 0.427008i
\(352\) −10.0000 −0.533002
\(353\) −32.0000 −1.70319 −0.851594 0.524202i \(-0.824364\pi\)
−0.851594 + 0.524202i \(0.824364\pi\)
\(354\) 14.0000 0.744092
\(355\) 0 0
\(356\) −5.00000 + 5.00000i −0.264999 + 0.264999i
\(357\) 24.0000i 1.27021i
\(358\) 7.00000 + 7.00000i 0.369961 + 0.369961i
\(359\) 34.0000i 1.79445i 0.441572 + 0.897226i \(0.354421\pi\)
−0.441572 + 0.897226i \(0.645579\pi\)
\(360\) 0 0
\(361\) 1.00000i 0.0526316i
\(362\) 10.0000i 0.525588i
\(363\) 7.00000 + 7.00000i 0.367405 + 0.367405i
\(364\) −6.00000 + 6.00000i −0.314485 + 0.314485i
\(365\) 0 0
\(366\) −2.00000 −0.104542
\(367\) −17.0000 17.0000i −0.887393 0.887393i 0.106879 0.994272i \(-0.465914\pi\)
−0.994272 + 0.106879i \(0.965914\pi\)
\(368\) 8.00000i 0.417029i
\(369\) 0 0
\(370\) 0 0
\(371\) 18.0000 0.934513
\(372\) 6.00000i 0.311086i
\(373\) −3.00000 3.00000i −0.155334 0.155334i 0.625161 0.780496i \(-0.285033\pi\)
−0.780496 + 0.625161i \(0.785033\pi\)
\(374\) 8.00000 0.413670
\(375\) 0 0
\(376\) 15.0000 15.0000i 0.773566 0.773566i
\(377\) 14.0000 + 14.0000i 0.721037 + 0.721037i
\(378\) 24.0000i 1.23443i
\(379\) 14.0000i 0.719132i 0.933120 + 0.359566i \(0.117075\pi\)
−0.933120 + 0.359566i \(0.882925\pi\)
\(380\) 0 0
\(381\) 18.0000i 0.922168i
\(382\) −11.0000 11.0000i −0.562809 0.562809i
\(383\) 8.00000i 0.408781i 0.978889 + 0.204390i \(0.0655212\pi\)
−0.978889 + 0.204390i \(0.934479\pi\)
\(384\) −3.00000 + 3.00000i −0.153093 + 0.153093i
\(385\) 0 0
\(386\) −2.00000 −0.101797
\(387\) 12.0000 0.609994
\(388\) 8.00000 0.406138
\(389\) −5.00000 5.00000i −0.253510 0.253510i 0.568898 0.822408i \(-0.307370\pi\)
−0.822408 + 0.568898i \(0.807370\pi\)
\(390\) 0 0
\(391\) 32.0000i 1.61831i
\(392\) −33.0000 −1.66675
\(393\) 10.0000i 0.504433i
\(394\) 1.00000 1.00000i 0.0503793 0.0503793i
\(395\) 0 0
\(396\) 2.00000 0.100504
\(397\) 5.00000 5.00000i 0.250943 0.250943i −0.570414 0.821357i \(-0.693217\pi\)
0.821357 + 0.570414i \(0.193217\pi\)
\(398\) 15.0000 + 15.0000i 0.751882 + 0.751882i
\(399\) 18.0000 18.0000i 0.901127 0.901127i
\(400\) 0 0
\(401\) 1.00000 + 1.00000i 0.0499376 + 0.0499376i 0.731635 0.681697i \(-0.238758\pi\)
−0.681697 + 0.731635i \(0.738758\pi\)
\(402\) 6.00000i 0.299253i
\(403\) −6.00000 + 6.00000i −0.298881 + 0.298881i
\(404\) 0 0
\(405\) 0 0
\(406\) 42.0000i 2.08443i
\(407\) −2.00000 12.0000i −0.0991363 0.594818i
\(408\) 12.0000 12.0000i 0.594089 0.594089i
\(409\) 3.00000 3.00000i 0.148340 0.148340i −0.629036 0.777376i \(-0.716550\pi\)
0.777376 + 0.629036i \(0.216550\pi\)
\(410\) 0 0
\(411\) 14.0000i 0.690569i
\(412\) −14.0000 −0.689730
\(413\) 42.0000i 2.06668i
\(414\) 8.00000i 0.393179i
\(415\) 0 0
\(416\) −10.0000 −0.490290
\(417\) −4.00000 4.00000i −0.195881 0.195881i
\(418\) 6.00000 + 6.00000i 0.293470 + 0.293470i
\(419\) 22.0000i 1.07477i 0.843337 + 0.537385i \(0.180588\pi\)
−0.843337 + 0.537385i \(0.819412\pi\)
\(420\) 0 0
\(421\) −27.0000 27.0000i −1.31590 1.31590i −0.916991 0.398909i \(-0.869389\pi\)
−0.398909 0.916991i \(-0.630611\pi\)
\(422\) 20.0000i 0.973585i
\(423\) −5.00000 + 5.00000i −0.243108 + 0.243108i
\(424\) 9.00000 + 9.00000i 0.437079 + 0.437079i
\(425\) 0 0
\(426\) −8.00000 + 8.00000i −0.387601 + 0.387601i
\(427\) 6.00000i 0.290360i
\(428\) 3.00000 + 3.00000i 0.145010 + 0.145010i
\(429\) −4.00000 4.00000i −0.193122 0.193122i
\(430\) 0 0
\(431\) 11.0000 + 11.0000i 0.529851 + 0.529851i 0.920528 0.390677i \(-0.127759\pi\)
−0.390677 + 0.920528i \(0.627759\pi\)
\(432\) −4.00000 + 4.00000i −0.192450 + 0.192450i
\(433\) −5.00000 + 5.00000i −0.240285 + 0.240285i −0.816968 0.576683i \(-0.804347\pi\)
0.576683 + 0.816968i \(0.304347\pi\)
\(434\) −18.0000 −0.864028
\(435\) 0 0
\(436\) 3.00000 + 3.00000i 0.143674 + 0.143674i
\(437\) −24.0000 + 24.0000i −1.14808 + 1.14808i
\(438\) −2.00000 −0.0955637
\(439\) −17.0000 + 17.0000i −0.811366 + 0.811366i −0.984839 0.173473i \(-0.944501\pi\)
0.173473 + 0.984839i \(0.444501\pi\)
\(440\) 0 0
\(441\) 11.0000 0.523810
\(442\) 8.00000 0.380521
\(443\) −11.0000 11.0000i −0.522626 0.522626i 0.395738 0.918364i \(-0.370489\pi\)
−0.918364 + 0.395738i \(0.870489\pi\)
\(444\) −7.00000 5.00000i −0.332205 0.237289i
\(445\) 0 0
\(446\) 1.00000 + 1.00000i 0.0473514 + 0.0473514i
\(447\) −16.0000 + 16.0000i −0.756774 + 0.756774i
\(448\) −21.0000 21.0000i −0.992157 0.992157i
\(449\) −5.00000 5.00000i −0.235965 0.235965i 0.579212 0.815177i \(-0.303360\pi\)
−0.815177 + 0.579212i \(0.803360\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −4.00000 −0.188144
\(453\) 2.00000 2.00000i 0.0939682 0.0939682i
\(454\) 2.00000i 0.0938647i
\(455\) 0 0
\(456\) 18.0000 0.842927
\(457\) 32.0000 1.49690 0.748448 0.663193i \(-0.230799\pi\)
0.748448 + 0.663193i \(0.230799\pi\)
\(458\) −4.00000 −0.186908
\(459\) −16.0000 + 16.0000i −0.746816 + 0.746816i
\(460\) 0 0
\(461\) 21.0000 21.0000i 0.978068 0.978068i −0.0216971 0.999765i \(-0.506907\pi\)
0.999765 + 0.0216971i \(0.00690694\pi\)
\(462\) 12.0000i 0.558291i
\(463\) 40.0000i 1.85896i 0.368875 + 0.929479i \(0.379743\pi\)
−0.368875 + 0.929479i \(0.620257\pi\)
\(464\) −7.00000 + 7.00000i −0.324967 + 0.324967i
\(465\) 0 0
\(466\) −1.00000 + 1.00000i −0.0463241 + 0.0463241i
\(467\) −38.0000 −1.75843 −0.879215 0.476425i \(-0.841932\pi\)
−0.879215 + 0.476425i \(0.841932\pi\)
\(468\) 2.00000 0.0924500
\(469\) 18.0000 0.831163
\(470\) 0 0
\(471\) 6.00000i 0.276465i
\(472\) 21.0000 21.0000i 0.966603 0.966603i
\(473\) −24.0000 −1.10352
\(474\) 6.00000 0.275589
\(475\) 0 0
\(476\) −12.0000 12.0000i −0.550019 0.550019i
\(477\) −3.00000 3.00000i −0.137361 0.137361i
\(478\) 7.00000 7.00000i 0.320173 0.320173i
\(479\) −23.0000 23.0000i −1.05090 1.05090i −0.998633 0.0522635i \(-0.983356\pi\)
−0.0522635 0.998633i \(-0.516644\pi\)
\(480\) 0 0
\(481\) −2.00000 12.0000i −0.0911922 0.547153i
\(482\) 1.00000 + 1.00000i 0.0455488 + 0.0455488i
\(483\) 48.0000 2.18408
\(484\) 7.00000 0.318182
\(485\) 0 0
\(486\) 7.00000 7.00000i 0.317526 0.317526i
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) −3.00000 + 3.00000i −0.135804 + 0.135804i
\(489\) −10.0000 10.0000i −0.452216 0.452216i
\(490\) 0 0
\(491\) −4.00000 −0.180517 −0.0902587 0.995918i \(-0.528769\pi\)
−0.0902587 + 0.995918i \(0.528769\pi\)
\(492\) 0 0
\(493\) −28.0000 + 28.0000i −1.26106 + 1.26106i
\(494\) 6.00000 + 6.00000i 0.269953 + 0.269953i
\(495\) 0 0
\(496\) −3.00000 3.00000i −0.134704 0.134704i
\(497\) 24.0000 + 24.0000i 1.07655 + 1.07655i
\(498\) 10.0000i 0.448111i
\(499\) 27.0000 27.0000i 1.20869 1.20869i 0.237233 0.971453i \(-0.423759\pi\)
0.971453 0.237233i \(-0.0762406\pi\)
\(500\) 0 0
\(501\) 6.00000 + 6.00000i 0.268060 + 0.268060i
\(502\) 5.00000 5.00000i 0.223161 0.223161i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 9.00000 + 9.00000i 0.400892 + 0.400892i
\(505\) 0 0
\(506\) 16.0000i 0.711287i
\(507\) 9.00000 + 9.00000i 0.399704 + 0.399704i
\(508\) −9.00000 9.00000i −0.399310 0.399310i
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) 0 0
\(511\) 6.00000i 0.265424i
\(512\) 11.0000i 0.486136i
\(513\) −24.0000 −1.05963
\(514\) 28.0000i 1.23503i
\(515\) 0 0
\(516\) −12.0000 + 12.0000i −0.528271 + 0.528271i
\(517\) 10.0000 10.0000i 0.439799 0.439799i
\(518\) 15.0000 21.0000i 0.659062 0.922687i
\(519\) 2.00000i 0.0877903i
\(520\) 0 0
\(521\) 44.0000i 1.92767i 0.266491 + 0.963837i \(0.414136\pi\)
−0.266491 + 0.963837i \(0.585864\pi\)
\(522\) 7.00000 7.00000i 0.306382 0.306382i
\(523\) 4.00000i 0.174908i −0.996169 0.0874539i \(-0.972127\pi\)
0.996169 0.0874539i \(-0.0278730\pi\)
\(524\) −5.00000 5.00000i −0.218426 0.218426i
\(525\) 0 0
\(526\) 7.00000 7.00000i 0.305215 0.305215i
\(527\) −12.0000 12.0000i −0.522728 0.522728i
\(528\) 2.00000 2.00000i 0.0870388 0.0870388i
\(529\) −41.0000 −1.78261
\(530\) 0 0
\(531\) −7.00000 + 7.00000i −0.303774 + 0.303774i
\(532\) 18.0000i 0.780399i
\(533\) 0 0
\(534\) 10.0000i 0.432742i
\(535\) 0 0
\(536\) 9.00000 + 9.00000i 0.388741 + 0.388741i
\(537\) 14.0000 0.604145
\(538\) 16.0000 0.689809
\(539\) −22.0000 −0.947607
\(540\) 0 0
\(541\) 1.00000 1.00000i 0.0429934 0.0429934i −0.685283 0.728277i \(-0.740322\pi\)
0.728277 + 0.685283i \(0.240322\pi\)
\(542\) 8.00000i 0.343629i
\(543\) 10.0000 + 10.0000i 0.429141 + 0.429141i
\(544\) 20.0000i 0.857493i
\(545\) 0 0
\(546\) 12.0000i 0.513553i
\(547\) 20.0000i 0.855138i −0.903983 0.427569i \(-0.859370\pi\)
0.903983 0.427569i \(-0.140630\pi\)
\(548\) 7.00000 + 7.00000i 0.299025 + 0.299025i
\(549\) 1.00000 1.00000i 0.0426790 0.0426790i
\(550\) 0 0
\(551\) −42.0000 −1.78926
\(552\) 24.0000 + 24.0000i 1.02151 + 1.02151i
\(553\) 18.0000i 0.765438i
\(554\) 26.0000 1.10463
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) 14.0000i 0.593199i 0.955002 + 0.296600i \(0.0958526\pi\)
−0.955002 + 0.296600i \(0.904147\pi\)
\(558\) 3.00000 + 3.00000i 0.127000 + 0.127000i
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) 8.00000 8.00000i 0.337760 0.337760i
\(562\) 9.00000 + 9.00000i 0.379642 + 0.379642i
\(563\) 12.0000i 0.505740i −0.967500 0.252870i \(-0.918626\pi\)
0.967500 0.252870i \(-0.0813744\pi\)
\(564\) 10.0000i 0.421076i
\(565\) 0 0
\(566\) 22.0000i 0.924729i
\(567\) 15.0000 + 15.0000i 0.629941 + 0.629941i
\(568\) 24.0000i 1.00702i
\(569\) −25.0000 + 25.0000i −1.04805 + 1.04805i −0.0492690 + 0.998786i \(0.515689\pi\)
−0.998786 + 0.0492690i \(0.984311\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) −4.00000 −0.167248
\(573\) −22.0000 −0.919063
\(574\) 0 0
\(575\) 0 0
\(576\) 7.00000i 0.291667i
\(577\) −12.0000 −0.499567 −0.249783 0.968302i \(-0.580359\pi\)
−0.249783 + 0.968302i \(0.580359\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) −2.00000 + 2.00000i −0.0831172 + 0.0831172i
\(580\) 0 0
\(581\) 30.0000 1.24461
\(582\) −8.00000 + 8.00000i −0.331611 + 0.331611i
\(583\) 6.00000 + 6.00000i 0.248495 + 0.248495i
\(584\) −3.00000 + 3.00000i −0.124141 + 0.124141i
\(585\) 0 0
\(586\) −1.00000 1.00000i −0.0413096 0.0413096i
\(587\) 36.0000i 1.48588i 0.669359 + 0.742940i \(0.266569\pi\)
−0.669359 + 0.742940i \(0.733431\pi\)
\(588\) −11.0000 + 11.0000i −0.453632 + 0.453632i
\(589\) 18.0000i 0.741677i
\(590\) 0 0
\(591\) 2.00000i 0.0822690i
\(592\) 6.00000 1.00000i 0.246598 0.0410997i
\(593\) 3.00000 3.00000i 0.123195 0.123195i −0.642821 0.766016i \(-0.722236\pi\)
0.766016 + 0.642821i \(0.222236\pi\)
\(594\) −8.00000 + 8.00000i −0.328244 + 0.328244i
\(595\) 0 0
\(596\) 16.0000i 0.655386i
\(597\) 30.0000 1.22782
\(598\) 16.0000i 0.654289i
\(599\) 6.00000i 0.245153i −0.992459 0.122577i \(-0.960884\pi\)
0.992459 0.122577i \(-0.0391157\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) −36.0000 36.0000i −1.46725 1.46725i
\(603\) −3.00000 3.00000i −0.122169 0.122169i
\(604\) 2.00000i 0.0813788i
\(605\) 0 0
\(606\) 0 0
\(607\) 32.0000i 1.29884i 0.760430 + 0.649420i \(0.224988\pi\)
−0.760430 + 0.649420i \(0.775012\pi\)
\(608\) 15.0000 15.0000i 0.608330 0.608330i
\(609\) 42.0000 + 42.0000i 1.70193 + 1.70193i
\(610\) 0 0
\(611\) 10.0000 10.0000i 0.404557 0.404557i
\(612\) 4.00000i 0.161690i
\(613\) 21.0000 + 21.0000i 0.848182 + 0.848182i 0.989906 0.141724i \(-0.0452646\pi\)
−0.141724 + 0.989906i \(0.545265\pi\)
\(614\) −9.00000 9.00000i −0.363210 0.363210i
\(615\) 0 0
\(616\) −18.0000 18.0000i −0.725241 0.725241i
\(617\) 17.0000 17.0000i 0.684394 0.684394i −0.276593 0.960987i \(-0.589205\pi\)
0.960987 + 0.276593i \(0.0892054\pi\)
\(618\) 14.0000 14.0000i 0.563163 0.563163i
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 0 0
\(621\) −32.0000 32.0000i −1.28412 1.28412i
\(622\) −3.00000 + 3.00000i −0.120289 + 0.120289i
\(623\) −30.0000 −1.20192
\(624\) 2.00000 2.00000i 0.0800641 0.0800641i
\(625\) 0 0
\(626\) 30.0000 1.19904
\(627\) 12.0000 0.479234
\(628\) 3.00000 + 3.00000i 0.119713 + 0.119713i
\(629\) 24.0000 4.00000i 0.956943 0.159490i
\(630\) 0 0
\(631\) 23.0000 + 23.0000i 0.915616 + 0.915616i 0.996707 0.0810911i \(-0.0258405\pi\)
−0.0810911 + 0.996707i \(0.525840\pi\)
\(632\) 9.00000 9.00000i 0.358001 0.358001i
\(633\) 20.0000 + 20.0000i 0.794929 + 0.794929i
\(634\) 17.0000 + 17.0000i 0.675156 + 0.675156i
\(635\) 0 0
\(636\) 6.00000 0.237915
\(637\) −22.0000 −0.871672
\(638\) −14.0000 + 14.0000i −0.554265 + 0.554265i
\(639\) 8.00000i 0.316475i
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) −6.00000 −0.236801
\(643\) −10.0000 −0.394362 −0.197181 0.980367i \(-0.563179\pi\)
−0.197181 + 0.980367i \(0.563179\pi\)
\(644\) 24.0000 24.0000i 0.945732 0.945732i
\(645\) 0 0
\(646\) −12.0000 + 12.0000i −0.472134 + 0.472134i
\(647\) 24.0000i 0.943537i 0.881722 + 0.471769i \(0.156384\pi\)
−0.881722 + 0.471769i \(0.843616\pi\)
\(648\) 15.0000i 0.589256i
\(649\) 14.0000 14.0000i 0.549548 0.549548i
\(650\) 0 0
\(651\) −18.0000 + 18.0000i −0.705476 + 0.705476i
\(652\) −10.0000 −0.391630
\(653\) 36.0000 1.40879 0.704394 0.709809i \(-0.251219\pi\)
0.704394 + 0.709809i \(0.251219\pi\)
\(654\) −6.00000 −0.234619
\(655\) 0 0
\(656\) 0 0
\(657\) 1.00000 1.00000i 0.0390137 0.0390137i
\(658\) 30.0000 1.16952
\(659\) −20.0000 −0.779089 −0.389545 0.921008i \(-0.627368\pi\)
−0.389545 + 0.921008i \(0.627368\pi\)
\(660\) 0 0
\(661\) 33.0000 + 33.0000i 1.28355 + 1.28355i 0.938633 + 0.344919i \(0.112094\pi\)
0.344919 + 0.938633i \(0.387906\pi\)
\(662\) −7.00000 7.00000i −0.272063 0.272063i
\(663\) 8.00000 8.00000i 0.310694 0.310694i
\(664\) 15.0000 + 15.0000i 0.582113 + 0.582113i
\(665\) 0 0
\(666\) −6.00000 + 1.00000i −0.232495 + 0.0387492i
\(667\) −56.0000 56.0000i −2.16833 2.16833i
\(668\) 6.00000 0.232147
\(669\) 2.00000 0.0773245
\(670\) 0 0
\(671\) −2.00000 + 2.00000i −0.0772091 + 0.0772091i
\(672\) −30.0000 −1.15728
\(673\) 15.0000 15.0000i 0.578208 0.578208i −0.356202 0.934409i \(-0.615928\pi\)
0.934409 + 0.356202i \(0.115928\pi\)
\(674\) −15.0000 15.0000i −0.577778 0.577778i
\(675\) 0 0
\(676\) 9.00000 0.346154
\(677\) −23.0000 + 23.0000i −0.883962 + 0.883962i −0.993935 0.109973i \(-0.964924\pi\)
0.109973 + 0.993935i \(0.464924\pi\)
\(678\) 4.00000 4.00000i 0.153619 0.153619i
\(679\) 24.0000 + 24.0000i 0.921035 + 0.921035i
\(680\) 0 0
\(681\) 2.00000 + 2.00000i 0.0766402 + 0.0766402i
\(682\) −6.00000 6.00000i −0.229752 0.229752i
\(683\) 4.00000i 0.153056i 0.997067 + 0.0765279i \(0.0243834\pi\)
−0.997067 + 0.0765279i \(0.975617\pi\)
\(684\) −3.00000 + 3.00000i −0.114708 + 0.114708i
\(685\) 0 0
\(686\) −12.0000 12.0000i −0.458162 0.458162i
\(687\) −4.00000 + 4.00000i −0.152610 + 0.152610i
\(688\) 12.0000i 0.457496i
\(689\) 6.00000 + 6.00000i 0.228582 + 0.228582i
\(690\) 0 0
\(691\) 46.0000i 1.74992i −0.484193 0.874961i \(-0.660887\pi\)
0.484193 0.874961i \(-0.339113\pi\)
\(692\) 1.00000 + 1.00000i 0.0380143 + 0.0380143i
\(693\) 6.00000 + 6.00000i 0.227921 + 0.227921i
\(694\) 4.00000 0.151838
\(695\) 0 0
\(696\) 42.0000i 1.59201i
\(697\) 0 0
\(698\) −32.0000 −1.21122
\(699\) 2.00000i 0.0756469i
\(700\) 0 0
\(701\) 9.00000 9.00000i 0.339925 0.339925i −0.516414 0.856339i \(-0.672733\pi\)
0.856339 + 0.516414i \(0.172733\pi\)
\(702\) −8.00000 + 8.00000i −0.301941 + 0.301941i
\(703\) 21.0000 + 15.0000i 0.792030 + 0.565736i
\(704\) 14.0000i 0.527645i
\(705\) 0 0
\(706\) 32.0000i 1.20434i
\(707\) 0 0
\(708\) 14.0000i 0.526152i
\(709\) 15.0000 + 15.0000i 0.563337 + 0.563337i 0.930254 0.366917i \(-0.119587\pi\)
−0.366917 + 0.930254i \(0.619587\pi\)
\(710\) 0 0
\(711\) −3.00000 + 3.00000i −0.112509 + 0.112509i
\(712\) −15.0000 15.0000i −0.562149 0.562149i
\(713\) 24.0000 24.0000i 0.898807 0.898807i
\(714\) 24.0000 0.898177
\(715\) 0 0
\(716\) 7.00000 7.00000i 0.261602 0.261602i
\(717\) 14.0000i 0.522840i
\(718\) −34.0000 −1.26887
\(719\) 26.0000i 0.969636i 0.874615 + 0.484818i \(0.161114\pi\)
−0.874615 + 0.484818i \(0.838886\pi\)
\(720\) 0 0
\(721\) −42.0000 42.0000i −1.56416 1.56416i
\(722\) 1.00000 0.0372161
\(723\) 2.00000 0.0743808
\(724\) 10.0000 0.371647
\(725\) 0 0
\(726\) −7.00000 + 7.00000i −0.259794 + 0.259794i
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) −18.0000 18.0000i −0.667124 0.667124i
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) 48.0000i 1.77534i
\(732\) 2.00000i 0.0739221i
\(733\) −3.00000 3.00000i −0.110808 0.110808i 0.649529 0.760337i \(-0.274966\pi\)
−0.760337 + 0.649529i \(0.774966\pi\)
\(734\) 17.0000 17.0000i 0.627481 0.627481i
\(735\) 0 0
\(736\) 40.0000 1.47442
\(737\) 6.00000 + 6.00000i 0.221013 + 0.221013i
\(738\) 0 0
\(739\) −44.0000 −1.61857 −0.809283 0.587419i \(-0.800144\pi\)
−0.809283 + 0.587419i \(0.800144\pi\)
\(740\) 0 0
\(741\) 12.0000 0.440831
\(742\) 18.0000i 0.660801i
\(743\) 5.00000 + 5.00000i 0.183432 + 0.183432i 0.792850 0.609417i \(-0.208597\pi\)
−0.609417 + 0.792850i \(0.708597\pi\)
\(744\) −18.0000 −0.659912
\(745\) 0 0
\(746\) 3.00000 3.00000i 0.109838 0.109838i
\(747\) −5.00000 5.00000i −0.182940 0.182940i
\(748\) 8.00000i 0.292509i
\(749\) 18.0000i 0.657706i
\(750\) 0 0
\(751\) 22.0000i 0.802791i 0.915905 + 0.401396i \(0.131475\pi\)
−0.915905 + 0.401396i \(0.868525\pi\)
\(752\) 5.00000 + 5.00000i 0.182331 + 0.182331i
\(753\) 10.0000i 0.364420i
\(754\) −14.0000 + 14.0000i −0.509850 + 0.509850i
\(755\) 0 0
\(756\) 24.0000 0.872872
\(757\) 36.0000 1.30844 0.654221 0.756303i \(-0.272997\pi\)
0.654221 + 0.756303i \(0.272997\pi\)
\(758\) −14.0000 −0.508503
\(759\) 16.0000 + 16.0000i 0.580763 + 0.580763i
\(760\) 0 0
\(761\) 8.00000i 0.290000i −0.989432 0.145000i \(-0.953682\pi\)
0.989432 0.145000i \(-0.0463182\pi\)
\(762\) 18.0000 0.652071
\(763\) 18.0000i 0.651644i
\(764\) −11.0000 + 11.0000i −0.397966 + 0.397966i
\(765\) 0 0
\(766\) −8.00000 −0.289052
\(767\) 14.0000 14.0000i 0.505511 0.505511i
\(768\) −17.0000 17.0000i −0.613435 0.613435i
\(769\) 15.0000 15.0000i 0.540914 0.540914i −0.382883 0.923797i \(-0.625069\pi\)
0.923797 + 0.382883i \(0.125069\pi\)
\(770\) 0 0
\(771\) −28.0000 28.0000i −1.00840 1.00840i
\(772\) 2.00000i 0.0719816i
\(773\) 11.0000 11.0000i 0.395643 0.395643i −0.481050 0.876693i \(-0.659745\pi\)
0.876693 + 0.481050i \(0.159745\pi\)
\(774\) 12.0000i 0.431331i
\(775\) 0 0
\(776\) 24.0000i 0.861550i
\(777\) −6.00000 36.0000i −0.215249 1.29149i
\(778\) 5.00000 5.00000i 0.179259 0.179259i
\(779\) 0 0
\(780\) 0 0
\(781\) 16.0000i 0.572525i
\(782\) −32.0000 −1.14432
\(783\) 56.0000i 2.00128i
\(784\) 11.0000i 0.392857i
\(785\) 0 0
\(786\) 10.0000 0.356688
\(787\) 27.0000 + 27.0000i 0.962446 + 0.962446i 0.999320 0.0368739i \(-0.0117400\pi\)
−0.0368739 + 0.999320i \(0.511740\pi\)
\(788\) −1.00000 1.00000i −0.0356235 0.0356235i
\(789\) 14.0000i 0.498413i
\(790\) 0 0
\(791\) −12.0000 12.0000i −0.426671 0.426671i
\(792\) 6.00000i 0.213201i
\(793\) −2.00000 + 2.00000i −0.0710221 + 0.0710221i
\(794\) 5.00000 + 5.00000i 0.177443 + 0.177443i
\(795\) 0 0
\(796\) 15.0000 15.0000i 0.531661 0.531661i
\(797\) 46.0000i 1.62940i 0.579880 + 0.814702i \(0.303099\pi\)
−0.579880 + 0.814702i \(0.696901\pi\)
\(798\) 18.0000 + 18.0000i 0.637193 + 0.637193i
\(799\) 20.0000 + 20.0000i 0.707549 + 0.707549i
\(800\) 0 0
\(801\) 5.00000 + 5.00000i 0.176666 + 0.176666i
\(802\) −1.00000 + 1.00000i −0.0353112 + 0.0353112i
\(803\) −2.00000 + 2.00000i −0.0705785 + 0.0705785i
\(804\) 6.00000 0.211604
\(805\) 0 0
\(806\) −6.00000 6.00000i −0.211341 0.211341i
\(807\) 16.0000 16.0000i 0.563227 0.563227i
\(808\) 0 0
\(809\) −25.0000 + 25.0000i −0.878953 + 0.878953i −0.993426 0.114473i \(-0.963482\pi\)
0.114473 + 0.993426i \(0.463482\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 42.0000 1.47391
\(813\) −8.00000 8.00000i −0.280572 0.280572i
\(814\) 12.0000 2.00000i 0.420600 0.0701000i
\(815\) 0 0
\(816\) 4.00000 + 4.00000i 0.140028 + 0.140028i
\(817\) 36.0000 36.0000i 1.25948 1.25948i
\(818\) 3.00000 + 3.00000i 0.104893 + 0.104893i
\(819\) 6.00000 + 6.00000i 0.209657 + 0.209657i
\(820\) 0 0
\(821\) −18.0000 −0.628204 −0.314102 0.949389i \(-0.601703\pi\)
−0.314102 + 0.949389i \(0.601703\pi\)
\(822\) −14.0000 −0.488306
\(823\) −11.0000 + 11.0000i −0.383436 + 0.383436i −0.872338 0.488903i \(-0.837397\pi\)
0.488903 + 0.872338i \(0.337397\pi\)
\(824\) 42.0000i 1.46314i
\(825\) 0 0
\(826\) 42.0000 1.46137
\(827\) −38.0000 −1.32139 −0.660695 0.750655i \(-0.729738\pi\)
−0.660695 + 0.750655i \(0.729738\pi\)
\(828\) −8.00000 −0.278019
\(829\) −21.0000 + 21.0000i −0.729360 + 0.729360i −0.970492 0.241132i \(-0.922481\pi\)
0.241132 + 0.970492i \(0.422481\pi\)
\(830\) 0 0
\(831\) 26.0000 26.0000i 0.901930 0.901930i
\(832\) 14.0000i 0.485363i
\(833\) 44.0000i 1.52451i
\(834\) 4.00000 4.00000i 0.138509 0.138509i
\(835\) 0 0
\(836\) 6.00000 6.00000i 0.207514 0.207514i
\(837\) 24.0000 0.829561
\(838\) −22.0000 −0.759977
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 69.0000i 2.37931i
\(842\) 27.0000 27.0000i 0.930481 0.930481i
\(843\) 18.0000 0.619953
\(844\) 20.0000 0.688428
\(845\) 0 0
\(846\) −5.00000 5.00000i −0.171904 0.171904i
\(847\) 21.0000 + 21.0000i 0.721569 + 0.721569i
\(848\) −3.00000 + 3.00000i −0.103020 + 0.103020i
\(849\) 22.0000 + 22.0000i 0.755038 + 0.755038i
\(850\) 0 0
\(851\) 8.00000 + 48.0000i 0.274236 + 1.64542i
\(852\) 8.00000 + 8.00000i 0.274075 + 0.274075i
\(853\) −44.0000 −1.50653 −0.753266 0.657716i \(-0.771523\pi\)
−0.753266 + 0.657716i \(0.771523\pi\)
\(854\) −6.00000 −0.205316
\(855\) 0 0
\(856\) −9.00000 + 9.00000i −0.307614 + 0.307614i
\(857\) 32.0000 1.09310 0.546550 0.837427i \(-0.315941\pi\)
0.546550 + 0.837427i \(0.315941\pi\)
\(858\) 4.00000 4.00000i 0.136558 0.136558i
\(859\) −7.00000 7.00000i −0.238837 0.238837i 0.577531 0.816368i \(-0.304016\pi\)
−0.816368 + 0.577531i \(0.804016\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −11.0000 + 11.0000i −0.374661 + 0.374661i
\(863\) −15.0000 + 15.0000i −0.510606 + 0.510606i −0.914712 0.404106i \(-0.867583\pi\)
0.404106 + 0.914712i \(0.367583\pi\)
\(864\) 20.0000 + 20.0000i 0.680414 + 0.680414i
\(865\) 0 0
\(866\) −5.00000 5.00000i −0.169907 0.169907i
\(867\) −1.00000 1.00000i −0.0339618 0.0339618i
\(868\) 18.0000i 0.610960i
\(869\) 6.00000 6.00000i 0.203536 0.203536i
\(870\) 0 0
\(871\) 6.00000 + 6.00000i 0.203302 + 0.203302i
\(872\) −9.00000 + 9.00000i −0.304778 + 0.304778i
\(873\) 8.00000i 0.270759i
\(874\) −24.0000 24.0000i −0.811812 0.811812i
\(875\) 0 0
\(876\) 2.00000i 0.0675737i
\(877\) −37.0000 37.0000i −1.24940 1.24940i −0.955985 0.293417i \(-0.905208\pi\)
−0.293417 0.955985i \(-0.594792\pi\)
\(878\) −17.0000 17.0000i −0.573722 0.573722i
\(879\) −2.00000 −0.0674583
\(880\) 0 0
\(881\) 12.0000i 0.404290i −0.979356 0.202145i \(-0.935209\pi\)
0.979356 0.202145i \(-0.0647913\pi\)
\(882\) 11.0000i 0.370389i
\(883\) −2.00000 −0.0673054 −0.0336527 0.999434i \(-0.510714\pi\)
−0.0336527 + 0.999434i \(0.510714\pi\)
\(884\) 8.00000i 0.269069i
\(885\) 0 0
\(886\) 11.0000 11.0000i 0.369552 0.369552i
\(887\) −5.00000 + 5.00000i −0.167884 + 0.167884i −0.786048 0.618165i \(-0.787876\pi\)
0.618165 + 0.786048i \(0.287876\pi\)
\(888\) 15.0000 21.0000i 0.503367 0.704714i
\(889\) 54.0000i 1.81110i
\(890\) 0 0
\(891\) 10.0000i 0.335013i
\(892\) 1.00000 1.00000i 0.0334825 0.0334825i
\(893\) 30.0000i 1.00391i
\(894\) −16.0000 16.0000i −0.535120 0.535120i
\(895\) 0 0
\(896\) −9.00000 + 9.00000i −0.300669 + 0.300669i
\(897\) 16.0000 + 16.0000i 0.534224 + 0.534224i
\(898\) 5.00000 5.00000i 0.166852 0.166852i
\(899\) 42.0000 1.40078
\(900\) 0 0
\(901\) −12.0000 + 12.0000i −0.399778 + 0.399778i
\(902\) 0 0
\(903\) −72.0000 −2.39601
\(904\) 12.0000i 0.399114i
\(905\) 0 0
\(906\) 2.00000 + 2.00000i 0.0664455 + 0.0664455i
\(907\) −14.0000 −0.464862 −0.232431 0.972613i \(-0.574668\pi\)
−0.232431 + 0.972613i \(0.574668\pi\)
\(908\) 2.00000 0.0663723
\(909\) 0 0
\(910\) 0 0
\(911\) −11.0000 + 11.0000i −0.364446 + 0.364446i −0.865447 0.501001i \(-0.832965\pi\)
0.501001 + 0.865447i \(0.332965\pi\)
\(912\) 6.00000i 0.198680i
\(913\) 10.0000 + 10.0000i 0.330952 + 0.330952i
\(914\) 32.0000i 1.05847i
\(915\) 0 0
\(916\) 4.00000i 0.132164i
\(917\) 30.0000i 0.990687i
\(918\) −16.0000 16.0000i −0.528079 0.528079i
\(919\) 3.00000 3.00000i 0.0989609 0.0989609i −0.655893 0.754854i \(-0.727708\pi\)
0.754854 + 0.655893i \(0.227708\pi\)
\(920\) 0 0
\(921\) −18.0000 −0.593120
\(922\) 21.0000 + 21.0000i 0.691598 + 0.691598i
\(923\) 16.0000i 0.526646i
\(924\) −12.0000 −0.394771
\(925\) 0 0
\(926\) −40.0000 −1.31448
\(927\) 14.0000i 0.459820i
\(928\) 35.0000 + 35.0000i 1.14893 + 1.14893i
\(929\) −34.0000 −1.11550 −0.557752 0.830008i \(-0.688336\pi\)
−0.557752 + 0.830008i \(0.688336\pi\)
\(930\) 0 0
\(931\) 33.0000 33.0000i 1.08153 1.08153i
\(932\) 1.00000 + 1.00000i 0.0327561 + 0.0327561i
\(933\) 6.00000i 0.196431i
\(934\) 38.0000i 1.24340i
\(935\) 0 0
\(936\) 6.00000i 0.196116i
\(937\) 35.0000 + 35.0000i 1.14340 + 1.14340i 0.987824 + 0.155576i \(0.0497234\pi\)
0.155576 + 0.987824i \(0.450277\pi\)
\(938\) 18.0000i 0.587721i
\(939\) 30.0000 30.0000i 0.979013 0.979013i
\(940\) 0 0
\(941\) −30.0000 −0.977972 −0.488986 0.872292i \(-0.662633\pi\)
−0.488986 + 0.872292i \(0.662633\pi\)
\(942\) −6.00000 −0.195491
\(943\) 0 0
\(944\) 7.00000 + 7.00000i 0.227831 + 0.227831i
\(945\) 0 0
\(946\) 24.0000i 0.780307i
\(947\) 18.0000 0.584921 0.292461 0.956278i \(-0.405526\pi\)
0.292461 + 0.956278i \(0.405526\pi\)
\(948\) 6.00000i 0.194871i
\(949\) −2.00000 + 2.00000i −0.0649227 + 0.0649227i
\(950\) 0 0
\(951\) 34.0000 1.10253
\(952\) 36.0000 36.0000i 1.16677 1.16677i
\(953\) −7.00000 7.00000i −0.226752 0.226752i 0.584582 0.811334i \(-0.301258\pi\)
−0.811334 + 0.584582i \(0.801258\pi\)
\(954\) 3.00000 3.00000i 0.0971286 0.0971286i
\(955\) 0 0
\(956\) −7.00000 7.00000i −0.226396 0.226396i
\(957\) 28.0000i 0.905111i
\(958\) 23.0000 23.0000i 0.743096 0.743096i
\(959\) 42.0000i 1.35625i
\(960\) 0 0
\(961\) 13.0000i 0.419355i
\(962\) 12.0000 2.00000i 0.386896 0.0644826i
\(963\) 3.00000 3.00000i 0.0966736 0.0966736i
\(964\) 1.00000 1.00000i 0.0322078 0.0322078i
\(965\) 0 0
\(966\) 48.0000i 1.54437i
\(967\) −2.00000 −0.0643157 −0.0321578 0.999483i \(-0.510238\pi\)
−0.0321578 + 0.999483i \(0.510238\pi\)
\(968\) 21.0000i 0.674966i
\(969\) 24.0000i 0.770991i
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) −7.00000 7.00000i −0.224525 0.224525i
\(973\) −12.0000 12.0000i −0.384702 0.384702i
\(974\) 2.00000i 0.0640841i
\(975\) 0 0
\(976\) −1.00000 1.00000i −0.0320092 0.0320092i
\(977\) 18.0000i 0.575871i −0.957650 0.287936i \(-0.907031\pi\)
0.957650 0.287936i \(-0.0929689\pi\)
\(978\) 10.0000 10.0000i 0.319765 0.319765i
\(979\) −10.0000 10.0000i −0.319601 0.319601i
\(980\) 0 0
\(981\) 3.00000 3.00000i 0.0957826 0.0957826i
\(982\) 4.00000i 0.127645i
\(983\) −15.0000 15.0000i −0.478426 0.478426i 0.426202 0.904628i \(-0.359851\pi\)
−0.904628 + 0.426202i \(0.859851\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −28.0000 28.0000i −0.891702 0.891702i
\(987\) 30.0000 30.0000i 0.954911 0.954911i
\(988\) 6.00000 6.00000i 0.190885 0.190885i
\(989\) 96.0000 3.05262
\(990\) 0 0
\(991\) 39.0000 + 39.0000i 1.23888 + 1.23888i 0.960461 + 0.278415i \(0.0898090\pi\)
0.278415 + 0.960461i \(0.410191\pi\)
\(992\) −15.0000 + 15.0000i −0.476250 + 0.476250i
\(993\) −14.0000 −0.444277
\(994\) −24.0000 + 24.0000i −0.761234 + 0.761234i
\(995\) 0 0
\(996\) 10.0000 0.316862
\(997\) −28.0000 −0.886769 −0.443384 0.896332i \(-0.646222\pi\)
−0.443384 + 0.896332i \(0.646222\pi\)
\(998\) 27.0000 + 27.0000i 0.854670 + 0.854670i
\(999\) −20.0000 + 28.0000i −0.632772 + 0.885881i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.f.b.882.1 2
5.2 odd 4 185.2.k.b.68.1 yes 2
5.3 odd 4 925.2.k.a.68.1 2
5.4 even 2 185.2.f.a.142.1 yes 2
37.6 odd 4 925.2.k.a.857.1 2
185.43 even 4 inner 925.2.f.b.43.1 2
185.117 even 4 185.2.f.a.43.1 2
185.154 odd 4 185.2.k.b.117.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.f.a.43.1 2 185.117 even 4
185.2.f.a.142.1 yes 2 5.4 even 2
185.2.k.b.68.1 yes 2 5.2 odd 4
185.2.k.b.117.1 yes 2 185.154 odd 4
925.2.f.b.43.1 2 185.43 even 4 inner
925.2.f.b.882.1 2 1.1 even 1 trivial
925.2.k.a.68.1 2 5.3 odd 4
925.2.k.a.857.1 2 37.6 odd 4