Properties

Label 925.2.bb.e.326.8
Level $925$
Weight $2$
Character 925.326
Analytic conductor $7.386$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(151,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.bb (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 326.8
Character \(\chi\) \(=\) 925.326
Dual form 925.2.bb.e.576.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0583632 - 0.160351i) q^{2} +(-0.674605 - 0.245536i) q^{3} +(1.50978 - 1.26686i) q^{4} +0.122504i q^{6} +(0.618951 + 3.51024i) q^{7} +(-0.586820 - 0.338800i) q^{8} +(-1.90333 - 1.59708i) q^{9} +(-2.79800 + 4.84627i) q^{11} +(-1.32957 + 0.483922i) q^{12} +(1.17531 + 1.40068i) q^{13} +(0.526749 - 0.304118i) q^{14} +(0.664401 - 3.76801i) q^{16} +(-4.07242 + 4.85332i) q^{17} +(-0.145010 + 0.398412i) q^{18} +(-0.400455 + 1.10024i) q^{19} +(0.444344 - 2.52000i) q^{21} +(0.940407 + 0.165819i) q^{22} +(-7.19469 + 4.15386i) q^{23} +(0.312684 + 0.372642i) q^{24} +(0.156006 - 0.270210i) q^{26} +(1.96870 + 3.40989i) q^{27} +(5.38146 + 4.51558i) q^{28} +(-2.90414 - 1.67670i) q^{29} -2.55670i q^{31} +(-1.97760 + 0.348703i) q^{32} +(3.07748 - 2.58231i) q^{33} +(1.01592 + 0.369763i) q^{34} -4.89689 q^{36} +(3.27409 - 5.12643i) q^{37} +0.199797 q^{38} +(-0.448951 - 1.23348i) q^{39} +(-0.879400 + 0.737904i) q^{41} +(-0.430019 + 0.0758240i) q^{42} +1.23182i q^{43} +(1.91517 + 10.8615i) q^{44} +(1.08598 + 0.911247i) q^{46} +(2.78479 + 4.82340i) q^{47} +(-1.37339 + 2.37878i) q^{48} +(-5.36086 + 1.95119i) q^{49} +(3.93894 - 2.27415i) q^{51} +(3.54892 + 0.625770i) q^{52} +(1.58638 - 8.99680i) q^{53} +(0.431882 - 0.514697i) q^{54} +(0.826060 - 2.26958i) q^{56} +(0.540298 - 0.643902i) q^{57} +(-0.0993673 + 0.563540i) q^{58} +(9.96639 + 1.75734i) q^{59} +(2.36411 + 2.81744i) q^{61} +(-0.409970 + 0.149217i) q^{62} +(4.42808 - 7.66966i) q^{63} +(-3.65480 - 6.33030i) q^{64} +(-0.593689 - 0.342766i) q^{66} +(1.84077 + 10.4395i) q^{67} +12.4866i q^{68} +(5.87350 - 1.03566i) q^{69} +(6.13971 + 2.23467i) q^{71} +(0.575819 + 1.58205i) q^{72} -6.54940 q^{73} +(-1.01312 - 0.225811i) q^{74} +(0.789250 + 2.16845i) q^{76} +(-18.7434 - 6.82205i) q^{77} +(-0.171589 + 0.143980i) q^{78} +(-14.1537 + 2.49567i) q^{79} +(0.803505 + 4.55690i) q^{81} +(0.169649 + 0.0979466i) q^{82} +(-0.277634 - 0.232963i) q^{83} +(-2.52162 - 4.36758i) q^{84} +(0.197524 - 0.0718927i) q^{86} +(1.54745 + 1.84418i) q^{87} +(3.28384 - 1.89593i) q^{88} +(11.2979 + 1.99213i) q^{89} +(-4.18926 + 4.99256i) q^{91} +(-5.60007 + 15.3861i) q^{92} +(-0.627761 + 1.72476i) q^{93} +(0.610910 - 0.728054i) q^{94} +(1.41971 + 0.250334i) q^{96} +(2.90491 - 1.67715i) q^{97} +(0.625753 + 0.745743i) q^{98} +(13.0654 - 4.75542i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{4} + 6 q^{9} - 30 q^{11} + 36 q^{14} + 18 q^{19} - 24 q^{21} - 96 q^{24} + 48 q^{26} + 18 q^{29} + 54 q^{34} + 24 q^{36} + 36 q^{39} + 72 q^{41} + 84 q^{44} - 18 q^{46} + 6 q^{49} - 18 q^{51}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0583632 0.160351i −0.0412690 0.113386i 0.917346 0.398090i \(-0.130327\pi\)
−0.958615 + 0.284704i \(0.908105\pi\)
\(3\) −0.674605 0.245536i −0.389483 0.141760i 0.139853 0.990172i \(-0.455337\pi\)
−0.529337 + 0.848412i \(0.677559\pi\)
\(4\) 1.50978 1.26686i 0.754891 0.633429i
\(5\) 0 0
\(6\) 0.122504i 0.0500121i
\(7\) 0.618951 + 3.51024i 0.233941 + 1.32675i 0.844832 + 0.535032i \(0.179700\pi\)
−0.610891 + 0.791715i \(0.709188\pi\)
\(8\) −0.586820 0.338800i −0.207472 0.119784i
\(9\) −1.90333 1.59708i −0.634443 0.532361i
\(10\) 0 0
\(11\) −2.79800 + 4.84627i −0.843628 + 1.46121i 0.0431797 + 0.999067i \(0.486251\pi\)
−0.886808 + 0.462139i \(0.847082\pi\)
\(12\) −1.32957 + 0.483922i −0.383813 + 0.139696i
\(13\) 1.17531 + 1.40068i 0.325972 + 0.388478i 0.903995 0.427542i \(-0.140620\pi\)
−0.578024 + 0.816020i \(0.696176\pi\)
\(14\) 0.526749 0.304118i 0.140779 0.0812791i
\(15\) 0 0
\(16\) 0.664401 3.76801i 0.166100 0.942002i
\(17\) −4.07242 + 4.85332i −0.987706 + 1.17710i −0.00351439 + 0.999994i \(0.501119\pi\)
−0.984191 + 0.177108i \(0.943326\pi\)
\(18\) −0.145010 + 0.398412i −0.0341792 + 0.0939067i
\(19\) −0.400455 + 1.10024i −0.0918708 + 0.252413i −0.977114 0.212715i \(-0.931769\pi\)
0.885244 + 0.465128i \(0.153992\pi\)
\(20\) 0 0
\(21\) 0.444344 2.52000i 0.0969639 0.549909i
\(22\) 0.940407 + 0.165819i 0.200495 + 0.0353528i
\(23\) −7.19469 + 4.15386i −1.50020 + 0.866139i −0.500198 + 0.865911i \(0.666739\pi\)
−1.00000 0.000228074i \(0.999927\pi\)
\(24\) 0.312684 + 0.372642i 0.0638263 + 0.0760652i
\(25\) 0 0
\(26\) 0.156006 0.270210i 0.0305953 0.0529926i
\(27\) 1.96870 + 3.40989i 0.378877 + 0.656234i
\(28\) 5.38146 + 4.51558i 1.01700 + 0.853365i
\(29\) −2.90414 1.67670i −0.539285 0.311356i 0.205504 0.978656i \(-0.434117\pi\)
−0.744789 + 0.667300i \(0.767450\pi\)
\(30\) 0 0
\(31\) 2.55670i 0.459196i −0.973286 0.229598i \(-0.926259\pi\)
0.973286 0.229598i \(-0.0737411\pi\)
\(32\) −1.97760 + 0.348703i −0.349593 + 0.0616426i
\(33\) 3.07748 2.58231i 0.535720 0.449523i
\(34\) 1.01592 + 0.369763i 0.174228 + 0.0634138i
\(35\) 0 0
\(36\) −4.89689 −0.816149
\(37\) 3.27409 5.12643i 0.538257 0.842780i
\(38\) 0.199797 0.0324114
\(39\) −0.448951 1.23348i −0.0718898 0.197515i
\(40\) 0 0
\(41\) −0.879400 + 0.737904i −0.137339 + 0.115241i −0.708869 0.705340i \(-0.750794\pi\)
0.571530 + 0.820581i \(0.306350\pi\)
\(42\) −0.430019 + 0.0758240i −0.0663534 + 0.0116999i
\(43\) 1.23182i 0.187850i 0.995579 + 0.0939251i \(0.0299414\pi\)
−0.995579 + 0.0939251i \(0.970059\pi\)
\(44\) 1.91517 + 10.8615i 0.288723 + 1.63743i
\(45\) 0 0
\(46\) 1.08598 + 0.911247i 0.160119 + 0.134356i
\(47\) 2.78479 + 4.82340i 0.406204 + 0.703565i 0.994461 0.105109i \(-0.0335190\pi\)
−0.588257 + 0.808674i \(0.700186\pi\)
\(48\) −1.37339 + 2.37878i −0.198232 + 0.343348i
\(49\) −5.36086 + 1.95119i −0.765837 + 0.278742i
\(50\) 0 0
\(51\) 3.93894 2.27415i 0.551561 0.318444i
\(52\) 3.54892 + 0.625770i 0.492146 + 0.0867787i
\(53\) 1.58638 8.99680i 0.217906 1.23581i −0.657887 0.753117i \(-0.728549\pi\)
0.875792 0.482688i \(-0.160340\pi\)
\(54\) 0.431882 0.514697i 0.0587717 0.0700413i
\(55\) 0 0
\(56\) 0.826060 2.26958i 0.110387 0.303285i
\(57\) 0.540298 0.643902i 0.0715643 0.0852870i
\(58\) −0.0993673 + 0.563540i −0.0130476 + 0.0739965i
\(59\) 9.96639 + 1.75734i 1.29751 + 0.228787i 0.779401 0.626526i \(-0.215524\pi\)
0.518113 + 0.855312i \(0.326635\pi\)
\(60\) 0 0
\(61\) 2.36411 + 2.81744i 0.302693 + 0.360736i 0.895854 0.444348i \(-0.146565\pi\)
−0.593161 + 0.805084i \(0.702120\pi\)
\(62\) −0.409970 + 0.149217i −0.0520662 + 0.0189506i
\(63\) 4.42808 7.66966i 0.557886 0.966287i
\(64\) −3.65480 6.33030i −0.456850 0.791288i
\(65\) 0 0
\(66\) −0.593689 0.342766i −0.0730780 0.0421916i
\(67\) 1.84077 + 10.4395i 0.224886 + 1.27539i 0.862902 + 0.505370i \(0.168644\pi\)
−0.638016 + 0.770023i \(0.720245\pi\)
\(68\) 12.4866i 1.51423i
\(69\) 5.87350 1.03566i 0.707086 0.124678i
\(70\) 0 0
\(71\) 6.13971 + 2.23467i 0.728650 + 0.265207i 0.679593 0.733589i \(-0.262156\pi\)
0.0490566 + 0.998796i \(0.484379\pi\)
\(72\) 0.575819 + 1.58205i 0.0678609 + 0.186446i
\(73\) −6.54940 −0.766549 −0.383275 0.923634i \(-0.625204\pi\)
−0.383275 + 0.923634i \(0.625204\pi\)
\(74\) −1.01312 0.225811i −0.117773 0.0262499i
\(75\) 0 0
\(76\) 0.789250 + 2.16845i 0.0905332 + 0.248738i
\(77\) −18.7434 6.82205i −2.13601 0.777444i
\(78\) −0.171589 + 0.143980i −0.0194286 + 0.0163025i
\(79\) −14.1537 + 2.49567i −1.59241 + 0.280785i −0.898400 0.439179i \(-0.855269\pi\)
−0.694012 + 0.719964i \(0.744158\pi\)
\(80\) 0 0
\(81\) 0.803505 + 4.55690i 0.0892783 + 0.506322i
\(82\) 0.169649 + 0.0979466i 0.0187345 + 0.0108164i
\(83\) −0.277634 0.232963i −0.0304743 0.0255710i 0.627423 0.778678i \(-0.284110\pi\)
−0.657898 + 0.753107i \(0.728554\pi\)
\(84\) −2.52162 4.36758i −0.275131 0.476542i
\(85\) 0 0
\(86\) 0.197524 0.0718927i 0.0212995 0.00775239i
\(87\) 1.54745 + 1.84418i 0.165904 + 0.197717i
\(88\) 3.28384 1.89593i 0.350058 0.202106i
\(89\) 11.2979 + 1.99213i 1.19758 + 0.211165i 0.736650 0.676274i \(-0.236406\pi\)
0.460926 + 0.887439i \(0.347517\pi\)
\(90\) 0 0
\(91\) −4.18926 + 4.99256i −0.439154 + 0.523363i
\(92\) −5.60007 + 15.3861i −0.583848 + 1.60411i
\(93\) −0.627761 + 1.72476i −0.0650958 + 0.178849i
\(94\) 0.610910 0.728054i 0.0630106 0.0750931i
\(95\) 0 0
\(96\) 1.41971 + 0.250334i 0.144899 + 0.0255496i
\(97\) 2.90491 1.67715i 0.294949 0.170289i −0.345223 0.938521i \(-0.612197\pi\)
0.640171 + 0.768232i \(0.278863\pi\)
\(98\) 0.625753 + 0.745743i 0.0632106 + 0.0753315i
\(99\) 13.0654 4.75542i 1.31312 0.477938i
\(100\) 0 0
\(101\) 2.77691 + 4.80974i 0.276313 + 0.478587i 0.970465 0.241240i \(-0.0775542\pi\)
−0.694153 + 0.719828i \(0.744221\pi\)
\(102\) −0.594551 0.498888i −0.0588693 0.0493972i
\(103\) −6.93072 4.00145i −0.682904 0.394275i 0.118044 0.993008i \(-0.462338\pi\)
−0.800948 + 0.598733i \(0.795671\pi\)
\(104\) −0.215143 1.22014i −0.0210966 0.119644i
\(105\) 0 0
\(106\) −1.53524 + 0.270703i −0.149115 + 0.0262930i
\(107\) −2.14007 + 1.79573i −0.206889 + 0.173600i −0.740344 0.672228i \(-0.765338\pi\)
0.533456 + 0.845828i \(0.320893\pi\)
\(108\) 7.29217 + 2.65413i 0.701689 + 0.255394i
\(109\) 4.17259 + 11.4641i 0.399661 + 1.09806i 0.962450 + 0.271459i \(0.0875063\pi\)
−0.562789 + 0.826601i \(0.690272\pi\)
\(110\) 0 0
\(111\) −3.46744 + 2.65441i −0.329115 + 0.251945i
\(112\) 13.6379 1.28866
\(113\) 0.645004 + 1.77213i 0.0606769 + 0.166708i 0.966327 0.257318i \(-0.0828387\pi\)
−0.905650 + 0.424026i \(0.860616\pi\)
\(114\) −0.134784 0.0490574i −0.0126237 0.00459465i
\(115\) 0 0
\(116\) −6.50876 + 1.14767i −0.604323 + 0.106558i
\(117\) 4.54301i 0.420002i
\(118\) −0.299877 1.70069i −0.0276059 0.156561i
\(119\) −19.5569 11.2912i −1.79278 1.03506i
\(120\) 0 0
\(121\) −10.1576 17.5934i −0.923416 1.59940i
\(122\) 0.313803 0.543523i 0.0284104 0.0492082i
\(123\) 0.774429 0.281869i 0.0698280 0.0254153i
\(124\) −3.23897 3.86005i −0.290868 0.346643i
\(125\) 0 0
\(126\) −1.48828 0.262424i −0.132586 0.0233786i
\(127\) 1.49309 8.46771i 0.132490 0.751388i −0.844085 0.536210i \(-0.819856\pi\)
0.976575 0.215178i \(-0.0690332\pi\)
\(128\) −3.38333 + 4.03210i −0.299047 + 0.356391i
\(129\) 0.302455 0.830989i 0.0266297 0.0731645i
\(130\) 0 0
\(131\) −2.93728 + 3.50052i −0.256631 + 0.305841i −0.878942 0.476929i \(-0.841750\pi\)
0.622310 + 0.782771i \(0.286194\pi\)
\(132\) 1.37490 7.79745i 0.119670 0.678681i
\(133\) −4.10998 0.724700i −0.356380 0.0628395i
\(134\) 1.56656 0.904455i 0.135330 0.0781331i
\(135\) 0 0
\(136\) 4.03408 1.46828i 0.345919 0.125904i
\(137\) 3.41597 5.91663i 0.291846 0.505492i −0.682400 0.730979i \(-0.739064\pi\)
0.974246 + 0.225487i \(0.0723973\pi\)
\(138\) −0.508865 0.881380i −0.0433175 0.0750280i
\(139\) −2.54684 2.13705i −0.216020 0.181263i 0.528356 0.849023i \(-0.322809\pi\)
−0.744376 + 0.667760i \(0.767253\pi\)
\(140\) 0 0
\(141\) −0.694315 3.93766i −0.0584719 0.331611i
\(142\) 1.11493i 0.0935632i
\(143\) −10.0766 + 1.77677i −0.842645 + 0.148581i
\(144\) −7.28240 + 6.11066i −0.606866 + 0.509221i
\(145\) 0 0
\(146\) 0.382244 + 1.05021i 0.0316347 + 0.0869157i
\(147\) 4.09555 0.337795
\(148\) −1.55130 11.8876i −0.127516 0.977155i
\(149\) 11.9540 0.979313 0.489656 0.871916i \(-0.337122\pi\)
0.489656 + 0.871916i \(0.337122\pi\)
\(150\) 0 0
\(151\) 20.4486 + 7.44269i 1.66408 + 0.605677i 0.990997 0.133885i \(-0.0427453\pi\)
0.673088 + 0.739562i \(0.264968\pi\)
\(152\) 0.607758 0.509969i 0.0492956 0.0413640i
\(153\) 15.5023 2.73347i 1.25329 0.220988i
\(154\) 3.40369i 0.274277i
\(155\) 0 0
\(156\) −2.24047 1.29353i −0.179381 0.103566i
\(157\) −11.8833 9.97130i −0.948393 0.795796i 0.0306333 0.999531i \(-0.490248\pi\)
−0.979026 + 0.203735i \(0.934692\pi\)
\(158\) 1.22624 + 2.12390i 0.0975542 + 0.168969i
\(159\) −3.27922 + 5.67977i −0.260059 + 0.450435i
\(160\) 0 0
\(161\) −19.0342 22.6841i −1.50011 1.78776i
\(162\) 0.683811 0.394798i 0.0537252 0.0310183i
\(163\) −8.68536 1.53146i −0.680290 0.119954i −0.177184 0.984178i \(-0.556699\pi\)
−0.503107 + 0.864224i \(0.667810\pi\)
\(164\) −0.392883 + 2.22815i −0.0306790 + 0.173989i
\(165\) 0 0
\(166\) −0.0211523 + 0.0581155i −0.00164174 + 0.00451064i
\(167\) 3.51894 9.66821i 0.272304 0.748149i −0.725875 0.687826i \(-0.758565\pi\)
0.998179 0.0603221i \(-0.0192128\pi\)
\(168\) −1.11453 + 1.32824i −0.0859877 + 0.102476i
\(169\) 1.67688 9.51005i 0.128991 0.731542i
\(170\) 0 0
\(171\) 2.51938 1.45456i 0.192662 0.111233i
\(172\) 1.56054 + 1.85977i 0.118990 + 0.141807i
\(173\) −14.0346 + 5.10817i −1.06703 + 0.388367i −0.815065 0.579369i \(-0.803299\pi\)
−0.251965 + 0.967736i \(0.581077\pi\)
\(174\) 0.205403 0.355769i 0.0155716 0.0269708i
\(175\) 0 0
\(176\) 16.4018 + 13.7627i 1.23633 + 1.03741i
\(177\) −6.29188 3.63262i −0.472927 0.273044i
\(178\) −0.339941 1.92790i −0.0254797 0.144502i
\(179\) 4.15086i 0.310250i 0.987895 + 0.155125i \(0.0495780\pi\)
−0.987895 + 0.155125i \(0.950422\pi\)
\(180\) 0 0
\(181\) 10.5148 8.82295i 0.781558 0.655805i −0.162083 0.986777i \(-0.551821\pi\)
0.943640 + 0.330972i \(0.107377\pi\)
\(182\) 1.04506 + 0.380372i 0.0774652 + 0.0281950i
\(183\) −0.903057 2.48113i −0.0667559 0.183410i
\(184\) 5.62932 0.414999
\(185\) 0 0
\(186\) 0.313206 0.0229654
\(187\) −12.1259 33.3156i −0.886733 2.43628i
\(188\) 10.3150 + 3.75435i 0.752298 + 0.273814i
\(189\) −10.7510 + 9.02118i −0.782022 + 0.656194i
\(190\) 0 0
\(191\) 1.78215i 0.128952i 0.997919 + 0.0644759i \(0.0205376\pi\)
−0.997919 + 0.0644759i \(0.979462\pi\)
\(192\) 0.911229 + 5.16784i 0.0657623 + 0.372957i
\(193\) 12.8826 + 7.43780i 0.927313 + 0.535384i 0.885961 0.463760i \(-0.153500\pi\)
0.0413522 + 0.999145i \(0.486833\pi\)
\(194\) −0.438473 0.367922i −0.0314805 0.0264153i
\(195\) 0 0
\(196\) −5.62184 + 9.73732i −0.401560 + 0.695523i
\(197\) −12.3903 + 4.50971i −0.882775 + 0.321304i −0.743329 0.668926i \(-0.766754\pi\)
−0.139446 + 0.990230i \(0.544532\pi\)
\(198\) −1.52508 1.81752i −0.108383 0.129165i
\(199\) 6.44509 3.72107i 0.456880 0.263780i −0.253851 0.967243i \(-0.581697\pi\)
0.710731 + 0.703463i \(0.248364\pi\)
\(200\) 0 0
\(201\) 1.32149 7.49454i 0.0932108 0.528624i
\(202\) 0.609180 0.725993i 0.0428618 0.0510807i
\(203\) 4.08812 11.2320i 0.286930 0.788333i
\(204\) 3.06592 8.42354i 0.214657 0.589766i
\(205\) 0 0
\(206\) −0.237140 + 1.34489i −0.0165223 + 0.0937028i
\(207\) 20.3279 + 3.58436i 1.41289 + 0.249130i
\(208\) 6.05864 3.49796i 0.420091 0.242540i
\(209\) −4.21160 5.01919i −0.291323 0.347185i
\(210\) 0 0
\(211\) 0.649216 1.12448i 0.0446939 0.0774121i −0.842813 0.538206i \(-0.819102\pi\)
0.887507 + 0.460794i \(0.152435\pi\)
\(212\) −9.00258 15.5929i −0.618300 1.07093i
\(213\) −3.59319 3.01504i −0.246201 0.206587i
\(214\) 0.412850 + 0.238359i 0.0282218 + 0.0162939i
\(215\) 0 0
\(216\) 2.66799i 0.181534i
\(217\) 8.97462 1.58247i 0.609237 0.107425i
\(218\) 1.59476 1.33816i 0.108011 0.0906317i
\(219\) 4.41826 + 1.60811i 0.298558 + 0.108666i
\(220\) 0 0
\(221\) −11.5843 −0.779242
\(222\) 0.628009 + 0.401090i 0.0421492 + 0.0269194i
\(223\) 13.6327 0.912914 0.456457 0.889746i \(-0.349118\pi\)
0.456457 + 0.889746i \(0.349118\pi\)
\(224\) −2.44807 6.72601i −0.163568 0.449400i
\(225\) 0 0
\(226\) 0.246520 0.206855i 0.0163983 0.0137598i
\(227\) 29.3267 5.17109i 1.94648 0.343217i 0.946706 0.322099i \(-0.104389\pi\)
0.999777 0.0211181i \(-0.00672260\pi\)
\(228\) 1.65663i 0.109713i
\(229\) 2.55052 + 14.4647i 0.168543 + 0.955856i 0.945336 + 0.326099i \(0.105734\pi\)
−0.776792 + 0.629757i \(0.783155\pi\)
\(230\) 0 0
\(231\) 10.9693 + 9.20437i 0.721730 + 0.605603i
\(232\) 1.13614 + 1.96785i 0.0745910 + 0.129195i
\(233\) −7.00728 + 12.1370i −0.459062 + 0.795119i −0.998912 0.0466428i \(-0.985148\pi\)
0.539850 + 0.841761i \(0.318481\pi\)
\(234\) −0.728479 + 0.265145i −0.0476221 + 0.0173330i
\(235\) 0 0
\(236\) 17.2734 9.97279i 1.12440 0.649174i
\(237\) 10.1609 + 1.79164i 0.660022 + 0.116380i
\(238\) −0.669156 + 3.79497i −0.0433750 + 0.245992i
\(239\) −10.2597 + 12.2270i −0.663643 + 0.790899i −0.987904 0.155068i \(-0.950440\pi\)
0.324260 + 0.945968i \(0.394885\pi\)
\(240\) 0 0
\(241\) −7.57694 + 20.8175i −0.488074 + 1.34097i 0.414349 + 0.910118i \(0.364009\pi\)
−0.902422 + 0.430853i \(0.858213\pi\)
\(242\) −2.22830 + 2.65559i −0.143241 + 0.170708i
\(243\) 2.62801 14.9042i 0.168587 0.956102i
\(244\) 7.13858 + 1.25872i 0.457001 + 0.0805816i
\(245\) 0 0
\(246\) −0.0903963 0.107730i −0.00576346 0.00686862i
\(247\) −2.01174 + 0.732214i −0.128004 + 0.0465897i
\(248\) −0.866210 + 1.50032i −0.0550044 + 0.0952703i
\(249\) 0.130093 + 0.225327i 0.00824428 + 0.0142795i
\(250\) 0 0
\(251\) −15.0176 8.67039i −0.947900 0.547270i −0.0554721 0.998460i \(-0.517666\pi\)
−0.892428 + 0.451190i \(0.851000\pi\)
\(252\) −3.03093 17.1893i −0.190931 1.08282i
\(253\) 46.4899i 2.92280i
\(254\) −1.44495 + 0.254784i −0.0906643 + 0.0159866i
\(255\) 0 0
\(256\) −12.8935 4.69287i −0.805846 0.293304i
\(257\) −4.04907 11.1247i −0.252574 0.693942i −0.999576 0.0291200i \(-0.990730\pi\)
0.747002 0.664822i \(-0.231493\pi\)
\(258\) −0.150903 −0.00939479
\(259\) 20.0215 + 8.31985i 1.24408 + 0.516970i
\(260\) 0 0
\(261\) 2.84969 + 7.82947i 0.176392 + 0.484632i
\(262\) 0.732742 + 0.266696i 0.0452689 + 0.0164765i
\(263\) 4.40775 3.69854i 0.271793 0.228062i −0.496696 0.867925i \(-0.665453\pi\)
0.768489 + 0.639863i \(0.221009\pi\)
\(264\) −2.68081 + 0.472699i −0.164993 + 0.0290926i
\(265\) 0 0
\(266\) 0.123665 + 0.701337i 0.00758236 + 0.0430017i
\(267\) −7.13249 4.11794i −0.436501 0.252014i
\(268\) 16.0046 + 13.4294i 0.977636 + 0.820334i
\(269\) −14.2604 24.6997i −0.869471 1.50597i −0.862538 0.505993i \(-0.831126\pi\)
−0.00693373 0.999976i \(-0.502207\pi\)
\(270\) 0 0
\(271\) −12.0165 + 4.37366i −0.729953 + 0.265681i −0.680145 0.733078i \(-0.738083\pi\)
−0.0498079 + 0.998759i \(0.515861\pi\)
\(272\) 15.5816 + 18.5694i 0.944774 + 1.12594i
\(273\) 4.05195 2.33939i 0.245235 0.141587i
\(274\) −1.14811 0.202442i −0.0693597 0.0122300i
\(275\) 0 0
\(276\) 7.55568 9.00450i 0.454798 0.542007i
\(277\) −4.75363 + 13.0605i −0.285618 + 0.784729i 0.711048 + 0.703143i \(0.248221\pi\)
−0.996666 + 0.0815860i \(0.974001\pi\)
\(278\) −0.194038 + 0.533115i −0.0116376 + 0.0319741i
\(279\) −4.08325 + 4.86623i −0.244458 + 0.291334i
\(280\) 0 0
\(281\) 6.16133 + 1.08641i 0.367554 + 0.0648097i 0.354375 0.935103i \(-0.384694\pi\)
0.0131793 + 0.999913i \(0.495805\pi\)
\(282\) −0.590887 + 0.341148i −0.0351868 + 0.0203151i
\(283\) 7.33500 + 8.74151i 0.436021 + 0.519629i 0.938649 0.344873i \(-0.112078\pi\)
−0.502629 + 0.864502i \(0.667634\pi\)
\(284\) 12.1006 4.40427i 0.718041 0.261346i
\(285\) 0 0
\(286\) 0.873008 + 1.51209i 0.0516221 + 0.0894120i
\(287\) −3.13453 2.63018i −0.185025 0.155255i
\(288\) 4.32092 + 2.49469i 0.254613 + 0.147001i
\(289\) −4.01809 22.7877i −0.236358 1.34045i
\(290\) 0 0
\(291\) −2.37146 + 0.418153i −0.139018 + 0.0245126i
\(292\) −9.88817 + 8.29716i −0.578661 + 0.485555i
\(293\) −20.4058 7.42711i −1.19212 0.433896i −0.331653 0.943401i \(-0.607606\pi\)
−0.860468 + 0.509505i \(0.829829\pi\)
\(294\) −0.239029 0.656727i −0.0139405 0.0383011i
\(295\) 0 0
\(296\) −3.65814 + 1.89903i −0.212625 + 0.110379i
\(297\) −22.0337 −1.27853
\(298\) −0.697675 1.91685i −0.0404152 0.111040i
\(299\) −14.2742 5.19538i −0.825498 0.300457i
\(300\) 0 0
\(301\) −4.32397 + 0.762433i −0.249230 + 0.0439459i
\(302\) 3.71334i 0.213679i
\(303\) −0.692349 3.92651i −0.0397744 0.225572i
\(304\) 3.87966 + 2.23992i 0.222514 + 0.128468i
\(305\) 0 0
\(306\) −1.34308 2.32628i −0.0767787 0.132985i
\(307\) −3.51879 + 6.09472i −0.200828 + 0.347844i −0.948795 0.315891i \(-0.897697\pi\)
0.747968 + 0.663735i \(0.231030\pi\)
\(308\) −36.9410 + 13.4454i −2.10491 + 0.766125i
\(309\) 3.69300 + 4.40114i 0.210087 + 0.250372i
\(310\) 0 0
\(311\) −13.3911 2.36122i −0.759342 0.133892i −0.219446 0.975625i \(-0.570425\pi\)
−0.539895 + 0.841732i \(0.681536\pi\)
\(312\) −0.154451 + 0.875937i −0.00874409 + 0.0495902i
\(313\) −0.0729772 + 0.0869709i −0.00412492 + 0.00491588i −0.768103 0.640326i \(-0.778799\pi\)
0.763978 + 0.645242i \(0.223244\pi\)
\(314\) −0.905363 + 2.48747i −0.0510926 + 0.140376i
\(315\) 0 0
\(316\) −18.2073 + 21.6986i −1.02424 + 1.22064i
\(317\) −0.480414 + 2.72456i −0.0269828 + 0.153027i −0.995322 0.0966099i \(-0.969200\pi\)
0.968340 + 0.249637i \(0.0803112\pi\)
\(318\) 1.10214 + 0.194338i 0.0618052 + 0.0108979i
\(319\) 16.2515 9.38283i 0.909911 0.525337i
\(320\) 0 0
\(321\) 1.88462 0.685946i 0.105189 0.0382858i
\(322\) −2.52653 + 4.37608i −0.140798 + 0.243869i
\(323\) −3.70900 6.42418i −0.206374 0.357451i
\(324\) 6.98606 + 5.86200i 0.388115 + 0.325667i
\(325\) 0 0
\(326\) 0.261333 + 1.48209i 0.0144739 + 0.0820855i
\(327\) 8.75825i 0.484332i
\(328\) 0.766051 0.135075i 0.0422981 0.00745830i
\(329\) −15.2077 + 12.7607i −0.838425 + 0.703522i
\(330\) 0 0
\(331\) −1.86733 5.13046i −0.102638 0.281996i 0.877735 0.479146i \(-0.159054\pi\)
−0.980373 + 0.197150i \(0.936831\pi\)
\(332\) −0.714298 −0.0392022
\(333\) −14.4190 + 4.52829i −0.790157 + 0.248149i
\(334\) −1.75569 −0.0960670
\(335\) 0 0
\(336\) −9.20016 3.34859i −0.501910 0.182680i
\(337\) −7.77558 + 6.52449i −0.423563 + 0.355411i −0.829517 0.558482i \(-0.811384\pi\)
0.405954 + 0.913894i \(0.366939\pi\)
\(338\) −1.62282 + 0.286147i −0.0882697 + 0.0155643i
\(339\) 1.35386i 0.0735317i
\(340\) 0 0
\(341\) 12.3904 + 7.15363i 0.670980 + 0.387391i
\(342\) −0.380280 0.319093i −0.0205632 0.0172546i
\(343\) 2.30812 + 3.99777i 0.124627 + 0.215860i
\(344\) 0.417340 0.722854i 0.0225015 0.0389737i
\(345\) 0 0
\(346\) 1.63821 + 1.95234i 0.0880705 + 0.104958i
\(347\) −19.6945 + 11.3707i −1.05726 + 0.610409i −0.924673 0.380763i \(-0.875661\pi\)
−0.132586 + 0.991171i \(0.542328\pi\)
\(348\) 4.67264 + 0.823912i 0.250480 + 0.0441663i
\(349\) −4.05073 + 22.9728i −0.216830 + 1.22971i 0.660871 + 0.750499i \(0.270187\pi\)
−0.877702 + 0.479207i \(0.840924\pi\)
\(350\) 0 0
\(351\) −2.46233 + 6.76519i −0.131429 + 0.361099i
\(352\) 3.84339 10.5596i 0.204854 0.562831i
\(353\) −12.9672 + 15.4537i −0.690176 + 0.822520i −0.991377 0.131041i \(-0.958168\pi\)
0.301201 + 0.953561i \(0.402613\pi\)
\(354\) −0.215282 + 1.22092i −0.0114421 + 0.0648914i
\(355\) 0 0
\(356\) 19.5811 11.3052i 1.03780 0.599173i
\(357\) 10.4208 + 12.4190i 0.551528 + 0.657285i
\(358\) 0.665596 0.242257i 0.0351778 0.0128037i
\(359\) −1.39032 + 2.40811i −0.0733784 + 0.127095i −0.900380 0.435105i \(-0.856711\pi\)
0.827002 + 0.562200i \(0.190045\pi\)
\(360\) 0 0
\(361\) 13.5047 + 11.3318i 0.710772 + 0.596409i
\(362\) −2.02845 1.17113i −0.106613 0.0615530i
\(363\) 2.53253 + 14.3627i 0.132923 + 0.753845i
\(364\) 12.8449i 0.673255i
\(365\) 0 0
\(366\) −0.345148 + 0.289613i −0.0180411 + 0.0151383i
\(367\) 30.7438 + 11.1898i 1.60481 + 0.584104i 0.980404 0.196995i \(-0.0631184\pi\)
0.624407 + 0.781099i \(0.285341\pi\)
\(368\) 10.8716 + 29.8695i 0.566722 + 1.55705i
\(369\) 2.85228 0.148484
\(370\) 0 0
\(371\) 32.5628 1.69058
\(372\) 1.23724 + 3.39930i 0.0641480 + 0.176245i
\(373\) 9.95135 + 3.62199i 0.515261 + 0.187540i 0.586546 0.809916i \(-0.300488\pi\)
−0.0712842 + 0.997456i \(0.522710\pi\)
\(374\) −4.63450 + 3.88881i −0.239644 + 0.201085i
\(375\) 0 0
\(376\) 3.77395i 0.194627i
\(377\) −1.06473 6.03840i −0.0548365 0.310993i
\(378\) 2.07402 + 1.19744i 0.106676 + 0.0615896i
\(379\) −4.77502 4.00671i −0.245276 0.205811i 0.511859 0.859070i \(-0.328957\pi\)
−0.757135 + 0.653258i \(0.773402\pi\)
\(380\) 0 0
\(381\) −3.08637 + 5.34575i −0.158120 + 0.273871i
\(382\) 0.285770 0.104012i 0.0146213 0.00532171i
\(383\) −4.56694 5.44267i −0.233360 0.278108i 0.636638 0.771163i \(-0.280325\pi\)
−0.869998 + 0.493055i \(0.835880\pi\)
\(384\) 3.27244 1.88934i 0.166996 0.0964152i
\(385\) 0 0
\(386\) 0.440790 2.49984i 0.0224356 0.127239i
\(387\) 1.96731 2.34455i 0.100004 0.119180i
\(388\) 2.26107 6.21223i 0.114788 0.315378i
\(389\) −2.81925 + 7.74584i −0.142942 + 0.392730i −0.990418 0.138104i \(-0.955899\pi\)
0.847476 + 0.530834i \(0.178121\pi\)
\(390\) 0 0
\(391\) 9.13980 51.8344i 0.462219 2.62138i
\(392\) 3.80692 + 0.671263i 0.192279 + 0.0339039i
\(393\) 2.84101 1.64026i 0.143310 0.0827400i
\(394\) 1.44628 + 1.72361i 0.0728624 + 0.0868340i
\(395\) 0 0
\(396\) 13.7015 23.7317i 0.688526 1.19256i
\(397\) −4.07183 7.05262i −0.204360 0.353961i 0.745569 0.666428i \(-0.232178\pi\)
−0.949928 + 0.312467i \(0.898844\pi\)
\(398\) −0.972835 0.816305i −0.0487638 0.0409177i
\(399\) 2.59467 + 1.49803i 0.129896 + 0.0749955i
\(400\) 0 0
\(401\) 0.784302i 0.0391662i −0.999808 0.0195831i \(-0.993766\pi\)
0.999808 0.0195831i \(-0.00623389\pi\)
\(402\) −1.27889 + 0.225502i −0.0637851 + 0.0112470i
\(403\) 3.58110 3.00490i 0.178387 0.149685i
\(404\) 10.2858 + 3.74372i 0.511737 + 0.186257i
\(405\) 0 0
\(406\) −2.03967 −0.101227
\(407\) 15.6832 + 30.2109i 0.777387 + 1.49750i
\(408\) −3.08193 −0.152578
\(409\) −11.6764 32.0806i −0.577359 1.58628i −0.792614 0.609724i \(-0.791280\pi\)
0.215254 0.976558i \(-0.430942\pi\)
\(410\) 0 0
\(411\) −3.75717 + 3.15264i −0.185328 + 0.155508i
\(412\) −15.5332 + 2.73891i −0.765264 + 0.134937i
\(413\) 36.0722i 1.77499i
\(414\) −0.611644 3.46881i −0.0300607 0.170483i
\(415\) 0 0
\(416\) −2.81270 2.36014i −0.137904 0.115715i
\(417\) 1.19339 + 2.06701i 0.0584405 + 0.101222i
\(418\) −0.559032 + 0.968272i −0.0273432 + 0.0473597i
\(419\) 20.4064 7.42733i 0.996920 0.362849i 0.208524 0.978017i \(-0.433134\pi\)
0.788396 + 0.615168i \(0.210912\pi\)
\(420\) 0 0
\(421\) −23.9644 + 13.8359i −1.16795 + 0.674318i −0.953197 0.302350i \(-0.902229\pi\)
−0.214756 + 0.976668i \(0.568896\pi\)
\(422\) −0.218202 0.0384748i −0.0106219 0.00187293i
\(423\) 2.40300 13.6281i 0.116838 0.662619i
\(424\) −3.97904 + 4.74203i −0.193239 + 0.230293i
\(425\) 0 0
\(426\) −0.273757 + 0.752140i −0.0132636 + 0.0364413i
\(427\) −8.42662 + 10.0424i −0.407793 + 0.485988i
\(428\) −0.956104 + 5.42233i −0.0462150 + 0.262098i
\(429\) 7.23396 + 1.27554i 0.349259 + 0.0615838i
\(430\) 0 0
\(431\) 2.12509 + 2.53258i 0.102362 + 0.121990i 0.814793 0.579752i \(-0.196850\pi\)
−0.712431 + 0.701742i \(0.752406\pi\)
\(432\) 14.1565 5.15255i 0.681106 0.247902i
\(433\) −8.03371 + 13.9148i −0.386076 + 0.668702i −0.991918 0.126882i \(-0.959503\pi\)
0.605842 + 0.795585i \(0.292836\pi\)
\(434\) −0.777538 1.34674i −0.0373230 0.0646454i
\(435\) 0 0
\(436\) 20.8231 + 12.0222i 0.997244 + 0.575759i
\(437\) −1.68910 9.57934i −0.0808004 0.458242i
\(438\) 0.802329i 0.0383368i
\(439\) 23.5611 4.15446i 1.12451 0.198282i 0.419690 0.907667i \(-0.362139\pi\)
0.704820 + 0.709386i \(0.251028\pi\)
\(440\) 0 0
\(441\) 13.3197 + 4.84797i 0.634271 + 0.230856i
\(442\) 0.676094 + 1.85755i 0.0321585 + 0.0883548i
\(443\) 1.64369 0.0780942 0.0390471 0.999237i \(-0.487568\pi\)
0.0390471 + 0.999237i \(0.487568\pi\)
\(444\) −1.87233 + 8.40034i −0.0888566 + 0.398662i
\(445\) 0 0
\(446\) −0.795648 2.18602i −0.0376750 0.103511i
\(447\) −8.06425 2.93515i −0.381426 0.138828i
\(448\) 19.9588 16.7474i 0.942962 0.791239i
\(449\) 19.6132 3.45834i 0.925606 0.163209i 0.309524 0.950892i \(-0.399830\pi\)
0.616082 + 0.787682i \(0.288719\pi\)
\(450\) 0 0
\(451\) −1.11553 6.32646i −0.0525281 0.297902i
\(452\) 3.21886 + 1.85841i 0.151402 + 0.0874122i
\(453\) −11.9673 10.0417i −0.562272 0.471802i
\(454\) −2.54079 4.40078i −0.119245 0.206539i
\(455\) 0 0
\(456\) −0.535212 + 0.194801i −0.0250636 + 0.00912240i
\(457\) 8.23792 + 9.81757i 0.385354 + 0.459247i 0.923496 0.383607i \(-0.125318\pi\)
−0.538143 + 0.842854i \(0.680874\pi\)
\(458\) 2.17058 1.25319i 0.101425 0.0585576i
\(459\) −24.5667 4.33177i −1.14667 0.202190i
\(460\) 0 0
\(461\) −14.6976 + 17.5159i −0.684535 + 0.815797i −0.990683 0.136187i \(-0.956515\pi\)
0.306148 + 0.951984i \(0.400960\pi\)
\(462\) 0.835729 2.29615i 0.0388816 0.106826i
\(463\) −3.90392 + 10.7259i −0.181430 + 0.498476i −0.996752 0.0805325i \(-0.974338\pi\)
0.815322 + 0.579008i \(0.196560\pi\)
\(464\) −8.24735 + 9.82880i −0.382873 + 0.456291i
\(465\) 0 0
\(466\) 2.35515 + 0.415276i 0.109100 + 0.0192373i
\(467\) 12.3972 7.15751i 0.573673 0.331210i −0.184942 0.982749i \(-0.559210\pi\)
0.758615 + 0.651539i \(0.225876\pi\)
\(468\) −5.75535 6.85896i −0.266041 0.317056i
\(469\) −35.5060 + 12.9231i −1.63951 + 0.596734i
\(470\) 0 0
\(471\) 5.56824 + 9.64447i 0.256571 + 0.444394i
\(472\) −5.25308 4.40786i −0.241793 0.202888i
\(473\) −5.96972 3.44662i −0.274488 0.158476i
\(474\) −0.305730 1.73388i −0.0140427 0.0796398i
\(475\) 0 0
\(476\) −43.8311 + 7.72860i −2.00899 + 0.354240i
\(477\) −17.3880 + 14.5903i −0.796143 + 0.668044i
\(478\) 2.55941 + 0.931548i 0.117064 + 0.0426080i
\(479\) 1.55534 + 4.27327i 0.0710654 + 0.195251i 0.970140 0.242544i \(-0.0779819\pi\)
−0.899075 + 0.437795i \(0.855760\pi\)
\(480\) 0 0
\(481\) 11.0285 1.43919i 0.502858 0.0656214i
\(482\) 3.78033 0.172189
\(483\) 7.27081 + 19.9764i 0.330833 + 0.908957i
\(484\) −37.6241 13.6941i −1.71019 0.622457i
\(485\) 0 0
\(486\) −2.54328 + 0.448449i −0.115366 + 0.0203421i
\(487\) 21.4485i 0.971926i 0.873979 + 0.485963i \(0.161531\pi\)
−0.873979 + 0.485963i \(0.838469\pi\)
\(488\) −0.432757 2.45429i −0.0195900 0.111100i
\(489\) 5.48316 + 3.16570i 0.247957 + 0.143158i
\(490\) 0 0
\(491\) −0.812860 1.40792i −0.0366839 0.0635383i 0.847101 0.531433i \(-0.178346\pi\)
−0.883784 + 0.467894i \(0.845013\pi\)
\(492\) 0.812132 1.40665i 0.0366137 0.0634168i
\(493\) 19.9644 7.26646i 0.899152 0.327265i
\(494\) 0.234823 + 0.279851i 0.0105652 + 0.0125911i
\(495\) 0 0
\(496\) −9.63365 1.69867i −0.432564 0.0762726i
\(497\) −4.04407 + 22.9350i −0.181401 + 1.02878i
\(498\) 0.0285389 0.0340113i 0.00127886 0.00152408i
\(499\) −0.220549 + 0.605952i −0.00987311 + 0.0271262i −0.944531 0.328421i \(-0.893483\pi\)
0.934658 + 0.355548i \(0.115706\pi\)
\(500\) 0 0
\(501\) −4.74779 + 5.65820i −0.212116 + 0.252790i
\(502\) −0.513838 + 2.91412i −0.0229337 + 0.130063i
\(503\) 5.97480 + 1.05352i 0.266403 + 0.0469741i 0.305254 0.952271i \(-0.401259\pi\)
−0.0388508 + 0.999245i \(0.512370\pi\)
\(504\) −5.19697 + 3.00047i −0.231491 + 0.133652i
\(505\) 0 0
\(506\) −7.45473 + 2.71330i −0.331403 + 0.120621i
\(507\) −3.46629 + 6.00379i −0.153943 + 0.266638i
\(508\) −8.47315 14.6759i −0.375935 0.651139i
\(509\) 20.6005 + 17.2859i 0.913100 + 0.766182i 0.972706 0.232040i \(-0.0745399\pi\)
−0.0596059 + 0.998222i \(0.518984\pi\)
\(510\) 0 0
\(511\) −4.05376 22.9900i −0.179328 1.01702i
\(512\) 12.8685i 0.568711i
\(513\) −4.54009 + 0.800540i −0.200450 + 0.0353447i
\(514\) −1.54755 + 1.29855i −0.0682596 + 0.0572766i
\(515\) 0 0
\(516\) −0.596104 1.63778i −0.0262420 0.0720993i
\(517\) −31.1674 −1.37074
\(518\) 0.165580 3.69605i 0.00727519 0.162395i
\(519\) 10.7220 0.470646
\(520\) 0 0
\(521\) 12.4894 + 4.54577i 0.547171 + 0.199154i 0.600789 0.799408i \(-0.294853\pi\)
−0.0536184 + 0.998562i \(0.517075\pi\)
\(522\) 1.08915 0.913905i 0.0476708 0.0400005i
\(523\) 20.0195 3.52997i 0.875391 0.154355i 0.282140 0.959373i \(-0.408956\pi\)
0.593250 + 0.805018i \(0.297845\pi\)
\(524\) 9.00614i 0.393435i
\(525\) 0 0
\(526\) −0.850316 0.490930i −0.0370755 0.0214056i
\(527\) 12.4084 + 10.4119i 0.540521 + 0.453551i
\(528\) −7.68548 13.3116i −0.334468 0.579315i
\(529\) 23.0091 39.8529i 1.00039 1.73273i
\(530\) 0 0
\(531\) −16.1627 19.2620i −0.701401 0.835898i
\(532\) −7.12327 + 4.11262i −0.308833 + 0.178305i
\(533\) −2.06713 0.364491i −0.0895373 0.0157878i
\(534\) −0.244044 + 1.38404i −0.0105608 + 0.0598933i
\(535\) 0 0
\(536\) 2.45672 6.74978i 0.106114 0.291546i
\(537\) 1.01919 2.80019i 0.0439811 0.120837i
\(538\) −3.12835 + 3.72823i −0.134873 + 0.160735i
\(539\) 5.54365 31.4396i 0.238782 1.35420i
\(540\) 0 0
\(541\) −1.25114 + 0.722345i −0.0537906 + 0.0310560i −0.526654 0.850080i \(-0.676554\pi\)
0.472864 + 0.881136i \(0.343220\pi\)
\(542\) 1.40265 + 1.67161i 0.0602488 + 0.0718017i
\(543\) −9.25968 + 3.37025i −0.397371 + 0.144631i
\(544\) 6.36122 11.0180i 0.272735 0.472391i
\(545\) 0 0
\(546\) −0.611610 0.513201i −0.0261745 0.0219630i
\(547\) 24.1863 + 13.9639i 1.03413 + 0.597055i 0.918165 0.396198i \(-0.129671\pi\)
0.115965 + 0.993253i \(0.463004\pi\)
\(548\) −2.33816 13.2604i −0.0998813 0.566455i
\(549\) 9.13819i 0.390008i
\(550\) 0 0
\(551\) 3.00776 2.52381i 0.128135 0.107518i
\(552\) −3.79756 1.38220i −0.161635 0.0588304i
\(553\) −17.5208 48.1381i −0.745061 2.04704i
\(554\) 2.37171 0.100764
\(555\) 0 0
\(556\) −6.55252 −0.277889
\(557\) 6.41452 + 17.6238i 0.271792 + 0.746742i 0.998228 + 0.0595080i \(0.0189532\pi\)
−0.726436 + 0.687234i \(0.758825\pi\)
\(558\) 1.01862 + 0.370747i 0.0431216 + 0.0156950i
\(559\) −1.72538 + 1.44776i −0.0729757 + 0.0612338i
\(560\) 0 0
\(561\) 25.4522i 1.07459i
\(562\) −0.185388 1.05138i −0.00782010 0.0443500i
\(563\) 23.2239 + 13.4083i 0.978771 + 0.565094i 0.901899 0.431947i \(-0.142173\pi\)
0.0768721 + 0.997041i \(0.475507\pi\)
\(564\) −6.03672 5.06541i −0.254192 0.213292i
\(565\) 0 0
\(566\) 0.973621 1.68636i 0.0409243 0.0708830i
\(567\) −15.4985 + 5.64099i −0.650876 + 0.236899i
\(568\) −2.84580 3.39149i −0.119407 0.142304i
\(569\) −10.2253 + 5.90356i −0.428665 + 0.247490i −0.698778 0.715339i \(-0.746272\pi\)
0.270113 + 0.962829i \(0.412939\pi\)
\(570\) 0 0
\(571\) −1.37023 + 7.77099i −0.0573425 + 0.325206i −0.999962 0.00866199i \(-0.997243\pi\)
0.942620 + 0.333868i \(0.108354\pi\)
\(572\) −12.9625 + 15.4481i −0.541990 + 0.645918i
\(573\) 0.437582 1.20225i 0.0182803 0.0502246i
\(574\) −0.238812 + 0.656132i −0.00996784 + 0.0273864i
\(575\) 0 0
\(576\) −3.15373 + 17.8857i −0.131405 + 0.745236i
\(577\) −8.57004 1.51113i −0.356776 0.0629092i −0.00761221 0.999971i \(-0.502423\pi\)
−0.349163 + 0.937062i \(0.613534\pi\)
\(578\) −3.41953 + 1.97427i −0.142234 + 0.0821187i
\(579\) −6.86445 8.18073i −0.285277 0.339980i
\(580\) 0 0
\(581\) 0.645914 1.11876i 0.0267970 0.0464138i
\(582\) 0.205458 + 0.355863i 0.00851649 + 0.0147510i
\(583\) 39.1623 + 32.8610i 1.62193 + 1.36096i
\(584\) 3.84332 + 2.21894i 0.159038 + 0.0918204i
\(585\) 0 0
\(586\) 3.70557i 0.153076i
\(587\) −7.74442 + 1.36555i −0.319647 + 0.0563623i −0.331169 0.943571i \(-0.607443\pi\)
0.0115229 + 0.999934i \(0.496332\pi\)
\(588\) 6.18339 5.18848i 0.254999 0.213969i
\(589\) 2.81298 + 1.02384i 0.115907 + 0.0421867i
\(590\) 0 0
\(591\) 9.46588 0.389374
\(592\) −17.1411 15.7428i −0.704496 0.647026i
\(593\) −5.03777 −0.206877 −0.103438 0.994636i \(-0.532984\pi\)
−0.103438 + 0.994636i \(0.532984\pi\)
\(594\) 1.28596 + 3.53314i 0.0527634 + 0.144966i
\(595\) 0 0
\(596\) 18.0480 15.1441i 0.739275 0.620325i
\(597\) −5.26154 + 0.927752i −0.215341 + 0.0379704i
\(598\) 2.59211i 0.105999i
\(599\) −3.33298 18.9023i −0.136182 0.772326i −0.974029 0.226421i \(-0.927297\pi\)
0.837848 0.545904i \(-0.183814\pi\)
\(600\) 0 0
\(601\) 18.8863 + 15.8475i 0.770389 + 0.646433i 0.940808 0.338939i \(-0.110068\pi\)
−0.170420 + 0.985372i \(0.554512\pi\)
\(602\) 0.374618 + 0.648858i 0.0152683 + 0.0264455i
\(603\) 13.1692 22.8098i 0.536292 0.928885i
\(604\) 40.3018 14.6687i 1.63986 0.596859i
\(605\) 0 0
\(606\) −0.589213 + 0.340183i −0.0239352 + 0.0138190i
\(607\) 25.7234 + 4.53572i 1.04408 + 0.184099i 0.669283 0.743008i \(-0.266602\pi\)
0.374796 + 0.927107i \(0.377713\pi\)
\(608\) 0.408280 2.31547i 0.0165580 0.0939049i
\(609\) −5.51573 + 6.57340i −0.223509 + 0.266367i
\(610\) 0 0
\(611\) −3.48304 + 9.56957i −0.140909 + 0.387143i
\(612\) 19.9422 23.7662i 0.806115 0.960690i
\(613\) −6.16036 + 34.9372i −0.248815 + 1.41110i 0.562649 + 0.826696i \(0.309782\pi\)
−0.811464 + 0.584403i \(0.801329\pi\)
\(614\) 1.18266 + 0.208536i 0.0477285 + 0.00841582i
\(615\) 0 0
\(616\) 8.68769 + 10.3536i 0.350037 + 0.417158i
\(617\) 2.06181 0.750439i 0.0830055 0.0302115i −0.300184 0.953881i \(-0.597048\pi\)
0.383189 + 0.923670i \(0.374826\pi\)
\(618\) 0.490195 0.849042i 0.0197185 0.0341535i
\(619\) 19.0489 + 32.9936i 0.765639 + 1.32613i 0.939908 + 0.341427i \(0.110910\pi\)
−0.174269 + 0.984698i \(0.555756\pi\)
\(620\) 0 0
\(621\) −28.3284 16.3554i −1.13678 0.656321i
\(622\) 0.402924 + 2.28510i 0.0161558 + 0.0916240i
\(623\) 40.8914i 1.63828i
\(624\) −4.94606 + 0.872124i −0.198001 + 0.0349129i
\(625\) 0 0
\(626\) 0.0182051 + 0.00662611i 0.000727622 + 0.000264833i
\(627\) 1.60877 + 4.42007i 0.0642482 + 0.176521i
\(628\) −30.5735 −1.22001
\(629\) 11.5467 + 36.7672i 0.460399 + 1.46600i
\(630\) 0 0
\(631\) −1.31640 3.61678i −0.0524050 0.143982i 0.910728 0.413006i \(-0.135521\pi\)
−0.963133 + 0.269024i \(0.913299\pi\)
\(632\) 9.15118 + 3.33076i 0.364014 + 0.132490i
\(633\) −0.714064 + 0.599171i −0.0283815 + 0.0238149i
\(634\) 0.464926 0.0819791i 0.0184646 0.00325580i
\(635\) 0 0
\(636\) 2.24456 + 12.7295i 0.0890025 + 0.504758i
\(637\) −9.03364 5.21558i −0.357926 0.206649i
\(638\) −2.45304 2.05835i −0.0971168 0.0814907i
\(639\) −8.11694 14.0589i −0.321101 0.556163i
\(640\) 0 0
\(641\) 41.2918 15.0290i 1.63093 0.593609i 0.645508 0.763753i \(-0.276646\pi\)
0.985419 + 0.170144i \(0.0544234\pi\)
\(642\) −0.219985 0.262168i −0.00868211 0.0103469i
\(643\) −26.6233 + 15.3709i −1.04992 + 0.606171i −0.922627 0.385694i \(-0.873962\pi\)
−0.127292 + 0.991865i \(0.540629\pi\)
\(644\) −57.4750 10.1344i −2.26483 0.399351i
\(645\) 0 0
\(646\) −0.813657 + 0.969679i −0.0320129 + 0.0381515i
\(647\) 8.89918 24.4503i 0.349863 0.961241i −0.632550 0.774519i \(-0.717992\pi\)
0.982413 0.186721i \(-0.0597860\pi\)
\(648\) 1.07237 2.94631i 0.0421266 0.115742i
\(649\) −36.4025 + 43.3828i −1.42892 + 1.70292i
\(650\) 0 0
\(651\) −6.44288 1.13605i −0.252516 0.0445254i
\(652\) −15.0532 + 8.69094i −0.589527 + 0.340364i
\(653\) −11.0171 13.1297i −0.431134 0.513806i 0.506115 0.862466i \(-0.331081\pi\)
−0.937249 + 0.348660i \(0.886637\pi\)
\(654\) −1.40440 + 0.511159i −0.0549163 + 0.0199879i
\(655\) 0 0
\(656\) 2.19615 + 3.80385i 0.0857454 + 0.148515i
\(657\) 12.4657 + 10.4599i 0.486332 + 0.408081i
\(658\) 2.93377 + 1.69381i 0.114370 + 0.0660317i
\(659\) 1.96874 + 11.1653i 0.0766911 + 0.434937i 0.998842 + 0.0481068i \(0.0153188\pi\)
−0.922151 + 0.386830i \(0.873570\pi\)
\(660\) 0 0
\(661\) 20.2994 3.57933i 0.789556 0.139220i 0.235693 0.971828i \(-0.424264\pi\)
0.553863 + 0.832608i \(0.313153\pi\)
\(662\) −0.713693 + 0.598860i −0.0277385 + 0.0232753i
\(663\) 7.81480 + 2.84436i 0.303502 + 0.110466i
\(664\) 0.0839933 + 0.230770i 0.00325957 + 0.00895560i
\(665\) 0 0
\(666\) 1.56766 + 2.04782i 0.0607455 + 0.0793516i
\(667\) 27.8592 1.07871
\(668\) −6.93541 19.0549i −0.268339 0.737256i
\(669\) −9.19669 3.34732i −0.355565 0.129415i
\(670\) 0 0
\(671\) −20.2688 + 3.57394i −0.782470 + 0.137970i
\(672\) 5.13849i 0.198221i
\(673\) −0.774129 4.39031i −0.0298405 0.169234i 0.966246 0.257623i \(-0.0829392\pi\)
−0.996086 + 0.0883891i \(0.971828\pi\)
\(674\) 1.50002 + 0.866036i 0.0577786 + 0.0333585i
\(675\) 0 0
\(676\) −9.51616 16.4825i −0.366006 0.633941i
\(677\) 25.2799 43.7861i 0.971587 1.68284i 0.280821 0.959760i \(-0.409393\pi\)
0.690766 0.723078i \(-0.257273\pi\)
\(678\) −0.217094 + 0.0790157i −0.00833744 + 0.00303458i
\(679\) 7.68519 + 9.15885i 0.294931 + 0.351485i
\(680\) 0 0
\(681\) −21.0536 3.71232i −0.806777 0.142257i
\(682\) 0.423949 2.40433i 0.0162338 0.0920667i
\(683\) −16.8426 + 20.0722i −0.644465 + 0.768043i −0.985068 0.172164i \(-0.944924\pi\)
0.340604 + 0.940207i \(0.389369\pi\)
\(684\) 1.96099 5.38777i 0.0749802 0.206006i
\(685\) 0 0
\(686\) 0.506340 0.603432i 0.0193321 0.0230392i
\(687\) 1.83102 10.3842i 0.0698577 0.396183i
\(688\) 4.64149 + 0.818420i 0.176955 + 0.0312020i
\(689\) 14.4661 8.35200i 0.551114 0.318186i
\(690\) 0 0
\(691\) −19.0751 + 6.94277i −0.725651 + 0.264115i −0.678323 0.734764i \(-0.737293\pi\)
−0.0473282 + 0.998879i \(0.515071\pi\)
\(692\) −14.7179 + 25.4921i −0.559489 + 0.969063i
\(693\) 24.7795 + 42.9194i 0.941296 + 1.63037i
\(694\) 2.97274 + 2.49442i 0.112844 + 0.0946870i
\(695\) 0 0
\(696\) −0.283266 1.60648i −0.0107372 0.0608935i
\(697\) 7.27306i 0.275487i
\(698\) 3.92014 0.691226i 0.148379 0.0261633i
\(699\) 7.70721 6.46711i 0.291513 0.244609i
\(700\) 0 0
\(701\) −0.514224 1.41282i −0.0194220 0.0533614i 0.929603 0.368563i \(-0.120150\pi\)
−0.949025 + 0.315202i \(0.897928\pi\)
\(702\) 1.22852 0.0463674
\(703\) 4.32919 + 5.65520i 0.163278 + 0.213290i
\(704\) 40.9045 1.54165
\(705\) 0 0
\(706\) 3.23484 + 1.17739i 0.121745 + 0.0443115i
\(707\) −15.1646 + 12.7246i −0.570323 + 0.478558i
\(708\) −14.1014 + 2.48646i −0.529963 + 0.0934467i
\(709\) 20.3464i 0.764124i 0.924137 + 0.382062i \(0.124786\pi\)
−0.924137 + 0.382062i \(0.875214\pi\)
\(710\) 0 0
\(711\) 30.9249 + 17.8545i 1.15977 + 0.669595i
\(712\) −5.95490 4.99676i −0.223169 0.187261i
\(713\) 10.6202 + 18.3946i 0.397728 + 0.688885i
\(714\) 1.38322 2.39581i 0.0517657 0.0896608i
\(715\) 0 0
\(716\) 5.25855 + 6.26689i 0.196521 + 0.234205i
\(717\) 9.92340 5.72928i 0.370596 0.213964i
\(718\) 0.467287 + 0.0823953i 0.0174390 + 0.00307497i
\(719\) −6.97428 + 39.5531i −0.260097 + 1.47508i 0.522547 + 0.852611i \(0.324982\pi\)
−0.782643 + 0.622470i \(0.786129\pi\)
\(720\) 0 0
\(721\) 9.75630 26.8052i 0.363344 0.998278i
\(722\) 1.02889 2.82685i 0.0382913 0.105205i
\(723\) 10.2229 12.1832i 0.380193 0.453096i
\(724\) 4.69761 26.6415i 0.174585 0.990123i
\(725\) 0 0
\(726\) 2.15527 1.24434i 0.0799895 0.0461820i
\(727\) −26.1199 31.1285i −0.968734 1.15449i −0.987965 0.154677i \(-0.950566\pi\)
0.0192316 0.999815i \(-0.493878\pi\)
\(728\) 4.14982 1.51041i 0.153803 0.0559796i
\(729\) 1.50842 2.61266i 0.0558675 0.0967653i
\(730\) 0 0
\(731\) −5.97839 5.01647i −0.221119 0.185541i
\(732\) −4.50666 2.60192i −0.166571 0.0961698i
\(733\) −8.04113 45.6035i −0.297006 1.68440i −0.658936 0.752199i \(-0.728993\pi\)
0.361930 0.932205i \(-0.382118\pi\)
\(734\) 5.58288i 0.206068i
\(735\) 0 0
\(736\) 12.7797 10.7235i 0.471067 0.395272i
\(737\) −55.7434 20.2889i −2.05333 0.747352i
\(738\) −0.166468 0.457367i −0.00612778 0.0168359i
\(739\) 37.7948 1.39030 0.695152 0.718863i \(-0.255337\pi\)
0.695152 + 0.718863i \(0.255337\pi\)
\(740\) 0 0
\(741\) 1.53692 0.0564600
\(742\) −1.90047 5.22150i −0.0697684 0.191687i
\(743\) −3.29307 1.19858i −0.120811 0.0439716i 0.280907 0.959735i \(-0.409365\pi\)
−0.401718 + 0.915763i \(0.631587\pi\)
\(744\) 0.952732 0.799437i 0.0349288 0.0293088i
\(745\) 0 0
\(746\) 1.80710i 0.0661628i
\(747\) 0.156368 + 0.886810i 0.00572122 + 0.0324467i
\(748\) −60.5136 34.9375i −2.21260 1.27744i
\(749\) −7.62806 6.40070i −0.278723 0.233877i
\(750\) 0 0
\(751\) 11.9496 20.6973i 0.436047 0.755255i −0.561334 0.827590i \(-0.689712\pi\)
0.997380 + 0.0723345i \(0.0230449\pi\)
\(752\) 20.0248 7.28844i 0.730230 0.265782i
\(753\) 8.00203 + 9.53644i 0.291610 + 0.347527i
\(754\) −0.906125 + 0.523151i −0.0329991 + 0.0190521i
\(755\) 0 0
\(756\) −4.80316 + 27.2400i −0.174689 + 0.990711i
\(757\) 1.81240 2.15994i 0.0658729 0.0785042i −0.732102 0.681195i \(-0.761460\pi\)
0.797975 + 0.602691i \(0.205905\pi\)
\(758\) −0.363797 + 0.999525i −0.0132137 + 0.0363044i
\(759\) −11.4150 + 31.3623i −0.414337 + 1.13838i
\(760\) 0 0
\(761\) 5.05316 28.6579i 0.183177 1.03885i −0.745098 0.666955i \(-0.767597\pi\)
0.928275 0.371894i \(-0.121291\pi\)
\(762\) 1.03733 + 0.182909i 0.0375785 + 0.00662610i
\(763\) −37.6591 + 21.7425i −1.36335 + 0.787131i
\(764\) 2.25773 + 2.69066i 0.0816819 + 0.0973446i
\(765\) 0 0
\(766\) −0.606199 + 1.04997i −0.0219029 + 0.0379369i
\(767\) 9.25210 + 16.0251i 0.334074 + 0.578633i
\(768\) 7.54578 + 6.33166i 0.272285 + 0.228474i
\(769\) −23.6197 13.6368i −0.851747 0.491756i 0.00949305 0.999955i \(-0.496978\pi\)
−0.861240 + 0.508199i \(0.830312\pi\)
\(770\) 0 0
\(771\) 8.49900i 0.306084i
\(772\) 28.8726 5.09102i 1.03915 0.183230i
\(773\) 5.33809 4.47919i 0.191998 0.161105i −0.541721 0.840558i \(-0.682227\pi\)
0.733719 + 0.679453i \(0.237783\pi\)
\(774\) −0.490771 0.178626i −0.0176404 0.00642058i
\(775\) 0 0
\(776\) −2.27287 −0.0815914
\(777\) −11.4638 10.5286i −0.411261 0.377712i
\(778\) 1.40660 0.0504289
\(779\) −0.459713 1.26305i −0.0164709 0.0452535i
\(780\) 0 0
\(781\) −28.0087 + 23.5021i −1.00223 + 0.840972i
\(782\) −8.84514 + 1.55964i −0.316302 + 0.0557725i
\(783\) 13.2037i 0.471863i
\(784\) 3.79035 + 21.4961i 0.135369 + 0.767719i
\(785\) 0 0
\(786\) −0.428828 0.359829i −0.0152958 0.0128347i
\(787\) −9.03840 15.6550i −0.322184 0.558040i 0.658754 0.752358i \(-0.271084\pi\)
−0.980938 + 0.194319i \(0.937750\pi\)
\(788\) −12.9935 + 22.5055i −0.462876 + 0.801724i
\(789\) −3.88161 + 1.41279i −0.138189 + 0.0502967i
\(790\) 0 0
\(791\) −5.82140 + 3.36099i −0.206985 + 0.119503i
\(792\) −9.27818 1.63599i −0.329686 0.0581325i
\(793\) −1.16776 + 6.62271i −0.0414684 + 0.235179i
\(794\) −0.893253 + 1.06454i −0.0317004 + 0.0377790i
\(795\) 0 0
\(796\) 5.01661 13.7830i 0.177809 0.488526i
\(797\) 4.62819 5.51566i 0.163939 0.195375i −0.677821 0.735227i \(-0.737076\pi\)
0.841760 + 0.539852i \(0.181520\pi\)
\(798\) 0.0887788 0.503489i 0.00314273 0.0178233i
\(799\) −34.7503 6.12742i −1.22938 0.216772i
\(800\) 0 0
\(801\) −18.3221 21.8354i −0.647378 0.771515i
\(802\) −0.125764 + 0.0457743i −0.00444088 + 0.00161635i
\(803\) 18.3252 31.7402i 0.646682 1.12009i
\(804\) −7.49936 12.9893i −0.264482 0.458096i
\(805\) 0 0
\(806\) −0.690845 0.398860i −0.0243340 0.0140492i
\(807\) 3.55546 + 20.1640i 0.125158 + 0.709806i
\(808\) 3.76327i 0.132391i
\(809\) −21.2731 + 3.75102i −0.747923 + 0.131879i −0.534603 0.845103i \(-0.679539\pi\)
−0.213320 + 0.976982i \(0.568428\pi\)
\(810\) 0 0
\(811\) −23.9554 8.71906i −0.841189 0.306168i −0.114746 0.993395i \(-0.536606\pi\)
−0.726443 + 0.687227i \(0.758828\pi\)
\(812\) −8.05720 22.1370i −0.282752 0.776856i
\(813\) 9.18031 0.321967
\(814\) 3.92904 4.27803i 0.137713 0.149945i
\(815\) 0 0
\(816\) −5.95196 16.3529i −0.208360 0.572465i
\(817\) −1.35530 0.493287i −0.0474158 0.0172579i
\(818\) −4.46270 + 3.74465i −0.156035 + 0.130928i
\(819\) 15.9471 2.81190i 0.557236 0.0982557i
\(820\) 0 0
\(821\) −0.959028 5.43892i −0.0334703 0.189820i 0.963489 0.267750i \(-0.0862800\pi\)
−0.996959 + 0.0779301i \(0.975169\pi\)
\(822\) 0.724812 + 0.418470i 0.0252807 + 0.0145958i
\(823\) 14.9064 + 12.5080i 0.519605 + 0.436001i 0.864494 0.502643i \(-0.167639\pi\)
−0.344889 + 0.938644i \(0.612083\pi\)
\(824\) 2.71139 + 4.69626i 0.0944557 + 0.163602i
\(825\) 0 0
\(826\) 5.78422 2.10528i 0.201259 0.0732522i
\(827\) −13.3476 15.9070i −0.464140 0.553141i 0.482306 0.876003i \(-0.339799\pi\)
−0.946446 + 0.322862i \(0.895355\pi\)
\(828\) 35.2316 20.3410i 1.22438 0.706898i
\(829\) −19.7559 3.48349i −0.686149 0.120987i −0.180304 0.983611i \(-0.557708\pi\)
−0.505845 + 0.862624i \(0.668819\pi\)
\(830\) 0 0
\(831\) 6.41365 7.64349i 0.222487 0.265150i
\(832\) 4.57119 12.5592i 0.158478 0.435413i
\(833\) 12.3619 33.9640i 0.428314 1.17678i
\(834\) 0.261798 0.311999i 0.00906532 0.0108036i
\(835\) 0 0
\(836\) −12.7172 2.24239i −0.439834 0.0775545i
\(837\) 8.71806 5.03337i 0.301340 0.173979i
\(838\) −2.38197 2.83872i −0.0822837 0.0980619i
\(839\) 1.95773 0.712555i 0.0675883 0.0246001i −0.308005 0.951385i \(-0.599661\pi\)
0.375593 + 0.926785i \(0.377439\pi\)
\(840\) 0 0
\(841\) −8.87733 15.3760i −0.306115 0.530206i
\(842\) 3.61724 + 3.03522i 0.124658 + 0.104601i
\(843\) −3.88971 2.24573i −0.133969 0.0773469i
\(844\) −0.444376 2.52018i −0.0152960 0.0867481i
\(845\) 0 0
\(846\) −2.32553 + 0.410053i −0.0799532 + 0.0140979i
\(847\) 55.4702 46.5450i 1.90598 1.59931i
\(848\) −32.8460 11.9550i −1.12794 0.410535i
\(849\) −2.80187 7.69808i −0.0961599 0.264197i
\(850\) 0 0
\(851\) −2.26161 + 50.4832i −0.0775271 + 1.73054i
\(852\) −9.24456 −0.316713
\(853\) 6.80260 + 18.6900i 0.232917 + 0.639933i 0.999999 0.00161596i \(-0.000514375\pi\)
−0.767082 + 0.641549i \(0.778292\pi\)
\(854\) 2.10213 + 0.765111i 0.0719332 + 0.0261816i
\(855\) 0 0
\(856\) 1.86423 0.328714i 0.0637181 0.0112352i
\(857\) 26.3623i 0.900519i −0.892898 0.450259i \(-0.851332\pi\)
0.892898 0.450259i \(-0.148668\pi\)
\(858\) −0.217662 1.23442i −0.00743085 0.0421424i
\(859\) −41.7109 24.0818i −1.42316 0.821660i −0.426589 0.904445i \(-0.640285\pi\)
−0.996567 + 0.0827856i \(0.973618\pi\)
\(860\) 0 0
\(861\) 1.46876 + 2.54397i 0.0500553 + 0.0866983i
\(862\) 0.282076 0.488570i 0.00960756 0.0166408i
\(863\) 39.5328 14.3888i 1.34571 0.489799i 0.434105 0.900862i \(-0.357065\pi\)
0.911607 + 0.411064i \(0.134843\pi\)
\(864\) −5.08234 6.05690i −0.172905 0.206060i
\(865\) 0 0
\(866\) 2.70013 + 0.476106i 0.0917542 + 0.0161787i
\(867\) −2.88458 + 16.3593i −0.0979656 + 0.555590i
\(868\) 11.5450 13.7588i 0.391862 0.467003i
\(869\) 27.5072 75.5754i 0.933118 2.56372i
\(870\) 0 0
\(871\) −12.4590 + 14.8480i −0.422156 + 0.503105i
\(872\) 1.43548 8.14102i 0.0486116 0.275690i
\(873\) −8.20754 1.44721i −0.277783 0.0489807i
\(874\) −1.43748 + 0.829930i −0.0486235 + 0.0280728i
\(875\) 0 0
\(876\) 8.70786 3.16940i 0.294211 0.107084i
\(877\) 24.9439 43.2041i 0.842296 1.45890i −0.0456525 0.998957i \(-0.514537\pi\)
0.887949 0.459942i \(-0.152130\pi\)
\(878\) −2.04127 3.53559i −0.0688897 0.119320i
\(879\) 11.9422 + 10.0207i 0.402802 + 0.337991i
\(880\) 0 0
\(881\) 2.81023 + 15.9376i 0.0946791 + 0.536952i 0.994845 + 0.101405i \(0.0323338\pi\)
−0.900166 + 0.435547i \(0.856555\pi\)
\(882\) 2.41877i 0.0814444i
\(883\) 31.1610 5.49453i 1.04865 0.184906i 0.377335 0.926077i \(-0.376840\pi\)
0.671316 + 0.741171i \(0.265729\pi\)
\(884\) −17.4897 + 14.6756i −0.588243 + 0.493595i
\(885\) 0 0
\(886\) −0.0959311 0.263568i −0.00322287 0.00885475i
\(887\) 29.3969 0.987051 0.493526 0.869731i \(-0.335708\pi\)
0.493526 + 0.869731i \(0.335708\pi\)
\(888\) 2.93408 0.382888i 0.0984612 0.0128489i
\(889\) 30.6479 1.02790
\(890\) 0 0
\(891\) −24.3322 8.85619i −0.815159 0.296694i
\(892\) 20.5824 17.2707i 0.689150 0.578266i
\(893\) −6.42209 + 1.13239i −0.214907 + 0.0378939i
\(894\) 1.46442i 0.0489775i
\(895\) 0 0
\(896\) −16.2478 9.38065i −0.542800 0.313386i
\(897\) 8.35379 + 7.00966i 0.278925 + 0.234046i
\(898\) −1.69924 2.94317i −0.0567044 0.0982149i
\(899\) −4.28682 + 7.42499i −0.142973 + 0.247637i
\(900\) 0 0
\(901\) 37.2039 + 44.3379i 1.23944 + 1.47711i
\(902\) −0.949352 + 0.548109i −0.0316100 + 0.0182500i
\(903\) 3.10418 + 0.547351i 0.103301 + 0.0182147i
\(904\) 0.221899 1.25845i 0.00738025 0.0418555i
\(905\) 0 0
\(906\) −0.911760 + 2.50504i −0.0302912 + 0.0832244i
\(907\) −19.7519 + 54.2679i −0.655851 + 1.80194i −0.0609459 + 0.998141i \(0.519412\pi\)
−0.594905 + 0.803796i \(0.702810\pi\)
\(908\) 37.7259 44.9600i 1.25198 1.49205i
\(909\) 2.39619 13.5895i 0.0794766 0.450734i
\(910\) 0 0
\(911\) −8.80962 + 5.08623i −0.291876 + 0.168514i −0.638787 0.769383i \(-0.720564\pi\)
0.346912 + 0.937898i \(0.387230\pi\)
\(912\) −2.06725 2.46366i −0.0684536 0.0815799i
\(913\) 1.90582 0.693662i 0.0630735 0.0229569i
\(914\) 1.09347 1.89395i 0.0361688 0.0626462i
\(915\) 0 0
\(916\) 22.1755 + 18.6074i 0.732699 + 0.614807i
\(917\) −14.1057 8.14392i −0.465811 0.268936i
\(918\) 0.739183 + 4.19212i 0.0243967 + 0.138360i
\(919\) 0.219914i 0.00725429i −0.999993 0.00362715i \(-0.998845\pi\)
0.999993 0.00362715i \(-0.00115456\pi\)
\(920\) 0 0
\(921\) 3.87027 3.24754i 0.127530 0.107010i
\(922\) 3.66650 + 1.33450i 0.120750 + 0.0439493i
\(923\) 4.08600 + 11.2262i 0.134492 + 0.369514i
\(924\) 28.2220 0.928434
\(925\) 0 0
\(926\) 1.94776 0.0640074
\(927\) 6.80079 + 18.6850i 0.223367 + 0.613697i
\(928\) 6.32788 + 2.30316i 0.207723 + 0.0756049i
\(929\) 42.0310 35.2682i 1.37899 1.15711i 0.409409 0.912351i \(-0.365735\pi\)
0.969583 0.244761i \(-0.0787096\pi\)
\(930\) 0 0
\(931\) 6.67960i 0.218915i
\(932\) 4.79634 + 27.2014i 0.157109 + 0.891011i
\(933\) 8.45396 + 4.88090i 0.276770 + 0.159793i
\(934\) −1.87126 1.57017i −0.0612294 0.0513775i
\(935\) 0 0
\(936\) −1.53917 + 2.66593i −0.0503095 + 0.0871386i
\(937\) 41.4633 15.0914i 1.35455 0.493015i 0.440183 0.897908i \(-0.354914\pi\)
0.914364 + 0.404893i \(0.132691\pi\)
\(938\) 4.14448 + 4.93920i 0.135322 + 0.161271i
\(939\) 0.0705853 0.0407524i 0.00230346 0.00132991i
\(940\) 0 0
\(941\) −3.08919 + 17.5197i −0.100705 + 0.571125i 0.892144 + 0.451750i \(0.149200\pi\)
−0.992849 + 0.119375i \(0.961911\pi\)
\(942\) 1.22153 1.45576i 0.0397994 0.0474311i
\(943\) 3.26186 8.96190i 0.106221 0.291839i
\(944\) 13.2434 36.3858i 0.431035 1.18426i
\(945\) 0 0
\(946\) −0.204259 + 1.15841i −0.00664102 + 0.0376631i
\(947\) −45.7348 8.06428i −1.48618 0.262054i −0.629136 0.777295i \(-0.716591\pi\)
−0.857045 + 0.515242i \(0.827702\pi\)
\(948\) 17.6105 10.1674i 0.571963 0.330223i
\(949\) −7.69756 9.17359i −0.249873 0.297787i
\(950\) 0 0
\(951\) 0.993069 1.72005i 0.0322025 0.0557763i
\(952\) 7.65093 + 13.2518i 0.247968 + 0.429493i
\(953\) −42.6499 35.7875i −1.38157 1.15927i −0.968629 0.248513i \(-0.920058\pi\)
−0.412938 0.910759i \(-0.635497\pi\)
\(954\) 3.35440 + 1.93666i 0.108603 + 0.0627017i
\(955\) 0 0
\(956\) 31.4577i 1.01741i
\(957\) −13.2672 + 2.33936i −0.428867 + 0.0756209i
\(958\) 0.594450 0.498803i 0.0192058 0.0161156i
\(959\) 22.8831 + 8.32877i 0.738934 + 0.268950i
\(960\) 0 0
\(961\) 24.4633 0.789139
\(962\) −0.874437 1.68445i −0.0281930 0.0543087i
\(963\) 6.94120 0.223677
\(964\) 14.9332 + 41.0288i 0.480968 + 1.32145i
\(965\) 0 0
\(966\) 2.77890 2.33177i 0.0894095 0.0750235i
\(967\) −5.57465 + 0.982962i −0.179269 + 0.0316099i −0.262562 0.964915i \(-0.584567\pi\)
0.0832930 + 0.996525i \(0.473456\pi\)
\(968\) 13.7656i 0.442442i
\(969\) 0.924743 + 5.24448i 0.0297070 + 0.168477i
\(970\) 0 0
\(971\) −8.95214 7.51173i −0.287288 0.241063i 0.487742 0.872988i \(-0.337821\pi\)
−0.775030 + 0.631925i \(0.782265\pi\)
\(972\) −14.9137 25.8314i −0.478358 0.828541i
\(973\) 5.92521 10.2628i 0.189953 0.329009i
\(974\) 3.43930 1.25180i 0.110202 0.0401104i
\(975\) 0 0
\(976\) 12.1868 7.03607i 0.390091 0.225219i
\(977\) −26.4056 4.65601i −0.844788 0.148959i −0.265530 0.964103i \(-0.585547\pi\)
−0.579259 + 0.815144i \(0.696658\pi\)
\(978\) 0.187611 1.06399i 0.00599913 0.0340227i
\(979\) −41.2659 + 49.1788i −1.31886 + 1.57176i
\(980\) 0 0
\(981\) 10.3673 28.4839i 0.331002 0.909421i
\(982\) −0.178320 + 0.212514i −0.00569043 + 0.00678159i
\(983\) 5.82176 33.0168i 0.185685 1.05307i −0.739387 0.673281i \(-0.764884\pi\)
0.925072 0.379792i \(-0.124004\pi\)
\(984\) −0.549948 0.0969706i −0.0175317 0.00309131i
\(985\) 0 0
\(986\) −2.33037 2.77723i −0.0742142 0.0884451i
\(987\) 13.3924 4.87443i 0.426284 0.155155i
\(988\) −2.10968 + 3.65408i −0.0671179 + 0.116252i
\(989\) −5.11679 8.86254i −0.162704 0.281812i
\(990\) 0 0
\(991\) 6.47557 + 3.73867i 0.205703 + 0.118763i 0.599313 0.800515i \(-0.295441\pi\)
−0.393610 + 0.919278i \(0.628774\pi\)
\(992\) 0.891528 + 5.05611i 0.0283061 + 0.160532i
\(993\) 3.91953i 0.124383i
\(994\) 3.91369 0.690089i 0.124135 0.0218883i
\(995\) 0 0
\(996\) 0.481869 + 0.175386i 0.0152686 + 0.00555732i
\(997\) 10.5675 + 29.0340i 0.334676 + 0.919516i 0.986878 + 0.161470i \(0.0516235\pi\)
−0.652201 + 0.758046i \(0.726154\pi\)
\(998\) 0.110037 0.00348317
\(999\) 23.9263 + 1.07188i 0.756995 + 0.0339128i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.bb.e.326.8 96
5.2 odd 4 185.2.v.a.104.9 yes 96
5.3 odd 4 185.2.v.a.104.8 96
5.4 even 2 inner 925.2.bb.e.326.9 96
37.21 even 18 inner 925.2.bb.e.576.8 96
185.58 odd 36 185.2.v.a.169.9 yes 96
185.132 odd 36 185.2.v.a.169.8 yes 96
185.169 even 18 inner 925.2.bb.e.576.9 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.v.a.104.8 96 5.3 odd 4
185.2.v.a.104.9 yes 96 5.2 odd 4
185.2.v.a.169.8 yes 96 185.132 odd 36
185.2.v.a.169.9 yes 96 185.58 odd 36
925.2.bb.e.326.8 96 1.1 even 1 trivial
925.2.bb.e.326.9 96 5.4 even 2 inner
925.2.bb.e.576.8 96 37.21 even 18 inner
925.2.bb.e.576.9 96 185.169 even 18 inner