Properties

Label 9248.2.a.u
Level $9248$
Weight $2$
Character orbit 9248.a
Self dual yes
Analytic conductor $73.846$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9248,2,Mod(1,9248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9248, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9248.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9248 = 2^{5} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9248.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,2,0,2,0,2,0,3,0,10,0,-6,0,-8,0,0,0,-4,0,0,0,6,0,13,0,8,0, 10,0,10,0,-4,0,-16,0,10,0,8,0,-6,0,8,0,10,0,4,0,-1,0,0,0,-6,0,16,0,-24, 0,0,0,18,0,-18,0,4,0,8,0,8,0,30,0,-14,0,-34,0,8,0,-10,0,-1,0,-8,0,0,0, 16,0,10,0,-24,0,-16,0,16,0,10,0,-2,0,18,0,0,0,-8,0,10,0,10,0,16,0,2,0, 56,0,26,0,0,0,11,0,20,0,36,0,28,0,8,0,10,0,0,0,40,0,10,0,14,0,-16,0,-32, 0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(145)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8456517893\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 544)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{3} + (\beta_{2} + \beta_1) q^{5} + ( - \beta_{2} + 1) q^{7} + (\beta_{2} - \beta_1 + 1) q^{9} + (\beta_1 + 3) q^{11} + (\beta_{2} - \beta_1 - 2) q^{13} + ( - 2 \beta_1 - 2) q^{15}+ \cdots + (2 \beta_{2} - \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{3} + 2 q^{5} + 2 q^{7} + 3 q^{9} + 10 q^{11} - 6 q^{13} - 8 q^{15} - 4 q^{19} + 6 q^{23} + 13 q^{25} + 8 q^{27} + 10 q^{29} + 10 q^{31} - 4 q^{33} - 16 q^{35} + 10 q^{37} + 8 q^{39} - 6 q^{41}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + 2\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.17009
−1.48119
0.311108
0 −1.70928 0 4.34017 0 −0.630898 0 −0.0783777 0
1.2 0 0.806063 0 −2.96239 0 4.15633 0 −2.35026 0
1.3 0 2.90321 0 0.622216 0 −1.52543 0 5.42864 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9248.2.a.u 3
4.b odd 2 1 9248.2.a.t 3
17.b even 2 1 544.2.a.i 3
51.c odd 2 1 4896.2.a.be 3
68.d odd 2 1 544.2.a.j yes 3
136.e odd 2 1 1088.2.a.u 3
136.h even 2 1 1088.2.a.v 3
204.h even 2 1 4896.2.a.bf 3
408.b odd 2 1 9792.2.a.dc 3
408.h even 2 1 9792.2.a.dd 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
544.2.a.i 3 17.b even 2 1
544.2.a.j yes 3 68.d odd 2 1
1088.2.a.u 3 136.e odd 2 1
1088.2.a.v 3 136.h even 2 1
4896.2.a.be 3 51.c odd 2 1
4896.2.a.bf 3 204.h even 2 1
9248.2.a.t 3 4.b odd 2 1
9248.2.a.u 3 1.a even 1 1 trivial
9792.2.a.dc 3 408.b odd 2 1
9792.2.a.dd 3 408.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9248))\):

\( T_{3}^{3} - 2T_{3}^{2} - 4T_{3} + 4 \) Copy content Toggle raw display
\( T_{5}^{3} - 2T_{5}^{2} - 12T_{5} + 8 \) Copy content Toggle raw display
\( T_{7}^{3} - 2T_{7}^{2} - 8T_{7} - 4 \) Copy content Toggle raw display
\( T_{19}^{3} + 4T_{19}^{2} - 16T_{19} - 32 \) Copy content Toggle raw display
\( T_{43}^{3} - 8T_{43}^{2} - 16T_{43} + 160 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 2 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( T^{3} - 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$7$ \( T^{3} - 2 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$11$ \( T^{3} - 10 T^{2} + \cdots - 20 \) Copy content Toggle raw display
$13$ \( T^{3} + 6 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} + 4 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$23$ \( T^{3} - 6 T^{2} + \cdots + 428 \) Copy content Toggle raw display
$29$ \( T^{3} - 10 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$31$ \( T^{3} - 10T^{2} + 148 \) Copy content Toggle raw display
$37$ \( T^{3} - 10 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$41$ \( T^{3} + 6 T^{2} + \cdots - 248 \) Copy content Toggle raw display
$43$ \( T^{3} - 8 T^{2} + \cdots + 160 \) Copy content Toggle raw display
$47$ \( T^{3} - 4 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$53$ \( T^{3} + 6 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$59$ \( T^{3} - 112T + 416 \) Copy content Toggle raw display
$61$ \( T^{3} - 18 T^{2} + \cdots + 1096 \) Copy content Toggle raw display
$67$ \( T^{3} - 8 T^{2} + \cdots + 256 \) Copy content Toggle raw display
$71$ \( T^{3} - 30 T^{2} + \cdots - 668 \) Copy content Toggle raw display
$73$ \( T^{3} + 14 T^{2} + \cdots - 344 \) Copy content Toggle raw display
$79$ \( T^{3} + 10 T^{2} + \cdots - 1444 \) Copy content Toggle raw display
$83$ \( T^{3} + 8 T^{2} + \cdots - 160 \) Copy content Toggle raw display
$89$ \( T^{3} - 10 T^{2} + \cdots + 536 \) Copy content Toggle raw display
$97$ \( T^{3} - 10 T^{2} + \cdots + 200 \) Copy content Toggle raw display
show more
show less