Properties

Label 924.2.a
Level $924$
Weight $2$
Character orbit 924.a
Rep. character $\chi_{924}(1,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $8$
Sturm bound $384$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 924 = 2^{2} \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 924.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(384\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(924))\).

Total New Old
Modular forms 204 8 196
Cusp forms 181 8 173
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(11\)FrickeDim
\(-\)\(+\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(1\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(1\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(1\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(4\)
Minus space\(-\)\(4\)

Trace form

\( 8 q - 8 q^{5} + 8 q^{9} - 8 q^{13} + 8 q^{19} + 8 q^{23} - 8 q^{29} - 8 q^{31} + 8 q^{35} - 8 q^{37} - 32 q^{41} + 8 q^{43} - 8 q^{45} + 8 q^{47} + 8 q^{49} - 8 q^{51} - 8 q^{53} + 8 q^{59} + 8 q^{65} - 24 q^{67}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(924))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7 11
924.2.a.a 924.a 1.a $1$ $7.378$ \(\Q\) None 924.2.a.a \(0\) \(-1\) \(-3\) \(-1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-3q^{5}-q^{7}+q^{9}-q^{11}+q^{13}+\cdots\)
924.2.a.b 924.a 1.a $1$ $7.378$ \(\Q\) None 924.2.a.b \(0\) \(-1\) \(-1\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-q^{7}+q^{9}+q^{11}-q^{13}+\cdots\)
924.2.a.c 924.a 1.a $1$ $7.378$ \(\Q\) None 924.2.a.c \(0\) \(-1\) \(-1\) \(1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+q^{7}+q^{9}-q^{11}-3q^{13}+\cdots\)
924.2.a.d 924.a 1.a $1$ $7.378$ \(\Q\) None 924.2.a.d \(0\) \(-1\) \(1\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+q^{7}+q^{9}+q^{11}-q^{13}+\cdots\)
924.2.a.e 924.a 1.a $1$ $7.378$ \(\Q\) None 924.2.a.e \(0\) \(1\) \(-3\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-3q^{5}-q^{7}+q^{9}-q^{11}+3q^{13}+\cdots\)
924.2.a.f 924.a 1.a $1$ $7.378$ \(\Q\) None 924.2.a.f \(0\) \(1\) \(-3\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-3q^{5}+q^{7}+q^{9}+q^{11}-7q^{13}+\cdots\)
924.2.a.g 924.a 1.a $1$ $7.378$ \(\Q\) None 924.2.a.g \(0\) \(1\) \(-1\) \(-1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-q^{7}+q^{9}+q^{11}+q^{13}+\cdots\)
924.2.a.h 924.a 1.a $1$ $7.378$ \(\Q\) None 924.2.a.h \(0\) \(1\) \(3\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+3q^{5}+q^{7}+q^{9}-q^{11}-q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(924))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(924)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(231))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(308))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(462))\)\(^{\oplus 2}\)