Properties

Label 9216.2.a.y.1.1
Level $9216$
Weight $2$
Character 9216.1
Self dual yes
Analytic conductor $73.590$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9216 = 2^{10} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9216.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(73.5901305028\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4352.1
Defining polynomial: \(x^{4} - 6 x^{2} - 4 x + 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 48)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.68554\) of defining polynomial
Character \(\chi\) \(=\) 9216.1

$q$-expansion

\(f(q)\) \(=\) \(q-3.79793 q^{5} +2.15894 q^{7} +O(q^{10})\) \(q-3.79793 q^{5} +2.15894 q^{7} -2.54266 q^{11} -1.95687 q^{13} -0.224777 q^{17} -0.224777 q^{19} +2.82843 q^{23} +9.42429 q^{25} +2.62636 q^{29} +1.84106 q^{31} -8.19951 q^{35} +5.18944 q^{37} -5.88163 q^{41} -10.9670 q^{43} -2.82843 q^{47} -2.33897 q^{49} -10.6264 q^{53} +9.65685 q^{55} +5.65685 q^{59} +8.46742 q^{61} +7.43208 q^{65} -14.7422 q^{67} +4.31788 q^{71} +5.97474 q^{73} -5.48946 q^{77} -15.0075 q^{79} -14.3059 q^{83} +0.853690 q^{85} +1.42847 q^{89} -4.22478 q^{91} +0.853690 q^{95} -16.3990 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{5} + 4q^{7} + O(q^{10}) \) \( 4q - 4q^{5} + 4q^{7} + 8q^{13} + 4q^{25} - 12q^{29} + 12q^{31} + 16q^{37} + 4q^{49} - 20q^{53} + 16q^{55} + 16q^{61} + 8q^{65} - 16q^{67} + 8q^{71} - 8q^{73} - 24q^{77} + 12q^{79} + 24q^{85} + 8q^{89} - 16q^{91} + 24q^{95} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.79793 −1.69849 −0.849244 0.528001i \(-0.822942\pi\)
−0.849244 + 0.528001i \(0.822942\pi\)
\(6\) 0 0
\(7\) 2.15894 0.816003 0.408002 0.912981i \(-0.366226\pi\)
0.408002 + 0.912981i \(0.366226\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.54266 −0.766641 −0.383321 0.923615i \(-0.625220\pi\)
−0.383321 + 0.923615i \(0.625220\pi\)
\(12\) 0 0
\(13\) −1.95687 −0.542739 −0.271370 0.962475i \(-0.587477\pi\)
−0.271370 + 0.962475i \(0.587477\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.224777 −0.0545165 −0.0272583 0.999628i \(-0.508678\pi\)
−0.0272583 + 0.999628i \(0.508678\pi\)
\(18\) 0 0
\(19\) −0.224777 −0.0515675 −0.0257837 0.999668i \(-0.508208\pi\)
−0.0257837 + 0.999668i \(0.508208\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.82843 0.589768 0.294884 0.955533i \(-0.404719\pi\)
0.294884 + 0.955533i \(0.404719\pi\)
\(24\) 0 0
\(25\) 9.42429 1.88486
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.62636 0.487703 0.243851 0.969813i \(-0.421589\pi\)
0.243851 + 0.969813i \(0.421589\pi\)
\(30\) 0 0
\(31\) 1.84106 0.330664 0.165332 0.986238i \(-0.447130\pi\)
0.165332 + 0.986238i \(0.447130\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −8.19951 −1.38597
\(36\) 0 0
\(37\) 5.18944 0.853138 0.426569 0.904455i \(-0.359722\pi\)
0.426569 + 0.904455i \(0.359722\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.88163 −0.918557 −0.459278 0.888292i \(-0.651892\pi\)
−0.459278 + 0.888292i \(0.651892\pi\)
\(42\) 0 0
\(43\) −10.9670 −1.67244 −0.836222 0.548391i \(-0.815241\pi\)
−0.836222 + 0.548391i \(0.815241\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) 0 0
\(49\) −2.33897 −0.334139
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.6264 −1.45964 −0.729821 0.683638i \(-0.760397\pi\)
−0.729821 + 0.683638i \(0.760397\pi\)
\(54\) 0 0
\(55\) 9.65685 1.30213
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.65685 0.736460 0.368230 0.929735i \(-0.379964\pi\)
0.368230 + 0.929735i \(0.379964\pi\)
\(60\) 0 0
\(61\) 8.46742 1.08414 0.542071 0.840333i \(-0.317640\pi\)
0.542071 + 0.840333i \(0.317640\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.43208 0.921836
\(66\) 0 0
\(67\) −14.7422 −1.80104 −0.900522 0.434811i \(-0.856815\pi\)
−0.900522 + 0.434811i \(0.856815\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.31788 0.512438 0.256219 0.966619i \(-0.417523\pi\)
0.256219 + 0.966619i \(0.417523\pi\)
\(72\) 0 0
\(73\) 5.97474 0.699290 0.349645 0.936882i \(-0.386302\pi\)
0.349645 + 0.936882i \(0.386302\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.48946 −0.625582
\(78\) 0 0
\(79\) −15.0075 −1.68848 −0.844239 0.535966i \(-0.819947\pi\)
−0.844239 + 0.535966i \(0.819947\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −14.3059 −1.57028 −0.785140 0.619319i \(-0.787409\pi\)
−0.785140 + 0.619319i \(0.787409\pi\)
\(84\) 0 0
\(85\) 0.853690 0.0925956
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.42847 0.151417 0.0757086 0.997130i \(-0.475878\pi\)
0.0757086 + 0.997130i \(0.475878\pi\)
\(90\) 0 0
\(91\) −4.22478 −0.442877
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.853690 0.0875867
\(96\) 0 0
\(97\) −16.3990 −1.66507 −0.832535 0.553973i \(-0.813111\pi\)
−0.832535 + 0.553973i \(0.813111\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.115816 0.0115241 0.00576206 0.999983i \(-0.498166\pi\)
0.00576206 + 0.999983i \(0.498166\pi\)
\(102\) 0 0
\(103\) 13.3507 1.31548 0.657740 0.753245i \(-0.271512\pi\)
0.657740 + 0.753245i \(0.271512\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.2926 0.995025 0.497513 0.867457i \(-0.334247\pi\)
0.497513 + 0.867457i \(0.334247\pi\)
\(108\) 0 0
\(109\) 9.95687 0.953696 0.476848 0.878986i \(-0.341779\pi\)
0.476848 + 0.878986i \(0.341779\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 18.8486 1.77313 0.886563 0.462608i \(-0.153086\pi\)
0.886563 + 0.462608i \(0.153086\pi\)
\(114\) 0 0
\(115\) −10.7422 −1.00171
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.485281 −0.0444857
\(120\) 0 0
\(121\) −4.53488 −0.412261
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −16.8032 −1.50292
\(126\) 0 0
\(127\) −3.81580 −0.338597 −0.169299 0.985565i \(-0.554150\pi\)
−0.169299 + 0.985565i \(0.554150\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.08532 0.0948250 0.0474125 0.998875i \(-0.484902\pi\)
0.0474125 + 0.998875i \(0.484902\pi\)
\(132\) 0 0
\(133\) −0.485281 −0.0420792
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.31010 0.453672 0.226836 0.973933i \(-0.427162\pi\)
0.226836 + 0.973933i \(0.427162\pi\)
\(138\) 0 0
\(139\) 12.3990 1.05167 0.525836 0.850586i \(-0.323753\pi\)
0.525836 + 0.850586i \(0.323753\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.97567 0.416086
\(144\) 0 0
\(145\) −9.97474 −0.828357
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.45479 0.119181 0.0595904 0.998223i \(-0.481021\pi\)
0.0595904 + 0.998223i \(0.481021\pi\)
\(150\) 0 0
\(151\) 2.03696 0.165766 0.0828829 0.996559i \(-0.473587\pi\)
0.0828829 + 0.996559i \(0.473587\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.99222 −0.561628
\(156\) 0 0
\(157\) 8.61790 0.687784 0.343892 0.939009i \(-0.388255\pi\)
0.343892 + 0.939009i \(0.388255\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.10641 0.481252
\(162\) 0 0
\(163\) 4.86054 0.380707 0.190354 0.981716i \(-0.439037\pi\)
0.190354 + 0.981716i \(0.439037\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 21.7023 1.67937 0.839686 0.543072i \(-0.182739\pi\)
0.839686 + 0.543072i \(0.182739\pi\)
\(168\) 0 0
\(169\) −9.17064 −0.705434
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −12.3695 −0.940433 −0.470217 0.882551i \(-0.655824\pi\)
−0.470217 + 0.882551i \(0.655824\pi\)
\(174\) 0 0
\(175\) 20.3465 1.53805
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.6413 0.870111 0.435055 0.900404i \(-0.356729\pi\)
0.435055 + 0.900404i \(0.356729\pi\)
\(180\) 0 0
\(181\) 9.50732 0.706673 0.353337 0.935496i \(-0.385047\pi\)
0.353337 + 0.935496i \(0.385047\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −19.7091 −1.44904
\(186\) 0 0
\(187\) 0.571533 0.0417946
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 20.8032 1.50526 0.752632 0.658441i \(-0.228784\pi\)
0.752632 + 0.658441i \(0.228784\pi\)
\(192\) 0 0
\(193\) 14.1454 1.01821 0.509103 0.860705i \(-0.329977\pi\)
0.509103 + 0.860705i \(0.329977\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.43463 −0.244707 −0.122354 0.992487i \(-0.539044\pi\)
−0.122354 + 0.992487i \(0.539044\pi\)
\(198\) 0 0
\(199\) 0.306182 0.0217047 0.0108523 0.999941i \(-0.496546\pi\)
0.0108523 + 0.999941i \(0.496546\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.67016 0.397967
\(204\) 0 0
\(205\) 22.3380 1.56016
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.571533 0.0395337
\(210\) 0 0
\(211\) −10.2284 −0.704151 −0.352076 0.935972i \(-0.614524\pi\)
−0.352076 + 0.935972i \(0.614524\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 41.6517 2.84063
\(216\) 0 0
\(217\) 3.97474 0.269823
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.439861 0.0295883
\(222\) 0 0
\(223\) −1.71908 −0.115118 −0.0575591 0.998342i \(-0.518332\pi\)
−0.0575591 + 0.998342i \(0.518332\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −14.3059 −0.949518 −0.474759 0.880116i \(-0.657465\pi\)
−0.474759 + 0.880116i \(0.657465\pi\)
\(228\) 0 0
\(229\) 16.9981 1.12327 0.561634 0.827386i \(-0.310173\pi\)
0.561634 + 0.827386i \(0.310173\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.3779 −0.876418 −0.438209 0.898873i \(-0.644387\pi\)
−0.438209 + 0.898873i \(0.644387\pi\)
\(234\) 0 0
\(235\) 10.7422 0.700742
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.3675 0.864670 0.432335 0.901713i \(-0.357690\pi\)
0.432335 + 0.901713i \(0.357690\pi\)
\(240\) 0 0
\(241\) −0.211474 −0.0136222 −0.00681112 0.999977i \(-0.502168\pi\)
−0.00681112 + 0.999977i \(0.502168\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.88325 0.567530
\(246\) 0 0
\(247\) 0.439861 0.0279877
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.7555 0.931358 0.465679 0.884954i \(-0.345810\pi\)
0.465679 + 0.884954i \(0.345810\pi\)
\(252\) 0 0
\(253\) −7.19173 −0.452140
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.742176 0.0462957 0.0231478 0.999732i \(-0.492631\pi\)
0.0231478 + 0.999732i \(0.492631\pi\)
\(258\) 0 0
\(259\) 11.2037 0.696163
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −5.48435 −0.338180 −0.169090 0.985601i \(-0.554083\pi\)
−0.169090 + 0.985601i \(0.554083\pi\)
\(264\) 0 0
\(265\) 40.3582 2.47918
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 20.4694 1.24804 0.624021 0.781407i \(-0.285498\pi\)
0.624021 + 0.781407i \(0.285498\pi\)
\(270\) 0 0
\(271\) 14.0370 0.852685 0.426342 0.904562i \(-0.359802\pi\)
0.426342 + 0.904562i \(0.359802\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −23.9628 −1.44501
\(276\) 0 0
\(277\) 13.4211 0.806394 0.403197 0.915113i \(-0.367899\pi\)
0.403197 + 0.915113i \(0.367899\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3.89359 −0.232272 −0.116136 0.993233i \(-0.537051\pi\)
−0.116136 + 0.993233i \(0.537051\pi\)
\(282\) 0 0
\(283\) 17.6569 1.04959 0.524796 0.851228i \(-0.324142\pi\)
0.524796 + 0.851228i \(0.324142\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.6981 −0.749545
\(288\) 0 0
\(289\) −16.9495 −0.997028
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −15.7759 −0.921639 −0.460819 0.887494i \(-0.652444\pi\)
−0.460819 + 0.887494i \(0.652444\pi\)
\(294\) 0 0
\(295\) −21.4844 −1.25087
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5.53488 −0.320090
\(300\) 0 0
\(301\) −23.6770 −1.36472
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −32.1587 −1.84140
\(306\) 0 0
\(307\) 7.64129 0.436111 0.218056 0.975936i \(-0.430029\pi\)
0.218056 + 0.975936i \(0.430029\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.1623 −1.37012 −0.685059 0.728488i \(-0.740224\pi\)
−0.685059 + 0.728488i \(0.740224\pi\)
\(312\) 0 0
\(313\) −16.6105 −0.938881 −0.469441 0.882964i \(-0.655544\pi\)
−0.469441 + 0.882964i \(0.655544\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.56213 −0.143903 −0.0719517 0.997408i \(-0.522923\pi\)
−0.0719517 + 0.997408i \(0.522923\pi\)
\(318\) 0 0
\(319\) −6.67794 −0.373893
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.0505249 0.00281128
\(324\) 0 0
\(325\) −18.4422 −1.02299
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.10641 −0.336657
\(330\) 0 0
\(331\) 19.1275 1.05134 0.525671 0.850688i \(-0.323814\pi\)
0.525671 + 0.850688i \(0.323814\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 55.9898 3.05905
\(336\) 0 0
\(337\) 1.12615 0.0613454 0.0306727 0.999529i \(-0.490235\pi\)
0.0306727 + 0.999529i \(0.490235\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4.68119 −0.253500
\(342\) 0 0
\(343\) −20.1623 −1.08866
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 29.4068 1.57864 0.789320 0.613982i \(-0.210433\pi\)
0.789320 + 0.613982i \(0.210433\pi\)
\(348\) 0 0
\(349\) −27.2738 −1.45993 −0.729967 0.683482i \(-0.760465\pi\)
−0.729967 + 0.683482i \(0.760465\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −25.5908 −1.36206 −0.681029 0.732256i \(-0.738467\pi\)
−0.681029 + 0.732256i \(0.738467\pi\)
\(354\) 0 0
\(355\) −16.3990 −0.870370
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.77296 −0.199129 −0.0995645 0.995031i \(-0.531745\pi\)
−0.0995645 + 0.995031i \(0.531745\pi\)
\(360\) 0 0
\(361\) −18.9495 −0.997341
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −22.6917 −1.18774
\(366\) 0 0
\(367\) 27.4474 1.43274 0.716371 0.697720i \(-0.245802\pi\)
0.716371 + 0.697720i \(0.245802\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −22.9417 −1.19107
\(372\) 0 0
\(373\) 17.8518 0.924332 0.462166 0.886794i \(-0.347072\pi\)
0.462166 + 0.886794i \(0.347072\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.13946 −0.264695
\(378\) 0 0
\(379\) 16.5018 0.847642 0.423821 0.905746i \(-0.360689\pi\)
0.423821 + 0.905746i \(0.360689\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.1885 0.878291 0.439145 0.898416i \(-0.355281\pi\)
0.439145 + 0.898416i \(0.355281\pi\)
\(384\) 0 0
\(385\) 20.8486 1.06254
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.66209 −0.134973 −0.0674866 0.997720i \(-0.521498\pi\)
−0.0674866 + 0.997720i \(0.521498\pi\)
\(390\) 0 0
\(391\) −0.635767 −0.0321521
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 56.9976 2.86786
\(396\) 0 0
\(397\) −11.8959 −0.597037 −0.298519 0.954404i \(-0.596493\pi\)
−0.298519 + 0.954404i \(0.596493\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.12389 0.0561242 0.0280621 0.999606i \(-0.491066\pi\)
0.0280621 + 0.999606i \(0.491066\pi\)
\(402\) 0 0
\(403\) −3.60272 −0.179464
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −13.1950 −0.654051
\(408\) 0 0
\(409\) 13.7211 0.678464 0.339232 0.940703i \(-0.389833\pi\)
0.339232 + 0.940703i \(0.389833\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 12.2128 0.600953
\(414\) 0 0
\(415\) 54.3329 2.66710
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13.1629 0.643048 0.321524 0.946901i \(-0.395805\pi\)
0.321524 + 0.946901i \(0.395805\pi\)
\(420\) 0 0
\(421\) −11.9413 −0.581984 −0.290992 0.956726i \(-0.593985\pi\)
−0.290992 + 0.956726i \(0.593985\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.11837 −0.102756
\(426\) 0 0
\(427\) 18.2807 0.884663
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −30.6054 −1.47421 −0.737105 0.675778i \(-0.763808\pi\)
−0.737105 + 0.675778i \(0.763808\pi\)
\(432\) 0 0
\(433\) 15.3137 0.735930 0.367965 0.929840i \(-0.380055\pi\)
0.367965 + 0.929840i \(0.380055\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.635767 −0.0304128
\(438\) 0 0
\(439\) 33.3676 1.59255 0.796274 0.604936i \(-0.206801\pi\)
0.796274 + 0.604936i \(0.206801\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.23617 0.153755 0.0768776 0.997041i \(-0.475505\pi\)
0.0768776 + 0.997041i \(0.475505\pi\)
\(444\) 0 0
\(445\) −5.42522 −0.257180
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 27.4165 1.29387 0.646933 0.762547i \(-0.276052\pi\)
0.646933 + 0.762547i \(0.276052\pi\)
\(450\) 0 0
\(451\) 14.9550 0.704203
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 16.0454 0.752221
\(456\) 0 0
\(457\) −10.9147 −0.510567 −0.255284 0.966866i \(-0.582169\pi\)
−0.255284 + 0.966866i \(0.582169\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 25.2181 1.17452 0.587261 0.809398i \(-0.300206\pi\)
0.587261 + 0.809398i \(0.300206\pi\)
\(462\) 0 0
\(463\) −22.4937 −1.04537 −0.522686 0.852525i \(-0.675070\pi\)
−0.522686 + 0.852525i \(0.675070\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 34.2482 1.58482 0.792408 0.609991i \(-0.208827\pi\)
0.792408 + 0.609991i \(0.208827\pi\)
\(468\) 0 0
\(469\) −31.8275 −1.46966
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 27.8852 1.28216
\(474\) 0 0
\(475\) −2.11837 −0.0971974
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 36.2362 1.65568 0.827838 0.560968i \(-0.189571\pi\)
0.827838 + 0.560968i \(0.189571\pi\)
\(480\) 0 0
\(481\) −10.1551 −0.463032
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 62.2824 2.82810
\(486\) 0 0
\(487\) 16.8200 0.762186 0.381093 0.924537i \(-0.375548\pi\)
0.381093 + 0.924537i \(0.375548\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8.63577 −0.389727 −0.194863 0.980830i \(-0.562426\pi\)
−0.194863 + 0.980830i \(0.562426\pi\)
\(492\) 0 0
\(493\) −0.590346 −0.0265879
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.32206 0.418151
\(498\) 0 0
\(499\) 27.8275 1.24573 0.622865 0.782329i \(-0.285969\pi\)
0.622865 + 0.782329i \(0.285969\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 25.7308 1.14728 0.573639 0.819108i \(-0.305531\pi\)
0.573639 + 0.819108i \(0.305531\pi\)
\(504\) 0 0
\(505\) −0.439861 −0.0195736
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.45386 −0.108765 −0.0543826 0.998520i \(-0.517319\pi\)
−0.0543826 + 0.998520i \(0.517319\pi\)
\(510\) 0 0
\(511\) 12.8991 0.570623
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −50.7050 −2.23433
\(516\) 0 0
\(517\) 7.19173 0.316292
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 33.5944 1.47180 0.735898 0.677092i \(-0.236760\pi\)
0.735898 + 0.677092i \(0.236760\pi\)
\(522\) 0 0
\(523\) −30.8522 −1.34907 −0.674536 0.738242i \(-0.735656\pi\)
−0.674536 + 0.738242i \(0.735656\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.413828 −0.0180266
\(528\) 0 0
\(529\) −15.0000 −0.652174
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.5096 0.498537
\(534\) 0 0
\(535\) −39.0907 −1.69004
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.94721 0.256164
\(540\) 0 0
\(541\) 38.4825 1.65449 0.827245 0.561841i \(-0.189907\pi\)
0.827245 + 0.561841i \(0.189907\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −37.8155 −1.61984
\(546\) 0 0
\(547\) −9.61829 −0.411248 −0.205624 0.978631i \(-0.565922\pi\)
−0.205624 + 0.978631i \(0.565922\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.590346 −0.0251496
\(552\) 0 0
\(553\) −32.4004 −1.37780
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6.07174 −0.257268 −0.128634 0.991692i \(-0.541059\pi\)
−0.128634 + 0.991692i \(0.541059\pi\)
\(558\) 0 0
\(559\) 21.4609 0.907701
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14.2554 −0.600793 −0.300397 0.953814i \(-0.597119\pi\)
−0.300397 + 0.953814i \(0.597119\pi\)
\(564\) 0 0
\(565\) −71.5857 −3.01163
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 32.5018 1.36255 0.681274 0.732029i \(-0.261426\pi\)
0.681274 + 0.732029i \(0.261426\pi\)
\(570\) 0 0
\(571\) 12.9706 0.542801 0.271401 0.962466i \(-0.412513\pi\)
0.271401 + 0.962466i \(0.412513\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 26.6559 1.11163
\(576\) 0 0
\(577\) 11.7536 0.489308 0.244654 0.969611i \(-0.421326\pi\)
0.244654 + 0.969611i \(0.421326\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −30.8857 −1.28135
\(582\) 0 0
\(583\) 27.0192 1.11902
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.13585 −0.377077 −0.188538 0.982066i \(-0.560375\pi\)
−0.188538 + 0.982066i \(0.560375\pi\)
\(588\) 0 0
\(589\) −0.413828 −0.0170515
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 5.49270 0.225558 0.112779 0.993620i \(-0.464025\pi\)
0.112779 + 0.993620i \(0.464025\pi\)
\(594\) 0 0
\(595\) 1.84307 0.0755583
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 36.4348 1.48868 0.744342 0.667799i \(-0.232763\pi\)
0.744342 + 0.667799i \(0.232763\pi\)
\(600\) 0 0
\(601\) −9.97474 −0.406878 −0.203439 0.979088i \(-0.565212\pi\)
−0.203439 + 0.979088i \(0.565212\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 17.2232 0.700221
\(606\) 0 0
\(607\) 4.51900 0.183421 0.0917103 0.995786i \(-0.470767\pi\)
0.0917103 + 0.995786i \(0.470767\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.53488 0.223917
\(612\) 0 0
\(613\) 11.9316 0.481913 0.240957 0.970536i \(-0.422539\pi\)
0.240957 + 0.970536i \(0.422539\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.1201 1.29311 0.646554 0.762869i \(-0.276210\pi\)
0.646554 + 0.762869i \(0.276210\pi\)
\(618\) 0 0
\(619\) 21.2715 0.854975 0.427488 0.904021i \(-0.359399\pi\)
0.427488 + 0.904021i \(0.359399\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.08398 0.123557
\(624\) 0 0
\(625\) 16.6958 0.667833
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.16647 −0.0465101
\(630\) 0 0
\(631\) 36.4685 1.45179 0.725894 0.687807i \(-0.241426\pi\)
0.725894 + 0.687807i \(0.241426\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 14.4921 0.575103
\(636\) 0 0
\(637\) 4.57707 0.181350
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −14.0036 −0.553109 −0.276555 0.960998i \(-0.589193\pi\)
−0.276555 + 0.960998i \(0.589193\pi\)
\(642\) 0 0
\(643\) 23.4807 0.925990 0.462995 0.886361i \(-0.346775\pi\)
0.462995 + 0.886361i \(0.346775\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.1908 0.479270 0.239635 0.970863i \(-0.422972\pi\)
0.239635 + 0.970863i \(0.422972\pi\)
\(648\) 0 0
\(649\) −14.3835 −0.564600
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.39055 0.0544165 0.0272083 0.999630i \(-0.491338\pi\)
0.0272083 + 0.999630i \(0.491338\pi\)
\(654\) 0 0
\(655\) −4.12198 −0.161059
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −25.5349 −0.994698 −0.497349 0.867551i \(-0.665693\pi\)
−0.497349 + 0.867551i \(0.665693\pi\)
\(660\) 0 0
\(661\) −6.44726 −0.250769 −0.125385 0.992108i \(-0.540017\pi\)
−0.125385 + 0.992108i \(0.540017\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.84307 0.0714710
\(666\) 0 0
\(667\) 7.42847 0.287631
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −21.5298 −0.831148
\(672\) 0 0
\(673\) −10.8569 −0.418504 −0.209252 0.977862i \(-0.567103\pi\)
−0.209252 + 0.977862i \(0.567103\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 33.5262 1.28852 0.644259 0.764807i \(-0.277166\pi\)
0.644259 + 0.764807i \(0.277166\pi\)
\(678\) 0 0
\(679\) −35.4045 −1.35870
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 25.2206 0.965040 0.482520 0.875885i \(-0.339722\pi\)
0.482520 + 0.875885i \(0.339722\pi\)
\(684\) 0 0
\(685\) −20.1674 −0.770557
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 20.7945 0.792205
\(690\) 0 0
\(691\) −15.3523 −0.584028 −0.292014 0.956414i \(-0.594325\pi\)
−0.292014 + 0.956414i \(0.594325\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −47.0907 −1.78625
\(696\) 0 0
\(697\) 1.32206 0.0500765
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8.61079 0.325225 0.162613 0.986690i \(-0.448008\pi\)
0.162613 + 0.986690i \(0.448008\pi\)
\(702\) 0 0
\(703\) −1.16647 −0.0439942
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.250040 0.00940372
\(708\) 0 0
\(709\) −32.3624 −1.21539 −0.607697 0.794169i \(-0.707906\pi\)
−0.607697 + 0.794169i \(0.707906\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5.20730 0.195015
\(714\) 0 0
\(715\) −18.8972 −0.706717
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.46744 −0.0547262 −0.0273631 0.999626i \(-0.508711\pi\)
−0.0273631 + 0.999626i \(0.508711\pi\)
\(720\) 0 0
\(721\) 28.8233 1.07344
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 24.7516 0.919251
\(726\) 0 0
\(727\) −15.3928 −0.570889 −0.285445 0.958395i \(-0.592141\pi\)
−0.285445 + 0.958395i \(0.592141\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.46512 0.0911759
\(732\) 0 0
\(733\) −17.5624 −0.648683 −0.324342 0.945940i \(-0.605143\pi\)
−0.324342 + 0.945940i \(0.605143\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 37.4844 1.38075
\(738\) 0 0
\(739\) −20.7266 −0.762441 −0.381220 0.924484i \(-0.624496\pi\)
−0.381220 + 0.924484i \(0.624496\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31.7821 1.16597 0.582986 0.812482i \(-0.301884\pi\)
0.582986 + 0.812482i \(0.301884\pi\)
\(744\) 0 0
\(745\) −5.52518 −0.202427
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 22.2212 0.811944
\(750\) 0 0
\(751\) −29.7594 −1.08594 −0.542968 0.839753i \(-0.682699\pi\)
−0.542968 + 0.839753i \(0.682699\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −7.73625 −0.281551
\(756\) 0 0
\(757\) 22.1119 0.803672 0.401836 0.915712i \(-0.368372\pi\)
0.401836 + 0.915712i \(0.368372\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.55957 0.165284 0.0826422 0.996579i \(-0.473664\pi\)
0.0826422 + 0.996579i \(0.473664\pi\)
\(762\) 0 0
\(763\) 21.4963 0.778219
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −11.0698 −0.399706
\(768\) 0 0
\(769\) 36.5794 1.31909 0.659543 0.751667i \(-0.270750\pi\)
0.659543 + 0.751667i \(0.270750\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −26.4611 −0.951739 −0.475869 0.879516i \(-0.657867\pi\)
−0.475869 + 0.879516i \(0.657867\pi\)
\(774\) 0 0
\(775\) 17.3507 0.623255
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.32206 0.0473676
\(780\) 0 0
\(781\) −10.9789 −0.392856
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −32.7302 −1.16819
\(786\) 0 0
\(787\) −18.9164 −0.674298 −0.337149 0.941451i \(-0.609463\pi\)
−0.337149 + 0.941451i \(0.609463\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 40.6930 1.44688
\(792\) 0 0
\(793\) −16.5697 −0.588406
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 47.8065 1.69339 0.846697 0.532075i \(-0.178588\pi\)
0.846697 + 0.532075i \(0.178588\pi\)
\(798\) 0 0
\(799\) 0.635767 0.0224918
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −15.1917 −0.536105
\(804\) 0 0
\(805\) −23.1917 −0.817401
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −29.9862 −1.05426 −0.527129 0.849785i \(-0.676732\pi\)
−0.527129 + 0.849785i \(0.676732\pi\)
\(810\) 0 0
\(811\) −11.3899 −0.399954 −0.199977 0.979801i \(-0.564087\pi\)
−0.199977 + 0.979801i \(0.564087\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −18.4600 −0.646626
\(816\) 0 0
\(817\) 2.46512 0.0862438
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −19.6929 −0.687286 −0.343643 0.939100i \(-0.611661\pi\)
−0.343643 + 0.939100i \(0.611661\pi\)
\(822\) 0 0
\(823\) 22.4666 0.783137 0.391568 0.920149i \(-0.371933\pi\)
0.391568 + 0.920149i \(0.371933\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.7927 0.375299 0.187649 0.982236i \(-0.439913\pi\)
0.187649 + 0.982236i \(0.439913\pi\)
\(828\) 0 0
\(829\) −45.9421 −1.59563 −0.797817 0.602900i \(-0.794012\pi\)
−0.797817 + 0.602900i \(0.794012\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.525748 0.0182161
\(834\) 0 0
\(835\) −82.4238 −2.85239
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −22.9142 −0.791085 −0.395542 0.918448i \(-0.629443\pi\)
−0.395542 + 0.918448i \(0.629443\pi\)
\(840\) 0 0
\(841\) −22.1022 −0.762146
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 34.8295 1.19817
\(846\) 0 0
\(847\) −9.79053 −0.336407
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 14.6779 0.503153
\(852\) 0 0
\(853\) 55.0728 1.88566 0.942829 0.333278i \(-0.108155\pi\)
0.942829 + 0.333278i \(0.108155\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.79079 0.0611723 0.0305861 0.999532i \(-0.490263\pi\)
0.0305861 + 0.999532i \(0.490263\pi\)
\(858\) 0 0
\(859\) −25.5468 −0.871647 −0.435823 0.900032i \(-0.643543\pi\)
−0.435823 + 0.900032i \(0.643543\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −42.1150 −1.43361 −0.716806 0.697273i \(-0.754397\pi\)
−0.716806 + 0.697273i \(0.754397\pi\)
\(864\) 0 0
\(865\) 46.9784 1.59731
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 38.1590 1.29446
\(870\) 0 0
\(871\) 28.8486 0.977497
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −36.2771 −1.22639
\(876\) 0 0
\(877\) −1.01044 −0.0341203 −0.0170601 0.999854i \(-0.505431\pi\)
−0.0170601 + 0.999854i \(0.505431\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −44.3972 −1.49578 −0.747889 0.663823i \(-0.768933\pi\)
−0.747889 + 0.663823i \(0.768933\pi\)
\(882\) 0 0
\(883\) −1.82389 −0.0613787 −0.0306894 0.999529i \(-0.509770\pi\)
−0.0306894 + 0.999529i \(0.509770\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.38532 −0.147245 −0.0736223 0.997286i \(-0.523456\pi\)
−0.0736223 + 0.997286i \(0.523456\pi\)
\(888\) 0 0
\(889\) −8.23808 −0.276296
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.635767 0.0212751
\(894\) 0 0
\(895\) −44.2128 −1.47787
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.83528 0.161266
\(900\) 0 0
\(901\) 2.38857 0.0795747
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −36.1082 −1.20028
\(906\) 0 0
\(907\) −4.06248 −0.134893 −0.0674463 0.997723i \(-0.521485\pi\)
−0.0674463 + 0.997723i \(0.521485\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 42.3784 1.40406 0.702029 0.712149i \(-0.252278\pi\)
0.702029 + 0.712149i \(0.252278\pi\)
\(912\) 0 0
\(913\) 36.3751 1.20384
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.34315 0.0773775
\(918\) 0 0
\(919\) 44.8603 1.47980 0.739902 0.672715i \(-0.234872\pi\)
0.739902 + 0.672715i \(0.234872\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −8.44955 −0.278120
\(924\) 0 0
\(925\) 48.9068 1.60804
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2.96695 0.0973426 0.0486713 0.998815i \(-0.484501\pi\)
0.0486713 + 0.998815i \(0.484501\pi\)
\(930\) 0 0
\(931\) 0.525748 0.0172307
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.17064 −0.0709876
\(936\) 0 0
\(937\) 54.7669 1.78916 0.894579 0.446910i \(-0.147476\pi\)
0.894579 + 0.446910i \(0.147476\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −8.89558 −0.289988 −0.144994 0.989433i \(-0.546316\pi\)
−0.144994 + 0.989433i \(0.546316\pi\)
\(942\) 0 0
\(943\) −16.6358 −0.541735
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −15.8541 −0.515189 −0.257595 0.966253i \(-0.582930\pi\)
−0.257595 + 0.966253i \(0.582930\pi\)
\(948\) 0 0
\(949\) −11.6918 −0.379532
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 30.2807 0.980887 0.490443 0.871473i \(-0.336835\pi\)
0.490443 + 0.871473i \(0.336835\pi\)
\(954\) 0 0
\(955\) −79.0090 −2.55667
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 11.4642 0.370198
\(960\) 0 0
\(961\) −27.6105 −0.890661
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −53.7232 −1.72941
\(966\) 0 0
\(967\) −10.5273 −0.338537 −0.169268 0.985570i \(-0.554140\pi\)
−0.169268 + 0.985570i \(0.554140\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −38.7050 −1.24210 −0.621051 0.783771i \(-0.713294\pi\)
−0.621051 + 0.783771i \(0.713294\pi\)
\(972\) 0 0
\(973\) 26.7688 0.858168
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −16.9009 −0.540706 −0.270353 0.962761i \(-0.587140\pi\)
−0.270353 + 0.962761i \(0.587140\pi\)
\(978\) 0 0
\(979\) −3.63211 −0.116083
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 10.0798 0.321496 0.160748 0.986995i \(-0.448609\pi\)
0.160748 + 0.986995i \(0.448609\pi\)
\(984\) 0 0
\(985\) 13.0445 0.415632
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −31.0192 −0.986354
\(990\) 0 0
\(991\) −42.3446 −1.34512 −0.672561 0.740042i \(-0.734806\pi\)
−0.672561 + 0.740042i \(0.734806\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.16286 −0.0368651
\(996\) 0 0
\(997\) 47.6132 1.50793 0.753963 0.656917i \(-0.228140\pi\)
0.753963 + 0.656917i \(0.228140\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9216.2.a.y.1.1 4
3.2 odd 2 3072.2.a.t.1.4 4
4.3 odd 2 9216.2.a.x.1.1 4
8.3 odd 2 9216.2.a.bn.1.4 4
8.5 even 2 9216.2.a.bo.1.4 4
12.11 even 2 3072.2.a.n.1.4 4
24.5 odd 2 3072.2.a.i.1.1 4
24.11 even 2 3072.2.a.o.1.1 4
32.3 odd 8 576.2.k.b.145.4 8
32.5 even 8 1152.2.k.c.865.1 8
32.11 odd 8 576.2.k.b.433.4 8
32.13 even 8 1152.2.k.c.289.1 8
32.19 odd 8 1152.2.k.f.289.1 8
32.21 even 8 144.2.k.b.37.2 8
32.27 odd 8 1152.2.k.f.865.1 8
32.29 even 8 144.2.k.b.109.2 8
48.5 odd 4 3072.2.d.f.1537.4 8
48.11 even 4 3072.2.d.i.1537.8 8
48.29 odd 4 3072.2.d.f.1537.5 8
48.35 even 4 3072.2.d.i.1537.1 8
96.5 odd 8 384.2.j.b.97.2 8
96.11 even 8 192.2.j.a.49.1 8
96.29 odd 8 48.2.j.a.13.3 8
96.35 even 8 192.2.j.a.145.1 8
96.53 odd 8 48.2.j.a.37.3 yes 8
96.59 even 8 384.2.j.a.97.4 8
96.77 odd 8 384.2.j.b.289.2 8
96.83 even 8 384.2.j.a.289.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.2.j.a.13.3 8 96.29 odd 8
48.2.j.a.37.3 yes 8 96.53 odd 8
144.2.k.b.37.2 8 32.21 even 8
144.2.k.b.109.2 8 32.29 even 8
192.2.j.a.49.1 8 96.11 even 8
192.2.j.a.145.1 8 96.35 even 8
384.2.j.a.97.4 8 96.59 even 8
384.2.j.a.289.4 8 96.83 even 8
384.2.j.b.97.2 8 96.5 odd 8
384.2.j.b.289.2 8 96.77 odd 8
576.2.k.b.145.4 8 32.3 odd 8
576.2.k.b.433.4 8 32.11 odd 8
1152.2.k.c.289.1 8 32.13 even 8
1152.2.k.c.865.1 8 32.5 even 8
1152.2.k.f.289.1 8 32.19 odd 8
1152.2.k.f.865.1 8 32.27 odd 8
3072.2.a.i.1.1 4 24.5 odd 2
3072.2.a.n.1.4 4 12.11 even 2
3072.2.a.o.1.1 4 24.11 even 2
3072.2.a.t.1.4 4 3.2 odd 2
3072.2.d.f.1537.4 8 48.5 odd 4
3072.2.d.f.1537.5 8 48.29 odd 4
3072.2.d.i.1537.1 8 48.35 even 4
3072.2.d.i.1537.8 8 48.11 even 4
9216.2.a.x.1.1 4 4.3 odd 2
9216.2.a.y.1.1 4 1.1 even 1 trivial
9216.2.a.bn.1.4 4 8.3 odd 2
9216.2.a.bo.1.4 4 8.5 even 2