Properties

Label 9216.2.a
Level $9216$
Weight $2$
Character orbit 9216.a
Rep. character $\chi_{9216}(1,\cdot)$
Character field $\Q$
Dimension $156$
Newform subspaces $46$
Sturm bound $3072$
Trace bound $67$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 9216 = 2^{10} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9216.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 46 \)
Sturm bound: \(3072\)
Trace bound: \(67\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\), \(13\), \(17\), \(19\), \(67\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9216))\).

Total New Old
Modular forms 1632 164 1468
Cusp forms 1441 156 1285
Eisenstein series 191 8 183

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(+\)\(+\)\(+\)\(28\)
\(+\)\(-\)\(-\)\(48\)
\(-\)\(+\)\(-\)\(36\)
\(-\)\(-\)\(+\)\(44\)
Plus space\(+\)\(72\)
Minus space\(-\)\(84\)

Trace form

\( 156 q + O(q^{10}) \) \( 156 q - 8 q^{17} + 140 q^{25} + 140 q^{49} + 8 q^{65} - 8 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9216))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
9216.2.a.a 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 4608.2.k.d \(0\) \(0\) \(0\) \(-8\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{5}-4q^{7}-4\beta q^{11}+3\beta q^{13}+\cdots\)
9216.2.a.b 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 512.2.e.a \(0\) \(0\) \(0\) \(-8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{5}-4q^{7}+2\beta q^{11}-3\beta q^{13}+\cdots\)
9216.2.a.c 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 4608.2.k.d \(0\) \(0\) \(0\) \(-8\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{5}-4q^{7}-4\beta q^{11}-3\beta q^{13}+\cdots\)
9216.2.a.d 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 16.2.e.a \(0\) \(0\) \(0\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{5}-2q^{7}+\beta q^{11}-\beta q^{13}-2q^{17}+\cdots\)
9216.2.a.e 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 768.2.j.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2\beta q^{5}+3\beta q^{7}-4q^{11}-3\beta q^{13}+\cdots\)
9216.2.a.f 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 1536.2.j.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{5}-4q^{11}+\beta q^{13}+4q^{19}+4\beta q^{23}+\cdots\)
9216.2.a.g 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) \(\Q(\sqrt{-1}) \) 512.2.e.c \(0\) \(0\) \(0\) \(0\) $-$ $-$ $N(\mathrm{U}(1))$ \(q+3\beta q^{5}-\beta q^{13}-8q^{17}+13q^{25}+\cdots\)
9216.2.a.h 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 1536.2.j.b \(0\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{5}-2\beta q^{7}+3\beta q^{13}-4q^{17}+\cdots\)
9216.2.a.i 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 1536.2.j.b \(0\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+2\beta q^{7}+3\beta q^{13}-4q^{17}+\cdots\)
9216.2.a.j 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) \(\Q(\sqrt{-1}) \) 4608.2.k.h \(0\) \(0\) \(0\) \(0\) $+$ $+$ $N(\mathrm{U}(1))$ \(q+\beta q^{5}+\beta q^{13}-2q^{17}-3q^{25}-3\beta q^{29}+\cdots\)
9216.2.a.k 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) \(\Q(\sqrt{-1}) \) 4608.2.k.a \(0\) \(0\) \(0\) \(0\) $-$ $+$ $N(\mathrm{U}(1))$ \(q+3\beta q^{5}-5\beta q^{13}-2q^{17}+13q^{25}+\cdots\)
9216.2.a.l 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) \(\Q(\sqrt{-1}) \) 4608.2.k.h \(0\) \(0\) \(0\) \(0\) $+$ $+$ $N(\mathrm{U}(1))$ \(q+\beta q^{5}-\beta q^{13}+2q^{17}-3q^{25}-3\beta q^{29}+\cdots\)
9216.2.a.m 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) \(\Q(\sqrt{-1}) \) 4608.2.k.a \(0\) \(0\) \(0\) \(0\) $-$ $+$ $N(\mathrm{U}(1))$ \(q+3\beta q^{5}+5\beta q^{13}+2q^{17}+13q^{25}+\cdots\)
9216.2.a.n 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 768.2.j.b \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{7}-\beta q^{13}+6q^{17}-6q^{19}+6\beta q^{23}+\cdots\)
9216.2.a.o 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 768.2.j.b \(0\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{7}+\beta q^{13}+6q^{17}+6q^{19}+6\beta q^{23}+\cdots\)
9216.2.a.p 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) \(\Q(\sqrt{-1}) \) 512.2.e.d \(0\) \(0\) \(0\) \(0\) $+$ $-$ $N(\mathrm{U}(1))$ \(q+\beta q^{5}+5\beta q^{13}+8q^{17}-3q^{25}+\cdots\)
9216.2.a.q 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 768.2.j.a \(0\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2\beta q^{5}-3\beta q^{7}+4q^{11}-3\beta q^{13}+\cdots\)
9216.2.a.r 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 1536.2.j.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+4q^{11}+\beta q^{13}-4q^{19}-4\beta q^{23}+\cdots\)
9216.2.a.s 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 16.2.e.a \(0\) \(0\) \(0\) \(4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+2q^{7}-\beta q^{11}-\beta q^{13}-2q^{17}+\cdots\)
9216.2.a.t 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 4608.2.k.d \(0\) \(0\) \(0\) \(8\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+4q^{7}+4\beta q^{11}+3\beta q^{13}+\cdots\)
9216.2.a.u 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 512.2.e.a \(0\) \(0\) \(0\) \(8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+4q^{7}-2\beta q^{11}-3\beta q^{13}+\cdots\)
9216.2.a.v 9216.a 1.a $2$ $73.590$ \(\Q(\sqrt{2}) \) None 4608.2.k.d \(0\) \(0\) \(0\) \(8\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+4q^{7}+4\beta q^{11}-3\beta q^{13}+\cdots\)
9216.2.a.w 9216.a 1.a $4$ $73.590$ \(\Q(\zeta_{16})^+\) None 512.2.e.i \(0\) \(0\) \(-8\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{2})q^{5}+(-\beta _{1}+\beta _{3})q^{7}+(-\beta _{1}+\cdots)q^{11}+\cdots\)
9216.2.a.x 9216.a 1.a $4$ $73.590$ 4.4.4352.1 None 48.2.j.a \(0\) \(0\) \(-4\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{3})q^{5}+(-1-\beta _{2})q^{7}+(-\beta _{1}+\cdots)q^{11}+\cdots\)
9216.2.a.y 9216.a 1.a $4$ $73.590$ 4.4.4352.1 None 48.2.j.a \(0\) \(0\) \(-4\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{3})q^{5}+(1+\beta _{2})q^{7}+(\beta _{1}-\beta _{2}+\cdots)q^{11}+\cdots\)
9216.2.a.z 9216.a 1.a $4$ $73.590$ \(\Q(\zeta_{16})^+\) None 1536.2.j.e \(0\) \(0\) \(0\) \(-8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(\beta _{2}-\beta _{3})q^{5}+(-2-\beta _{3})q^{7}+(\beta _{1}+\cdots)q^{11}+\cdots\)
9216.2.a.ba 9216.a 1.a $4$ $73.590$ \(\Q(\zeta_{16})^+\) None 1536.2.j.e \(0\) \(0\) \(0\) \(-8\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-\beta _{2}-\beta _{3})q^{5}+(-2+\beta _{3})q^{7}+(\beta _{1}+\cdots)q^{11}+\cdots\)
9216.2.a.bb 9216.a 1.a $4$ $73.590$ \(\Q(\zeta_{24})^+\) None 256.2.e.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{5}+(-\beta _{2}-\beta _{3})q^{7}+(-3-\beta _{1}+\cdots)q^{11}+\cdots\)
9216.2.a.bc 9216.a 1.a $4$ $73.590$ \(\Q(\zeta_{24})^+\) None 768.2.j.e \(0\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(\beta _{1}+\beta _{2})q^{5}+\beta _{2}q^{7}+(-2+\beta _{3})q^{11}+\cdots\)
9216.2.a.bd 9216.a 1.a $4$ $73.590$ \(\Q(\sqrt{2}, \sqrt{5})\) None 1536.2.j.g \(0\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{5}+(-\beta _{1}-\beta _{2})q^{7}+(-2+\beta _{3})q^{11}+\cdots\)
9216.2.a.be 9216.a 1.a $4$ $73.590$ \(\Q(\zeta_{24})^+\) None 2304.2.k.h \(0\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{5}-\beta _{1}q^{7}+\beta _{3}q^{11}-\beta _{1}q^{13}+\cdots\)
9216.2.a.bf 9216.a 1.a $4$ $73.590$ \(\Q(\zeta_{24})^+\) \(\Q(\sqrt{-3}) \) 2304.2.k.g \(0\) \(0\) \(0\) \(0\) $+$ $+$ $N(\mathrm{U}(1))$ \(q+(-2\beta _{1}-\beta _{2})q^{7}+(\beta _{1}+2\beta _{2})q^{13}+\cdots\)
9216.2.a.bg 9216.a 1.a $4$ $73.590$ \(\Q(\zeta_{24})^+\) \(\Q(\sqrt{-3}) \) 2304.2.k.g \(0\) \(0\) \(0\) \(0\) $-$ $+$ $N(\mathrm{U}(1))$ \(q+(2\beta _{1}+\beta _{2})q^{7}+(\beta _{1}+2\beta _{2})q^{13}+\beta _{3}q^{19}+\cdots\)
9216.2.a.bh 9216.a 1.a $4$ $73.590$ \(\Q(\zeta_{24})^+\) None 2304.2.k.h \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{5}-\beta _{1}q^{7}+\beta _{3}q^{11}+\beta _{1}q^{13}+\cdots\)
9216.2.a.bi 9216.a 1.a $4$ $73.590$ \(\Q(\zeta_{24})^+\) None 768.2.j.e \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(\beta _{1}+\beta _{2})q^{5}-\beta _{2}q^{7}+(2-\beta _{3})q^{11}+\cdots\)
9216.2.a.bj 9216.a 1.a $4$ $73.590$ \(\Q(\sqrt{2}, \sqrt{5})\) None 1536.2.j.g \(0\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{5}+(-\beta _{1}+\beta _{2})q^{7}+(2+\beta _{3})q^{11}+\cdots\)
9216.2.a.bk 9216.a 1.a $4$ $73.590$ \(\Q(\zeta_{24})^+\) None 256.2.e.a \(0\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{5}+(\beta _{2}+\beta _{3})q^{7}+(3+\beta _{1})q^{11}+\cdots\)
9216.2.a.bl 9216.a 1.a $4$ $73.590$ \(\Q(\zeta_{16})^+\) None 1536.2.j.e \(0\) \(0\) \(0\) \(8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(\beta _{2}-\beta _{3})q^{5}+(2+\beta _{3})q^{7}+(-\beta _{1}+\cdots)q^{11}+\cdots\)
9216.2.a.bm 9216.a 1.a $4$ $73.590$ \(\Q(\zeta_{16})^+\) None 1536.2.j.e \(0\) \(0\) \(0\) \(8\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-\beta _{2}-\beta _{3})q^{5}+(2-\beta _{3})q^{7}+(-\beta _{1}+\cdots)q^{11}+\cdots\)
9216.2.a.bn 9216.a 1.a $4$ $73.590$ 4.4.4352.1 None 48.2.j.a \(0\) \(0\) \(4\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{3})q^{5}+(-1-\beta _{2})q^{7}+(\beta _{1}-\beta _{2}+\cdots)q^{11}+\cdots\)
9216.2.a.bo 9216.a 1.a $4$ $73.590$ 4.4.4352.1 None 48.2.j.a \(0\) \(0\) \(4\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{3})q^{5}+(1+\beta _{2})q^{7}+(-\beta _{1}+\beta _{2}+\cdots)q^{11}+\cdots\)
9216.2.a.bp 9216.a 1.a $4$ $73.590$ \(\Q(\zeta_{16})^+\) None 512.2.e.i \(0\) \(0\) \(8\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(2-\beta _{2})q^{5}+(\beta _{1}+\beta _{3})q^{7}+(2\beta _{1}-\beta _{3})q^{11}+\cdots\)
9216.2.a.bq 9216.a 1.a $8$ $73.590$ 8.8.\(\cdots\).1 None 144.2.k.c \(0\) \(0\) \(0\) \(-8\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{5}+(-1-\beta _{5})q^{7}+(-\beta _{2}+\beta _{7})q^{11}+\cdots\)
9216.2.a.br 9216.a 1.a $8$ $73.590$ 8.8.3288334336.1 None 4608.2.k.bk \(0\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{4}q^{5}-\beta _{7}q^{7}+\beta _{2}q^{11}+(-2+\beta _{5}+\cdots)q^{13}+\cdots\)
9216.2.a.bs 9216.a 1.a $8$ $73.590$ 8.8.3288334336.1 None 4608.2.k.bk \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{4}q^{5}+\beta _{7}q^{7}-\beta _{2}q^{11}+(2-\beta _{5}+\cdots)q^{13}+\cdots\)
9216.2.a.bt 9216.a 1.a $8$ $73.590$ 8.8.\(\cdots\).1 None 144.2.k.c \(0\) \(0\) \(0\) \(8\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{5}q^{5}+(1-\beta _{6})q^{7}+(-\beta _{2}-\beta _{5}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9216))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(9216)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(256))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(288))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(384))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(512))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(576))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(768))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1024))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1152))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1536))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2304))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3072))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4608))\)\(^{\oplus 2}\)