Defining parameters
| Level: | \( N \) | \(=\) | \( 9216 = 2^{10} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 9216.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 46 \) | ||
| Sturm bound: | \(3072\) | ||
| Trace bound: | \(67\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\), \(11\), \(13\), \(17\), \(19\), \(67\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9216))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1632 | 164 | 1468 |
| Cusp forms | 1441 | 156 | 1285 |
| Eisenstein series | 191 | 8 | 183 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(400\) | \(28\) | \(372\) | \(353\) | \(28\) | \(325\) | \(47\) | \(0\) | \(47\) | |||
| \(+\) | \(-\) | \(-\) | \(416\) | \(52\) | \(364\) | \(368\) | \(48\) | \(320\) | \(48\) | \(4\) | \(44\) | |||
| \(-\) | \(+\) | \(-\) | \(416\) | \(36\) | \(380\) | \(368\) | \(36\) | \(332\) | \(48\) | \(0\) | \(48\) | |||
| \(-\) | \(-\) | \(+\) | \(400\) | \(48\) | \(352\) | \(352\) | \(44\) | \(308\) | \(48\) | \(4\) | \(44\) | |||
| Plus space | \(+\) | \(800\) | \(76\) | \(724\) | \(705\) | \(72\) | \(633\) | \(95\) | \(4\) | \(91\) | ||||
| Minus space | \(-\) | \(832\) | \(88\) | \(744\) | \(736\) | \(84\) | \(652\) | \(96\) | \(4\) | \(92\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9216))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9216))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9216)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(256))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(288))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(384))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(512))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(576))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(768))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1024))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1152))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1536))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2304))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3072))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4608))\)\(^{\oplus 2}\)