Properties

Label 9200.2.a.cu.1.4
Level $9200$
Weight $2$
Character 9200.1
Self dual yes
Analytic conductor $73.462$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9200 = 2^{4} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9200.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(73.4623698596\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.13955077.1
Defining polynomial: \(x^{5} - 14 x^{3} - x^{2} + 32 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 920)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.93283\) of defining polynomial
Character \(\chi\) \(=\) 9200.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.93283 q^{3} +2.38236 q^{7} +0.735829 q^{9} +O(q^{10})\) \(q+1.93283 q^{3} +2.38236 q^{7} +0.735829 q^{9} -5.33368 q^{11} +4.53752 q^{13} -1.81464 q^{17} -7.00233 q^{19} +4.60469 q^{21} -1.00000 q^{23} -4.37626 q^{27} -0.118188 q^{29} +0.884147 q^{31} -10.3091 q^{33} -7.51903 q^{37} +8.77026 q^{39} -1.45186 q^{41} +10.4389 q^{47} -1.32437 q^{49} -3.50739 q^{51} +9.42167 q^{53} -13.5343 q^{57} -7.79239 q^{59} -2.80533 q^{61} +1.75301 q^{63} -3.11134 q^{67} -1.93283 q^{69} +13.5909 q^{71} -12.4389 q^{73} -12.7067 q^{77} -6.80169 q^{79} -10.6660 q^{81} -13.5190 q^{83} -0.228437 q^{87} +2.89906 q^{89} +10.8100 q^{91} +1.70890 q^{93} +1.97774 q^{97} -3.92468 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{7} + 13 q^{9} + O(q^{10}) \) \( 5 q - 2 q^{7} + 13 q^{9} + q^{11} - 4 q^{13} - 4 q^{17} - 7 q^{19} + 6 q^{21} - 5 q^{23} + 3 q^{27} + 4 q^{29} - 19 q^{31} - 17 q^{33} - 15 q^{37} - 19 q^{39} + 25 q^{41} - 11 q^{47} + 25 q^{49} - 19 q^{51} - 3 q^{53} - 48 q^{57} + q^{59} - 5 q^{61} - 41 q^{63} + 9 q^{67} - q^{71} + q^{73} - 18 q^{77} + 2 q^{79} + 57 q^{81} - 45 q^{83} - 9 q^{87} + 6 q^{89} - 11 q^{91} + 39 q^{93} - 25 q^{97} + 65 q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.93283 1.11592 0.557960 0.829868i \(-0.311584\pi\)
0.557960 + 0.829868i \(0.311584\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.38236 0.900447 0.450223 0.892916i \(-0.351344\pi\)
0.450223 + 0.892916i \(0.351344\pi\)
\(8\) 0 0
\(9\) 0.735829 0.245276
\(10\) 0 0
\(11\) −5.33368 −1.60816 −0.804082 0.594519i \(-0.797343\pi\)
−0.804082 + 0.594519i \(0.797343\pi\)
\(12\) 0 0
\(13\) 4.53752 1.25848 0.629241 0.777210i \(-0.283366\pi\)
0.629241 + 0.777210i \(0.283366\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.81464 −0.440115 −0.220058 0.975487i \(-0.570625\pi\)
−0.220058 + 0.975487i \(0.570625\pi\)
\(18\) 0 0
\(19\) −7.00233 −1.60645 −0.803223 0.595679i \(-0.796883\pi\)
−0.803223 + 0.595679i \(0.796883\pi\)
\(20\) 0 0
\(21\) 4.60469 1.00483
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −4.37626 −0.842211
\(28\) 0 0
\(29\) −0.118188 −0.0219469 −0.0109735 0.999940i \(-0.503493\pi\)
−0.0109735 + 0.999940i \(0.503493\pi\)
\(30\) 0 0
\(31\) 0.884147 0.158797 0.0793987 0.996843i \(-0.474700\pi\)
0.0793987 + 0.996843i \(0.474700\pi\)
\(32\) 0 0
\(33\) −10.3091 −1.79458
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −7.51903 −1.23612 −0.618061 0.786130i \(-0.712081\pi\)
−0.618061 + 0.786130i \(0.712081\pi\)
\(38\) 0 0
\(39\) 8.77026 1.40436
\(40\) 0 0
\(41\) −1.45186 −0.226743 −0.113371 0.993553i \(-0.536165\pi\)
−0.113371 + 0.993553i \(0.536165\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.4389 1.52267 0.761336 0.648357i \(-0.224544\pi\)
0.761336 + 0.648357i \(0.224544\pi\)
\(48\) 0 0
\(49\) −1.32437 −0.189195
\(50\) 0 0
\(51\) −3.50739 −0.491133
\(52\) 0 0
\(53\) 9.42167 1.29417 0.647083 0.762420i \(-0.275989\pi\)
0.647083 + 0.762420i \(0.275989\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −13.5343 −1.79266
\(58\) 0 0
\(59\) −7.79239 −1.01448 −0.507241 0.861804i \(-0.669335\pi\)
−0.507241 + 0.861804i \(0.669335\pi\)
\(60\) 0 0
\(61\) −2.80533 −0.359186 −0.179593 0.983741i \(-0.557478\pi\)
−0.179593 + 0.983741i \(0.557478\pi\)
\(62\) 0 0
\(63\) 1.75301 0.220858
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3.11134 −0.380111 −0.190055 0.981773i \(-0.560867\pi\)
−0.190055 + 0.981773i \(0.560867\pi\)
\(68\) 0 0
\(69\) −1.93283 −0.232685
\(70\) 0 0
\(71\) 13.5909 1.61294 0.806470 0.591275i \(-0.201375\pi\)
0.806470 + 0.591275i \(0.201375\pi\)
\(72\) 0 0
\(73\) −12.4389 −1.45586 −0.727932 0.685649i \(-0.759519\pi\)
−0.727932 + 0.685649i \(0.759519\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.7067 −1.44807
\(78\) 0 0
\(79\) −6.80169 −0.765250 −0.382625 0.923904i \(-0.624980\pi\)
−0.382625 + 0.923904i \(0.624980\pi\)
\(80\) 0 0
\(81\) −10.6660 −1.18512
\(82\) 0 0
\(83\) −13.5190 −1.48391 −0.741953 0.670451i \(-0.766100\pi\)
−0.741953 + 0.670451i \(0.766100\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.228437 −0.0244910
\(88\) 0 0
\(89\) 2.89906 0.307300 0.153650 0.988125i \(-0.450897\pi\)
0.153650 + 0.988125i \(0.450897\pi\)
\(90\) 0 0
\(91\) 10.8100 1.13320
\(92\) 0 0
\(93\) 1.70890 0.177205
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.97774 0.200809 0.100405 0.994947i \(-0.467986\pi\)
0.100405 + 0.994947i \(0.467986\pi\)
\(98\) 0 0
\(99\) −3.92468 −0.394445
\(100\) 0 0
\(101\) −12.2838 −1.22228 −0.611139 0.791523i \(-0.709289\pi\)
−0.611139 + 0.791523i \(0.709289\pi\)
\(102\) 0 0
\(103\) −12.5061 −1.23226 −0.616131 0.787644i \(-0.711301\pi\)
−0.616131 + 0.787644i \(0.711301\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −17.3847 −1.68064 −0.840321 0.542089i \(-0.817633\pi\)
−0.840321 + 0.542089i \(0.817633\pi\)
\(108\) 0 0
\(109\) 4.30908 0.412735 0.206368 0.978475i \(-0.433836\pi\)
0.206368 + 0.978475i \(0.433836\pi\)
\(110\) 0 0
\(111\) −14.5330 −1.37941
\(112\) 0 0
\(113\) 12.1494 1.14292 0.571460 0.820630i \(-0.306377\pi\)
0.571460 + 0.820630i \(0.306377\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.33884 0.308676
\(118\) 0 0
\(119\) −4.32313 −0.396300
\(120\) 0 0
\(121\) 17.4481 1.58619
\(122\) 0 0
\(123\) −2.80620 −0.253027
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1.22953 −0.109103 −0.0545515 0.998511i \(-0.517373\pi\)
−0.0545515 + 0.998511i \(0.517373\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.97345 −0.172421 −0.0862104 0.996277i \(-0.527476\pi\)
−0.0862104 + 0.996277i \(0.527476\pi\)
\(132\) 0 0
\(133\) −16.6821 −1.44652
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.7671 −1.17620 −0.588099 0.808789i \(-0.700124\pi\)
−0.588099 + 0.808789i \(0.700124\pi\)
\(138\) 0 0
\(139\) −5.30280 −0.449778 −0.224889 0.974384i \(-0.572202\pi\)
−0.224889 + 0.974384i \(0.572202\pi\)
\(140\) 0 0
\(141\) 20.1766 1.69918
\(142\) 0 0
\(143\) −24.2017 −2.02385
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −2.55978 −0.211127
\(148\) 0 0
\(149\) 7.73256 0.633476 0.316738 0.948513i \(-0.397412\pi\)
0.316738 + 0.948513i \(0.397412\pi\)
\(150\) 0 0
\(151\) −21.4156 −1.74277 −0.871387 0.490596i \(-0.836779\pi\)
−0.871387 + 0.490596i \(0.836779\pi\)
\(152\) 0 0
\(153\) −1.33527 −0.107950
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.04738 0.323016 0.161508 0.986871i \(-0.448364\pi\)
0.161508 + 0.986871i \(0.448364\pi\)
\(158\) 0 0
\(159\) 18.2105 1.44418
\(160\) 0 0
\(161\) −2.38236 −0.187756
\(162\) 0 0
\(163\) 9.04725 0.708635 0.354318 0.935125i \(-0.384713\pi\)
0.354318 + 0.935125i \(0.384713\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.5467 −0.970893 −0.485446 0.874266i \(-0.661343\pi\)
−0.485446 + 0.874266i \(0.661343\pi\)
\(168\) 0 0
\(169\) 7.58910 0.583777
\(170\) 0 0
\(171\) −5.15252 −0.394023
\(172\) 0 0
\(173\) 14.1354 1.07469 0.537346 0.843362i \(-0.319427\pi\)
0.537346 + 0.843362i \(0.319427\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −15.0614 −1.13208
\(178\) 0 0
\(179\) 26.2442 1.96158 0.980791 0.195061i \(-0.0624904\pi\)
0.980791 + 0.195061i \(0.0624904\pi\)
\(180\) 0 0
\(181\) −18.3461 −1.36365 −0.681826 0.731514i \(-0.738814\pi\)
−0.681826 + 0.731514i \(0.738814\pi\)
\(182\) 0 0
\(183\) −5.42223 −0.400823
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 9.67871 0.707777
\(188\) 0 0
\(189\) −10.4258 −0.758366
\(190\) 0 0
\(191\) 3.86566 0.279709 0.139855 0.990172i \(-0.455336\pi\)
0.139855 + 0.990172i \(0.455336\pi\)
\(192\) 0 0
\(193\) 23.8599 1.71747 0.858737 0.512417i \(-0.171250\pi\)
0.858737 + 0.512417i \(0.171250\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.7356 −0.836128 −0.418064 0.908418i \(-0.637291\pi\)
−0.418064 + 0.908418i \(0.637291\pi\)
\(198\) 0 0
\(199\) 8.89906 0.630838 0.315419 0.948953i \(-0.397855\pi\)
0.315419 + 0.948953i \(0.397855\pi\)
\(200\) 0 0
\(201\) −6.01369 −0.424173
\(202\) 0 0
\(203\) −0.281566 −0.0197620
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.735829 −0.0511437
\(208\) 0 0
\(209\) 37.3482 2.58343
\(210\) 0 0
\(211\) −23.1224 −1.59181 −0.795906 0.605420i \(-0.793005\pi\)
−0.795906 + 0.605420i \(0.793005\pi\)
\(212\) 0 0
\(213\) 26.2688 1.79991
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.10635 0.142989
\(218\) 0 0
\(219\) −24.0423 −1.62463
\(220\) 0 0
\(221\) −8.23398 −0.553877
\(222\) 0 0
\(223\) 1.50863 0.101026 0.0505128 0.998723i \(-0.483914\pi\)
0.0505128 + 0.998723i \(0.483914\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −22.0047 −1.46050 −0.730251 0.683179i \(-0.760597\pi\)
−0.730251 + 0.683179i \(0.760597\pi\)
\(228\) 0 0
\(229\) −11.2931 −0.746266 −0.373133 0.927778i \(-0.621717\pi\)
−0.373133 + 0.927778i \(0.621717\pi\)
\(230\) 0 0
\(231\) −24.5599 −1.61593
\(232\) 0 0
\(233\) 17.6789 1.15818 0.579091 0.815263i \(-0.303408\pi\)
0.579091 + 0.815263i \(0.303408\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −13.1465 −0.853958
\(238\) 0 0
\(239\) 25.2583 1.63382 0.816911 0.576763i \(-0.195684\pi\)
0.816911 + 0.576763i \(0.195684\pi\)
\(240\) 0 0
\(241\) 0.790615 0.0509280 0.0254640 0.999676i \(-0.491894\pi\)
0.0254640 + 0.999676i \(0.491894\pi\)
\(242\) 0 0
\(243\) −7.48688 −0.480283
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −31.7732 −2.02168
\(248\) 0 0
\(249\) −26.1300 −1.65592
\(250\) 0 0
\(251\) −12.3461 −0.779276 −0.389638 0.920968i \(-0.627400\pi\)
−0.389638 + 0.920968i \(0.627400\pi\)
\(252\) 0 0
\(253\) 5.33368 0.335325
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.40442 −0.399497 −0.199748 0.979847i \(-0.564012\pi\)
−0.199748 + 0.979847i \(0.564012\pi\)
\(258\) 0 0
\(259\) −17.9130 −1.11306
\(260\) 0 0
\(261\) −0.0869661 −0.00538307
\(262\) 0 0
\(263\) 19.6914 1.21422 0.607111 0.794617i \(-0.292328\pi\)
0.607111 + 0.794617i \(0.292328\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 5.60338 0.342922
\(268\) 0 0
\(269\) −3.42494 −0.208822 −0.104411 0.994534i \(-0.533296\pi\)
−0.104411 + 0.994534i \(0.533296\pi\)
\(270\) 0 0
\(271\) −13.7197 −0.833411 −0.416705 0.909042i \(-0.636815\pi\)
−0.416705 + 0.909042i \(0.636815\pi\)
\(272\) 0 0
\(273\) 20.8939 1.26456
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −0.636129 −0.0382213 −0.0191107 0.999817i \(-0.506083\pi\)
−0.0191107 + 0.999817i \(0.506083\pi\)
\(278\) 0 0
\(279\) 0.650581 0.0389493
\(280\) 0 0
\(281\) 18.4124 1.09839 0.549195 0.835694i \(-0.314935\pi\)
0.549195 + 0.835694i \(0.314935\pi\)
\(282\) 0 0
\(283\) −7.95729 −0.473012 −0.236506 0.971630i \(-0.576002\pi\)
−0.236506 + 0.971630i \(0.576002\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.45886 −0.204170
\(288\) 0 0
\(289\) −13.7071 −0.806299
\(290\) 0 0
\(291\) 3.82264 0.224087
\(292\) 0 0
\(293\) 20.9166 1.22196 0.610981 0.791645i \(-0.290775\pi\)
0.610981 + 0.791645i \(0.290775\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 23.3415 1.35441
\(298\) 0 0
\(299\) −4.53752 −0.262412
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −23.7424 −1.36396
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −5.78807 −0.330342 −0.165171 0.986265i \(-0.552818\pi\)
−0.165171 + 0.986265i \(0.552818\pi\)
\(308\) 0 0
\(309\) −24.1721 −1.37510
\(310\) 0 0
\(311\) −18.3674 −1.04152 −0.520761 0.853702i \(-0.674352\pi\)
−0.520761 + 0.853702i \(0.674352\pi\)
\(312\) 0 0
\(313\) −9.85869 −0.557246 −0.278623 0.960401i \(-0.589878\pi\)
−0.278623 + 0.960401i \(0.589878\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 32.9488 1.85059 0.925294 0.379250i \(-0.123818\pi\)
0.925294 + 0.379250i \(0.123818\pi\)
\(318\) 0 0
\(319\) 0.630376 0.0352943
\(320\) 0 0
\(321\) −33.6016 −1.87546
\(322\) 0 0
\(323\) 12.7067 0.707021
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 8.32873 0.460580
\(328\) 0 0
\(329\) 24.8692 1.37109
\(330\) 0 0
\(331\) 6.85308 0.376679 0.188340 0.982104i \(-0.439689\pi\)
0.188340 + 0.982104i \(0.439689\pi\)
\(332\) 0 0
\(333\) −5.53273 −0.303192
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −35.8432 −1.95250 −0.976251 0.216641i \(-0.930490\pi\)
−0.976251 + 0.216641i \(0.930490\pi\)
\(338\) 0 0
\(339\) 23.4827 1.27541
\(340\) 0 0
\(341\) −4.71575 −0.255372
\(342\) 0 0
\(343\) −19.8316 −1.07081
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.09198 −0.219669 −0.109835 0.993950i \(-0.535032\pi\)
−0.109835 + 0.993950i \(0.535032\pi\)
\(348\) 0 0
\(349\) −11.3229 −0.606101 −0.303051 0.952974i \(-0.598005\pi\)
−0.303051 + 0.952974i \(0.598005\pi\)
\(350\) 0 0
\(351\) −19.8574 −1.05991
\(352\) 0 0
\(353\) −26.1443 −1.39152 −0.695761 0.718273i \(-0.744933\pi\)
−0.695761 + 0.718273i \(0.744933\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −8.35587 −0.442239
\(358\) 0 0
\(359\) 12.2058 0.644198 0.322099 0.946706i \(-0.395612\pi\)
0.322099 + 0.946706i \(0.395612\pi\)
\(360\) 0 0
\(361\) 30.0327 1.58067
\(362\) 0 0
\(363\) 33.7242 1.77006
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −3.15299 −0.164585 −0.0822923 0.996608i \(-0.526224\pi\)
−0.0822923 + 0.996608i \(0.526224\pi\)
\(368\) 0 0
\(369\) −1.06832 −0.0556147
\(370\) 0 0
\(371\) 22.4458 1.16533
\(372\) 0 0
\(373\) −9.59872 −0.497003 −0.248501 0.968632i \(-0.579938\pi\)
−0.248501 + 0.968632i \(0.579938\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.536280 −0.0276198
\(378\) 0 0
\(379\) −32.7841 −1.68401 −0.842003 0.539473i \(-0.818624\pi\)
−0.842003 + 0.539473i \(0.818624\pi\)
\(380\) 0 0
\(381\) −2.37647 −0.121750
\(382\) 0 0
\(383\) 34.7378 1.77502 0.887508 0.460792i \(-0.152435\pi\)
0.887508 + 0.460792i \(0.152435\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13.8965 0.704581 0.352290 0.935891i \(-0.385403\pi\)
0.352290 + 0.935891i \(0.385403\pi\)
\(390\) 0 0
\(391\) 1.81464 0.0917704
\(392\) 0 0
\(393\) −3.81434 −0.192408
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 26.1135 1.31060 0.655299 0.755370i \(-0.272543\pi\)
0.655299 + 0.755370i \(0.272543\pi\)
\(398\) 0 0
\(399\) −32.2436 −1.61420
\(400\) 0 0
\(401\) 18.0715 0.902446 0.451223 0.892411i \(-0.350988\pi\)
0.451223 + 0.892411i \(0.350988\pi\)
\(402\) 0 0
\(403\) 4.01183 0.199844
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 40.1041 1.98789
\(408\) 0 0
\(409\) −0.865532 −0.0427978 −0.0213989 0.999771i \(-0.506812\pi\)
−0.0213989 + 0.999771i \(0.506812\pi\)
\(410\) 0 0
\(411\) −26.6094 −1.31254
\(412\) 0 0
\(413\) −18.5643 −0.913487
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −10.2494 −0.501916
\(418\) 0 0
\(419\) 20.5675 1.00479 0.502394 0.864639i \(-0.332453\pi\)
0.502394 + 0.864639i \(0.332453\pi\)
\(420\) 0 0
\(421\) 26.2423 1.27897 0.639485 0.768803i \(-0.279147\pi\)
0.639485 + 0.768803i \(0.279147\pi\)
\(422\) 0 0
\(423\) 7.68126 0.373476
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −6.68331 −0.323428
\(428\) 0 0
\(429\) −46.7777 −2.25845
\(430\) 0 0
\(431\) −23.2654 −1.12066 −0.560328 0.828271i \(-0.689325\pi\)
−0.560328 + 0.828271i \(0.689325\pi\)
\(432\) 0 0
\(433\) 34.7365 1.66933 0.834665 0.550758i \(-0.185661\pi\)
0.834665 + 0.550758i \(0.185661\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.00233 0.334967
\(438\) 0 0
\(439\) −28.5238 −1.36137 −0.680684 0.732577i \(-0.738317\pi\)
−0.680684 + 0.732577i \(0.738317\pi\)
\(440\) 0 0
\(441\) −0.974509 −0.0464052
\(442\) 0 0
\(443\) 26.3428 1.25158 0.625792 0.779990i \(-0.284776\pi\)
0.625792 + 0.779990i \(0.284776\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 14.9457 0.706908
\(448\) 0 0
\(449\) 29.5411 1.39413 0.697065 0.717008i \(-0.254489\pi\)
0.697065 + 0.717008i \(0.254489\pi\)
\(450\) 0 0
\(451\) 7.74377 0.364640
\(452\) 0 0
\(453\) −41.3926 −1.94480
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.16668 −0.148131 −0.0740655 0.997253i \(-0.523597\pi\)
−0.0740655 + 0.997253i \(0.523597\pi\)
\(458\) 0 0
\(459\) 7.94133 0.370670
\(460\) 0 0
\(461\) 8.43891 0.393039 0.196520 0.980500i \(-0.437036\pi\)
0.196520 + 0.980500i \(0.437036\pi\)
\(462\) 0 0
\(463\) 9.62461 0.447294 0.223647 0.974670i \(-0.428204\pi\)
0.223647 + 0.974670i \(0.428204\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −23.1041 −1.06913 −0.534564 0.845128i \(-0.679524\pi\)
−0.534564 + 0.845128i \(0.679524\pi\)
\(468\) 0 0
\(469\) −7.41233 −0.342270
\(470\) 0 0
\(471\) 7.82289 0.360460
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.93274 0.317428
\(478\) 0 0
\(479\) −20.5981 −0.941150 −0.470575 0.882360i \(-0.655953\pi\)
−0.470575 + 0.882360i \(0.655953\pi\)
\(480\) 0 0
\(481\) −34.1178 −1.55564
\(482\) 0 0
\(483\) −4.60469 −0.209521
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 40.1145 1.81776 0.908881 0.417056i \(-0.136938\pi\)
0.908881 + 0.417056i \(0.136938\pi\)
\(488\) 0 0
\(489\) 17.4868 0.790780
\(490\) 0 0
\(491\) 18.4799 0.833985 0.416993 0.908910i \(-0.363084\pi\)
0.416993 + 0.908910i \(0.363084\pi\)
\(492\) 0 0
\(493\) 0.214469 0.00965918
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 32.3783 1.45237
\(498\) 0 0
\(499\) −0.0506452 −0.00226719 −0.00113360 0.999999i \(-0.500361\pi\)
−0.00113360 + 0.999999i \(0.500361\pi\)
\(500\) 0 0
\(501\) −24.2506 −1.08344
\(502\) 0 0
\(503\) −31.1887 −1.39064 −0.695318 0.718702i \(-0.744737\pi\)
−0.695318 + 0.718702i \(0.744737\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 14.6684 0.651448
\(508\) 0 0
\(509\) 3.42426 0.151778 0.0758888 0.997116i \(-0.475821\pi\)
0.0758888 + 0.997116i \(0.475821\pi\)
\(510\) 0 0
\(511\) −29.6340 −1.31093
\(512\) 0 0
\(513\) 30.6440 1.35297
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −55.6778 −2.44871
\(518\) 0 0
\(519\) 27.3213 1.19927
\(520\) 0 0
\(521\) −9.78442 −0.428663 −0.214332 0.976761i \(-0.568757\pi\)
−0.214332 + 0.976761i \(0.568757\pi\)
\(522\) 0 0
\(523\) 6.22884 0.272368 0.136184 0.990684i \(-0.456516\pi\)
0.136184 + 0.990684i \(0.456516\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.60441 −0.0698892
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) −5.73387 −0.248829
\(532\) 0 0
\(533\) −6.58786 −0.285352
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 50.7255 2.18897
\(538\) 0 0
\(539\) 7.06375 0.304257
\(540\) 0 0
\(541\) 19.8477 0.853319 0.426660 0.904412i \(-0.359690\pi\)
0.426660 + 0.904412i \(0.359690\pi\)
\(542\) 0 0
\(543\) −35.4598 −1.52173
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −7.68024 −0.328383 −0.164192 0.986428i \(-0.552502\pi\)
−0.164192 + 0.986428i \(0.552502\pi\)
\(548\) 0 0
\(549\) −2.06425 −0.0880999
\(550\) 0 0
\(551\) 0.827591 0.0352566
\(552\) 0 0
\(553\) −16.2041 −0.689067
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18.1260 −0.768023 −0.384012 0.923328i \(-0.625458\pi\)
−0.384012 + 0.923328i \(0.625458\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 18.7073 0.789823
\(562\) 0 0
\(563\) −16.8772 −0.711287 −0.355644 0.934622i \(-0.615738\pi\)
−0.355644 + 0.934622i \(0.615738\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −25.4103 −1.06713
\(568\) 0 0
\(569\) 36.0022 1.50929 0.754645 0.656133i \(-0.227809\pi\)
0.754645 + 0.656133i \(0.227809\pi\)
\(570\) 0 0
\(571\) −26.6267 −1.11429 −0.557147 0.830414i \(-0.688104\pi\)
−0.557147 + 0.830414i \(0.688104\pi\)
\(572\) 0 0
\(573\) 7.47166 0.312133
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −30.0190 −1.24971 −0.624854 0.780742i \(-0.714842\pi\)
−0.624854 + 0.780742i \(0.714842\pi\)
\(578\) 0 0
\(579\) 46.1171 1.91656
\(580\) 0 0
\(581\) −32.2072 −1.33618
\(582\) 0 0
\(583\) −50.2521 −2.08123
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −31.1814 −1.28699 −0.643497 0.765449i \(-0.722517\pi\)
−0.643497 + 0.765449i \(0.722517\pi\)
\(588\) 0 0
\(589\) −6.19109 −0.255099
\(590\) 0 0
\(591\) −22.6829 −0.933051
\(592\) 0 0
\(593\) −15.0334 −0.617348 −0.308674 0.951168i \(-0.599885\pi\)
−0.308674 + 0.951168i \(0.599885\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 17.2004 0.703964
\(598\) 0 0
\(599\) −20.3534 −0.831617 −0.415808 0.909452i \(-0.636501\pi\)
−0.415808 + 0.909452i \(0.636501\pi\)
\(600\) 0 0
\(601\) 46.5338 1.89816 0.949078 0.315043i \(-0.102019\pi\)
0.949078 + 0.315043i \(0.102019\pi\)
\(602\) 0 0
\(603\) −2.28942 −0.0932323
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −7.52725 −0.305522 −0.152761 0.988263i \(-0.548816\pi\)
−0.152761 + 0.988263i \(0.548816\pi\)
\(608\) 0 0
\(609\) −0.544219 −0.0220529
\(610\) 0 0
\(611\) 47.3668 1.91626
\(612\) 0 0
\(613\) −32.2643 −1.30314 −0.651572 0.758587i \(-0.725890\pi\)
−0.651572 + 0.758587i \(0.725890\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4.52158 −0.182032 −0.0910161 0.995849i \(-0.529011\pi\)
−0.0910161 + 0.995849i \(0.529011\pi\)
\(618\) 0 0
\(619\) −17.7807 −0.714668 −0.357334 0.933977i \(-0.616314\pi\)
−0.357334 + 0.933977i \(0.616314\pi\)
\(620\) 0 0
\(621\) 4.37626 0.175613
\(622\) 0 0
\(623\) 6.90660 0.276707
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 72.1877 2.88290
\(628\) 0 0
\(629\) 13.6444 0.544036
\(630\) 0 0
\(631\) −27.4554 −1.09298 −0.546490 0.837466i \(-0.684036\pi\)
−0.546490 + 0.837466i \(0.684036\pi\)
\(632\) 0 0
\(633\) −44.6917 −1.77634
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −6.00935 −0.238099
\(638\) 0 0
\(639\) 10.0006 0.395616
\(640\) 0 0
\(641\) −48.9270 −1.93250 −0.966250 0.257605i \(-0.917067\pi\)
−0.966250 + 0.257605i \(0.917067\pi\)
\(642\) 0 0
\(643\) 2.89333 0.114102 0.0570508 0.998371i \(-0.481830\pi\)
0.0570508 + 0.998371i \(0.481830\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 15.0877 0.593157 0.296578 0.955009i \(-0.404154\pi\)
0.296578 + 0.955009i \(0.404154\pi\)
\(648\) 0 0
\(649\) 41.5621 1.63145
\(650\) 0 0
\(651\) 4.07122 0.159564
\(652\) 0 0
\(653\) 13.3255 0.521468 0.260734 0.965411i \(-0.416035\pi\)
0.260734 + 0.965411i \(0.416035\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −9.15292 −0.357089
\(658\) 0 0
\(659\) 39.9000 1.55428 0.777142 0.629325i \(-0.216669\pi\)
0.777142 + 0.629325i \(0.216669\pi\)
\(660\) 0 0
\(661\) −37.3060 −1.45104 −0.725518 0.688203i \(-0.758400\pi\)
−0.725518 + 0.688203i \(0.758400\pi\)
\(662\) 0 0
\(663\) −15.9149 −0.618082
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.118188 0.00457625
\(668\) 0 0
\(669\) 2.91593 0.112736
\(670\) 0 0
\(671\) 14.9627 0.577630
\(672\) 0 0
\(673\) 18.6641 0.719447 0.359724 0.933059i \(-0.382871\pi\)
0.359724 + 0.933059i \(0.382871\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −19.4978 −0.749361 −0.374681 0.927154i \(-0.622248\pi\)
−0.374681 + 0.927154i \(0.622248\pi\)
\(678\) 0 0
\(679\) 4.71169 0.180818
\(680\) 0 0
\(681\) −42.5313 −1.62980
\(682\) 0 0
\(683\) −41.6331 −1.59305 −0.796523 0.604608i \(-0.793330\pi\)
−0.796523 + 0.604608i \(0.793330\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −21.8276 −0.832773
\(688\) 0 0
\(689\) 42.7510 1.62868
\(690\) 0 0
\(691\) 9.53192 0.362611 0.181306 0.983427i \(-0.441968\pi\)
0.181306 + 0.983427i \(0.441968\pi\)
\(692\) 0 0
\(693\) −9.34998 −0.355177
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.63461 0.0997930
\(698\) 0 0
\(699\) 34.1702 1.29244
\(700\) 0 0
\(701\) 27.9897 1.05716 0.528579 0.848884i \(-0.322725\pi\)
0.528579 + 0.848884i \(0.322725\pi\)
\(702\) 0 0
\(703\) 52.6508 1.98576
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −29.2643 −1.10060
\(708\) 0 0
\(709\) 27.6832 1.03966 0.519831 0.854269i \(-0.325995\pi\)
0.519831 + 0.854269i \(0.325995\pi\)
\(710\) 0 0
\(711\) −5.00489 −0.187698
\(712\) 0 0
\(713\) −0.884147 −0.0331115
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 48.8200 1.82322
\(718\) 0 0
\(719\) −50.8364 −1.89588 −0.947938 0.318454i \(-0.896836\pi\)
−0.947938 + 0.318454i \(0.896836\pi\)
\(720\) 0 0
\(721\) −29.7940 −1.10959
\(722\) 0 0
\(723\) 1.52812 0.0568316
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 37.5061 1.39102 0.695512 0.718514i \(-0.255177\pi\)
0.695512 + 0.718514i \(0.255177\pi\)
\(728\) 0 0
\(729\) 17.5273 0.649158
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 36.9374 1.36431 0.682157 0.731206i \(-0.261042\pi\)
0.682157 + 0.731206i \(0.261042\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 16.5949 0.611281
\(738\) 0 0
\(739\) 12.3287 0.453517 0.226759 0.973951i \(-0.427187\pi\)
0.226759 + 0.973951i \(0.427187\pi\)
\(740\) 0 0
\(741\) −61.4123 −2.25604
\(742\) 0 0
\(743\) −29.7534 −1.09154 −0.545772 0.837933i \(-0.683764\pi\)
−0.545772 + 0.837933i \(0.683764\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −9.94770 −0.363967
\(748\) 0 0
\(749\) −41.4166 −1.51333
\(750\) 0 0
\(751\) 41.9834 1.53200 0.765999 0.642842i \(-0.222245\pi\)
0.765999 + 0.642842i \(0.222245\pi\)
\(752\) 0 0
\(753\) −23.8628 −0.869610
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −11.4708 −0.416915 −0.208458 0.978031i \(-0.566844\pi\)
−0.208458 + 0.978031i \(0.566844\pi\)
\(758\) 0 0
\(759\) 10.3091 0.374196
\(760\) 0 0
\(761\) −13.4122 −0.486193 −0.243097 0.970002i \(-0.578163\pi\)
−0.243097 + 0.970002i \(0.578163\pi\)
\(762\) 0 0
\(763\) 10.2658 0.371646
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −35.3581 −1.27671
\(768\) 0 0
\(769\) 2.18327 0.0787307 0.0393654 0.999225i \(-0.487466\pi\)
0.0393654 + 0.999225i \(0.487466\pi\)
\(770\) 0 0
\(771\) −12.3787 −0.445806
\(772\) 0 0
\(773\) −5.73306 −0.206204 −0.103102 0.994671i \(-0.532877\pi\)
−0.103102 + 0.994671i \(0.532877\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −34.6228 −1.24209
\(778\) 0 0
\(779\) 10.1664 0.364250
\(780\) 0 0
\(781\) −72.4893 −2.59387
\(782\) 0 0
\(783\) 0.517220 0.0184839
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −8.13502 −0.289982 −0.144991 0.989433i \(-0.546315\pi\)
−0.144991 + 0.989433i \(0.546315\pi\)
\(788\) 0 0
\(789\) 38.0601 1.35497
\(790\) 0 0
\(791\) 28.9442 1.02914
\(792\) 0 0
\(793\) −12.7293 −0.452029
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 41.5139 1.47050 0.735250 0.677797i \(-0.237065\pi\)
0.735250 + 0.677797i \(0.237065\pi\)
\(798\) 0 0
\(799\) −18.9429 −0.670151
\(800\) 0 0
\(801\) 2.13321 0.0753733
\(802\) 0 0
\(803\) 66.3451 2.34127
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −6.61982 −0.233029
\(808\) 0 0
\(809\) −22.8566 −0.803596 −0.401798 0.915728i \(-0.631615\pi\)
−0.401798 + 0.915728i \(0.631615\pi\)
\(810\) 0 0
\(811\) 42.1917 1.48155 0.740776 0.671753i \(-0.234458\pi\)
0.740776 + 0.671753i \(0.234458\pi\)
\(812\) 0 0
\(813\) −26.5178 −0.930020
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 7.95432 0.277946
\(820\) 0 0
\(821\) 27.0195 0.942985 0.471493 0.881870i \(-0.343715\pi\)
0.471493 + 0.881870i \(0.343715\pi\)
\(822\) 0 0
\(823\) 27.2435 0.949650 0.474825 0.880080i \(-0.342511\pi\)
0.474825 + 0.880080i \(0.342511\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.5732 0.367667 0.183834 0.982957i \(-0.441149\pi\)
0.183834 + 0.982957i \(0.441149\pi\)
\(828\) 0 0
\(829\) −1.16445 −0.0404429 −0.0202215 0.999796i \(-0.506437\pi\)
−0.0202215 + 0.999796i \(0.506437\pi\)
\(830\) 0 0
\(831\) −1.22953 −0.0426519
\(832\) 0 0
\(833\) 2.40325 0.0832678
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −3.86925 −0.133741
\(838\) 0 0
\(839\) 20.2920 0.700556 0.350278 0.936646i \(-0.386087\pi\)
0.350278 + 0.936646i \(0.386087\pi\)
\(840\) 0 0
\(841\) −28.9860 −0.999518
\(842\) 0 0
\(843\) 35.5880 1.22571
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 41.5676 1.42828
\(848\) 0 0
\(849\) −15.3801 −0.527843
\(850\) 0 0
\(851\) 7.51903 0.257749
\(852\) 0 0
\(853\) −26.6154 −0.911295 −0.455648 0.890160i \(-0.650592\pi\)
−0.455648 + 0.890160i \(0.650592\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 10.4342 0.356427 0.178214 0.983992i \(-0.442968\pi\)
0.178214 + 0.983992i \(0.442968\pi\)
\(858\) 0 0
\(859\) 24.6623 0.841466 0.420733 0.907185i \(-0.361773\pi\)
0.420733 + 0.907185i \(0.361773\pi\)
\(860\) 0 0
\(861\) −6.68538 −0.227837
\(862\) 0 0
\(863\) 8.48317 0.288771 0.144385 0.989522i \(-0.453880\pi\)
0.144385 + 0.989522i \(0.453880\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −26.4934 −0.899764
\(868\) 0 0
\(869\) 36.2780 1.23065
\(870\) 0 0
\(871\) −14.1178 −0.478363
\(872\) 0 0
\(873\) 1.45528 0.0492538
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −3.08796 −0.104273 −0.0521365 0.998640i \(-0.516603\pi\)
−0.0521365 + 0.998640i \(0.516603\pi\)
\(878\) 0 0
\(879\) 40.4282 1.36361
\(880\) 0 0
\(881\) 42.5879 1.43482 0.717412 0.696649i \(-0.245327\pi\)
0.717412 + 0.696649i \(0.245327\pi\)
\(882\) 0 0
\(883\) −48.3342 −1.62657 −0.813287 0.581863i \(-0.802324\pi\)
−0.813287 + 0.581863i \(0.802324\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.12173 −0.0712408 −0.0356204 0.999365i \(-0.511341\pi\)
−0.0356204 + 0.999365i \(0.511341\pi\)
\(888\) 0 0
\(889\) −2.92918 −0.0982415
\(890\) 0 0
\(891\) 56.8892 1.90586
\(892\) 0 0
\(893\) −73.0968 −2.44609
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −8.77026 −0.292830
\(898\) 0 0
\(899\) −0.104495 −0.00348512
\(900\) 0 0
\(901\) −17.0970 −0.569582
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 28.6914 0.952684 0.476342 0.879260i \(-0.341962\pi\)
0.476342 + 0.879260i \(0.341962\pi\)
\(908\) 0 0
\(909\) −9.03875 −0.299796
\(910\) 0 0
\(911\) 1.14899 0.0380679 0.0190339 0.999819i \(-0.493941\pi\)
0.0190339 + 0.999819i \(0.493941\pi\)
\(912\) 0 0
\(913\) 72.1061 2.38636
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.70146 −0.155256
\(918\) 0 0
\(919\) 55.4798 1.83011 0.915055 0.403329i \(-0.132147\pi\)
0.915055 + 0.403329i \(0.132147\pi\)
\(920\) 0 0
\(921\) −11.1873 −0.368636
\(922\) 0 0
\(923\) 61.6689 2.02986
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −9.20235 −0.302245
\(928\) 0 0
\(929\) −4.05780 −0.133132 −0.0665660 0.997782i \(-0.521204\pi\)
−0.0665660 + 0.997782i \(0.521204\pi\)
\(930\) 0 0
\(931\) 9.27367 0.303932
\(932\) 0 0
\(933\) −35.5011 −1.16226
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −16.0588 −0.524617 −0.262308 0.964984i \(-0.584484\pi\)
−0.262308 + 0.964984i \(0.584484\pi\)
\(938\) 0 0
\(939\) −19.0552 −0.621842
\(940\) 0 0
\(941\) 4.73779 0.154448 0.0772238 0.997014i \(-0.475394\pi\)
0.0772238 + 0.997014i \(0.475394\pi\)
\(942\) 0 0
\(943\) 1.45186 0.0472792
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.38634 −0.110041 −0.0550207 0.998485i \(-0.517522\pi\)
−0.0550207 + 0.998485i \(0.517522\pi\)
\(948\) 0 0
\(949\) −56.4418 −1.83218
\(950\) 0 0
\(951\) 63.6844 2.06511
\(952\) 0 0
\(953\) −29.2967 −0.949013 −0.474507 0.880252i \(-0.657373\pi\)
−0.474507 + 0.880252i \(0.657373\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.21841 0.0393856
\(958\) 0 0
\(959\) −32.7981 −1.05910
\(960\) 0 0
\(961\) −30.2183 −0.974783
\(962\) 0 0
\(963\) −12.7922 −0.412222
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −15.5743 −0.500837 −0.250419 0.968138i \(-0.580568\pi\)
−0.250419 + 0.968138i \(0.580568\pi\)
\(968\) 0 0
\(969\) 24.5599 0.788979
\(970\) 0 0
\(971\) −51.5951 −1.65577 −0.827883 0.560900i \(-0.810455\pi\)
−0.827883 + 0.560900i \(0.810455\pi\)
\(972\) 0 0
\(973\) −12.6332 −0.405001
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −9.04984 −0.289530 −0.144765 0.989466i \(-0.546243\pi\)
−0.144765 + 0.989466i \(0.546243\pi\)
\(978\) 0 0
\(979\) −15.4626 −0.494188
\(980\) 0 0
\(981\) 3.17075 0.101234
\(982\) 0 0
\(983\) −39.3855 −1.25620 −0.628101 0.778132i \(-0.716167\pi\)
−0.628101 + 0.778132i \(0.716167\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 48.0680 1.53002
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 18.9152 0.600860 0.300430 0.953804i \(-0.402870\pi\)
0.300430 + 0.953804i \(0.402870\pi\)
\(992\) 0 0
\(993\) 13.2458 0.420344
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 12.2966 0.389438 0.194719 0.980859i \(-0.437620\pi\)
0.194719 + 0.980859i \(0.437620\pi\)
\(998\) 0 0
\(999\) 32.9052 1.04107
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9200.2.a.cu.1.4 5
4.3 odd 2 4600.2.a.be.1.2 5
5.4 even 2 1840.2.a.v.1.2 5
20.3 even 4 4600.2.e.u.4049.3 10
20.7 even 4 4600.2.e.u.4049.8 10
20.19 odd 2 920.2.a.j.1.4 5
40.19 odd 2 7360.2.a.co.1.2 5
40.29 even 2 7360.2.a.cp.1.4 5
60.59 even 2 8280.2.a.bs.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.a.j.1.4 5 20.19 odd 2
1840.2.a.v.1.2 5 5.4 even 2
4600.2.a.be.1.2 5 4.3 odd 2
4600.2.e.u.4049.3 10 20.3 even 4
4600.2.e.u.4049.8 10 20.7 even 4
7360.2.a.co.1.2 5 40.19 odd 2
7360.2.a.cp.1.4 5 40.29 even 2
8280.2.a.bs.1.4 5 60.59 even 2
9200.2.a.cu.1.4 5 1.1 even 1 trivial