Properties

Label 9200.2.a.cf.1.1
Level $9200$
Weight $2$
Character 9200.1
Self dual yes
Analytic conductor $73.462$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9200 = 2^{4} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9200.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(73.4623698596\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1101.1
Defining polynomial: \(x^{3} - x^{2} - 9 x + 12\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.11903\) of defining polynomial
Character \(\chi\) \(=\) 9200.1

$q$-expansion

\(f(q)\) \(=\) \(q-3.11903 q^{3} +4.50973 q^{7} +6.72833 q^{9} +O(q^{10})\) \(q-3.11903 q^{3} +4.50973 q^{7} +6.72833 q^{9} -4.33763 q^{11} +3.72833 q^{13} -1.11903 q^{17} -4.50973 q^{19} -14.0660 q^{21} -1.00000 q^{23} -11.6288 q^{27} -8.23805 q^{29} -1.72833 q^{31} +13.5292 q^{33} +0.781399 q^{37} -11.6288 q^{39} +3.90043 q^{41} +8.00000 q^{43} -11.4567 q^{47} +13.3376 q^{49} +3.49027 q^{51} +6.00000 q^{53} +14.0660 q^{57} +2.23805 q^{59} +3.55623 q^{61} +30.3429 q^{63} +2.43720 q^{67} +3.11903 q^{69} -7.11903 q^{71} +9.45665 q^{73} -19.5615 q^{77} +14.9133 q^{79} +16.0854 q^{81} +2.78140 q^{83} +25.6947 q^{87} -7.69471 q^{89} +16.8137 q^{91} +5.39070 q^{93} +0.642920 q^{97} -29.1850 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + q^{3} + 3q^{7} + 10q^{9} + O(q^{10}) \) \( 3q + q^{3} + 3q^{7} + 10q^{9} - 3q^{11} + q^{13} + 7q^{17} - 3q^{19} - 22q^{21} - 3q^{23} - 14q^{27} - 4q^{29} + 5q^{31} + 9q^{33} + 2q^{37} - 14q^{39} + q^{41} + 24q^{43} - 14q^{47} + 30q^{49} + 21q^{51} + 18q^{53} + 22q^{57} - 14q^{59} + q^{61} + 8q^{63} + 8q^{67} - q^{69} - 11q^{71} + 8q^{73} + 24q^{77} + 4q^{79} + 7q^{81} + 8q^{83} + 36q^{87} + 18q^{89} - q^{91} + 16q^{93} + 33q^{97} - 57q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.11903 −1.80077 −0.900385 0.435093i \(-0.856715\pi\)
−0.900385 + 0.435093i \(0.856715\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.50973 1.70452 0.852258 0.523122i \(-0.175233\pi\)
0.852258 + 0.523122i \(0.175233\pi\)
\(8\) 0 0
\(9\) 6.72833 2.24278
\(10\) 0 0
\(11\) −4.33763 −1.30784 −0.653922 0.756562i \(-0.726878\pi\)
−0.653922 + 0.756562i \(0.726878\pi\)
\(12\) 0 0
\(13\) 3.72833 1.03405 0.517026 0.855970i \(-0.327039\pi\)
0.517026 + 0.855970i \(0.327039\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.11903 −0.271404 −0.135702 0.990750i \(-0.543329\pi\)
−0.135702 + 0.990750i \(0.543329\pi\)
\(18\) 0 0
\(19\) −4.50973 −1.03460 −0.517301 0.855803i \(-0.673063\pi\)
−0.517301 + 0.855803i \(0.673063\pi\)
\(20\) 0 0
\(21\) −14.0660 −3.06944
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −11.6288 −2.23795
\(28\) 0 0
\(29\) −8.23805 −1.52977 −0.764884 0.644168i \(-0.777204\pi\)
−0.764884 + 0.644168i \(0.777204\pi\)
\(30\) 0 0
\(31\) −1.72833 −0.310417 −0.155208 0.987882i \(-0.549605\pi\)
−0.155208 + 0.987882i \(0.549605\pi\)
\(32\) 0 0
\(33\) 13.5292 2.35513
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.781399 0.128461 0.0642306 0.997935i \(-0.479541\pi\)
0.0642306 + 0.997935i \(0.479541\pi\)
\(38\) 0 0
\(39\) −11.6288 −1.86209
\(40\) 0 0
\(41\) 3.90043 0.609144 0.304572 0.952489i \(-0.401487\pi\)
0.304572 + 0.952489i \(0.401487\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −11.4567 −1.67112 −0.835562 0.549396i \(-0.814858\pi\)
−0.835562 + 0.549396i \(0.814858\pi\)
\(48\) 0 0
\(49\) 13.3376 1.90538
\(50\) 0 0
\(51\) 3.49027 0.488736
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 14.0660 1.86308
\(58\) 0 0
\(59\) 2.23805 0.291370 0.145685 0.989331i \(-0.453461\pi\)
0.145685 + 0.989331i \(0.453461\pi\)
\(60\) 0 0
\(61\) 3.55623 0.455329 0.227664 0.973740i \(-0.426891\pi\)
0.227664 + 0.973740i \(0.426891\pi\)
\(62\) 0 0
\(63\) 30.3429 3.82285
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.43720 0.297752 0.148876 0.988856i \(-0.452435\pi\)
0.148876 + 0.988856i \(0.452435\pi\)
\(68\) 0 0
\(69\) 3.11903 0.375487
\(70\) 0 0
\(71\) −7.11903 −0.844873 −0.422437 0.906393i \(-0.638825\pi\)
−0.422437 + 0.906393i \(0.638825\pi\)
\(72\) 0 0
\(73\) 9.45665 1.10682 0.553409 0.832910i \(-0.313327\pi\)
0.553409 + 0.832910i \(0.313327\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −19.5615 −2.22924
\(78\) 0 0
\(79\) 14.9133 1.67788 0.838939 0.544225i \(-0.183176\pi\)
0.838939 + 0.544225i \(0.183176\pi\)
\(80\) 0 0
\(81\) 16.0854 1.78727
\(82\) 0 0
\(83\) 2.78140 0.305298 0.152649 0.988280i \(-0.451220\pi\)
0.152649 + 0.988280i \(0.451220\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 25.6947 2.75476
\(88\) 0 0
\(89\) −7.69471 −0.815637 −0.407819 0.913063i \(-0.633710\pi\)
−0.407819 + 0.913063i \(0.633710\pi\)
\(90\) 0 0
\(91\) 16.8137 1.76256
\(92\) 0 0
\(93\) 5.39070 0.558989
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.642920 0.0652786 0.0326393 0.999467i \(-0.489609\pi\)
0.0326393 + 0.999467i \(0.489609\pi\)
\(98\) 0 0
\(99\) −29.1850 −2.93320
\(100\) 0 0
\(101\) −8.23805 −0.819717 −0.409858 0.912149i \(-0.634422\pi\)
−0.409858 + 0.912149i \(0.634422\pi\)
\(102\) 0 0
\(103\) 12.3376 1.21566 0.607831 0.794066i \(-0.292040\pi\)
0.607831 + 0.794066i \(0.292040\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.9328 −1.54028 −0.770139 0.637876i \(-0.779813\pi\)
−0.770139 + 0.637876i \(0.779813\pi\)
\(108\) 0 0
\(109\) −1.49027 −0.142742 −0.0713712 0.997450i \(-0.522737\pi\)
−0.0713712 + 0.997450i \(0.522737\pi\)
\(110\) 0 0
\(111\) −2.43720 −0.231329
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 25.0854 2.31915
\(118\) 0 0
\(119\) −5.04650 −0.462612
\(120\) 0 0
\(121\) 7.81502 0.710456
\(122\) 0 0
\(123\) −12.1655 −1.09693
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −0.675256 −0.0599193 −0.0299597 0.999551i \(-0.509538\pi\)
−0.0299597 + 0.999551i \(0.509538\pi\)
\(128\) 0 0
\(129\) −24.9522 −2.19692
\(130\) 0 0
\(131\) 13.6947 1.19651 0.598256 0.801305i \(-0.295861\pi\)
0.598256 + 0.801305i \(0.295861\pi\)
\(132\) 0 0
\(133\) −20.3376 −1.76350
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.52918 −0.643261 −0.321631 0.946865i \(-0.604231\pi\)
−0.321631 + 0.946865i \(0.604231\pi\)
\(138\) 0 0
\(139\) −4.67526 −0.396550 −0.198275 0.980146i \(-0.563534\pi\)
−0.198275 + 0.980146i \(0.563534\pi\)
\(140\) 0 0
\(141\) 35.7336 3.00931
\(142\) 0 0
\(143\) −16.1721 −1.35238
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −41.6004 −3.43114
\(148\) 0 0
\(149\) 7.52918 0.616814 0.308407 0.951254i \(-0.400204\pi\)
0.308407 + 0.951254i \(0.400204\pi\)
\(150\) 0 0
\(151\) 13.3571 1.08698 0.543492 0.839414i \(-0.317102\pi\)
0.543492 + 0.839414i \(0.317102\pi\)
\(152\) 0 0
\(153\) −7.52918 −0.608698
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −16.2381 −1.29594 −0.647969 0.761667i \(-0.724381\pi\)
−0.647969 + 0.761667i \(0.724381\pi\)
\(158\) 0 0
\(159\) −18.7142 −1.48413
\(160\) 0 0
\(161\) −4.50973 −0.355416
\(162\) 0 0
\(163\) −3.29112 −0.257781 −0.128890 0.991659i \(-0.541142\pi\)
−0.128890 + 0.991659i \(0.541142\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 22.9133 1.77309 0.886543 0.462647i \(-0.153100\pi\)
0.886543 + 0.462647i \(0.153100\pi\)
\(168\) 0 0
\(169\) 0.900425 0.0692635
\(170\) 0 0
\(171\) −30.3429 −2.32038
\(172\) 0 0
\(173\) −0.575681 −0.0437683 −0.0218841 0.999761i \(-0.506966\pi\)
−0.0218841 + 0.999761i \(0.506966\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −6.98055 −0.524690
\(178\) 0 0
\(179\) −5.01945 −0.375171 −0.187586 0.982248i \(-0.560066\pi\)
−0.187586 + 0.982248i \(0.560066\pi\)
\(180\) 0 0
\(181\) −11.5292 −0.856957 −0.428479 0.903552i \(-0.640950\pi\)
−0.428479 + 0.903552i \(0.640950\pi\)
\(182\) 0 0
\(183\) −11.0920 −0.819942
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.85392 0.354954
\(188\) 0 0
\(189\) −52.4425 −3.81463
\(190\) 0 0
\(191\) 18.7142 1.35411 0.677055 0.735933i \(-0.263256\pi\)
0.677055 + 0.735933i \(0.263256\pi\)
\(192\) 0 0
\(193\) −23.4956 −1.69125 −0.845624 0.533780i \(-0.820771\pi\)
−0.845624 + 0.533780i \(0.820771\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.1385 1.29231 0.646157 0.763205i \(-0.276375\pi\)
0.646157 + 0.763205i \(0.276375\pi\)
\(198\) 0 0
\(199\) 23.2575 1.64868 0.824340 0.566094i \(-0.191546\pi\)
0.824340 + 0.566094i \(0.191546\pi\)
\(200\) 0 0
\(201\) −7.60170 −0.536183
\(202\) 0 0
\(203\) −37.1514 −2.60751
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −6.72833 −0.467651
\(208\) 0 0
\(209\) 19.5615 1.35310
\(210\) 0 0
\(211\) −4.34420 −0.299067 −0.149533 0.988757i \(-0.547777\pi\)
−0.149533 + 0.988757i \(0.547777\pi\)
\(212\) 0 0
\(213\) 22.2044 1.52142
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −7.79428 −0.529110
\(218\) 0 0
\(219\) −29.4956 −1.99313
\(220\) 0 0
\(221\) −4.17210 −0.280646
\(222\) 0 0
\(223\) 12.4761 0.835462 0.417731 0.908571i \(-0.362825\pi\)
0.417731 + 0.908571i \(0.362825\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.9328 1.05749 0.528747 0.848779i \(-0.322662\pi\)
0.528747 + 0.848779i \(0.322662\pi\)
\(228\) 0 0
\(229\) −3.56280 −0.235436 −0.117718 0.993047i \(-0.537558\pi\)
−0.117718 + 0.993047i \(0.537558\pi\)
\(230\) 0 0
\(231\) 61.0129 4.01435
\(232\) 0 0
\(233\) 27.4956 1.80129 0.900647 0.434552i \(-0.143093\pi\)
0.900647 + 0.434552i \(0.143093\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −46.5150 −3.02147
\(238\) 0 0
\(239\) −10.0389 −0.649363 −0.324681 0.945823i \(-0.605257\pi\)
−0.324681 + 0.945823i \(0.605257\pi\)
\(240\) 0 0
\(241\) −23.6947 −1.52631 −0.763155 0.646215i \(-0.776351\pi\)
−0.763155 + 0.646215i \(0.776351\pi\)
\(242\) 0 0
\(243\) −15.2846 −0.980505
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −16.8137 −1.06983
\(248\) 0 0
\(249\) −8.67526 −0.549772
\(250\) 0 0
\(251\) −12.4425 −0.785363 −0.392681 0.919675i \(-0.628452\pi\)
−0.392681 + 0.919675i \(0.628452\pi\)
\(252\) 0 0
\(253\) 4.33763 0.272704
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.45665 −0.340377 −0.170188 0.985412i \(-0.554438\pi\)
−0.170188 + 0.985412i \(0.554438\pi\)
\(258\) 0 0
\(259\) 3.52389 0.218964
\(260\) 0 0
\(261\) −55.4283 −3.43093
\(262\) 0 0
\(263\) 0.138479 0.00853895 0.00426948 0.999991i \(-0.498641\pi\)
0.00426948 + 0.999991i \(0.498641\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 24.0000 1.46878
\(268\) 0 0
\(269\) 14.6753 0.894766 0.447383 0.894342i \(-0.352356\pi\)
0.447383 + 0.894342i \(0.352356\pi\)
\(270\) 0 0
\(271\) 8.31058 0.504832 0.252416 0.967619i \(-0.418775\pi\)
0.252416 + 0.967619i \(0.418775\pi\)
\(272\) 0 0
\(273\) −52.4425 −3.17396
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −12.9133 −0.775886 −0.387943 0.921683i \(-0.626814\pi\)
−0.387943 + 0.921683i \(0.626814\pi\)
\(278\) 0 0
\(279\) −11.6288 −0.696195
\(280\) 0 0
\(281\) 2.67526 0.159592 0.0797962 0.996811i \(-0.474573\pi\)
0.0797962 + 0.996811i \(0.474573\pi\)
\(282\) 0 0
\(283\) 0.742495 0.0441367 0.0220684 0.999756i \(-0.492975\pi\)
0.0220684 + 0.999756i \(0.492975\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 17.5898 1.03830
\(288\) 0 0
\(289\) −15.7478 −0.926340
\(290\) 0 0
\(291\) −2.00528 −0.117552
\(292\) 0 0
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 50.4412 2.92690
\(298\) 0 0
\(299\) −3.72833 −0.215615
\(300\) 0 0
\(301\) 36.0778 2.07949
\(302\) 0 0
\(303\) 25.6947 1.47612
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 30.5084 1.74121 0.870604 0.491984i \(-0.163728\pi\)
0.870604 + 0.491984i \(0.163728\pi\)
\(308\) 0 0
\(309\) −38.4814 −2.18913
\(310\) 0 0
\(311\) −5.56280 −0.315437 −0.157719 0.987484i \(-0.550414\pi\)
−0.157719 + 0.987484i \(0.550414\pi\)
\(312\) 0 0
\(313\) −4.07252 −0.230193 −0.115096 0.993354i \(-0.536718\pi\)
−0.115096 + 0.993354i \(0.536718\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.16553 0.346291 0.173145 0.984896i \(-0.444607\pi\)
0.173145 + 0.984896i \(0.444607\pi\)
\(318\) 0 0
\(319\) 35.7336 2.00070
\(320\) 0 0
\(321\) 49.6947 2.77369
\(322\) 0 0
\(323\) 5.04650 0.280795
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4.64820 0.257046
\(328\) 0 0
\(329\) −51.6664 −2.84846
\(330\) 0 0
\(331\) −27.5886 −1.51640 −0.758202 0.652019i \(-0.773922\pi\)
−0.758202 + 0.652019i \(0.773922\pi\)
\(332\) 0 0
\(333\) 5.25751 0.288110
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 17.4230 0.949093 0.474547 0.880230i \(-0.342612\pi\)
0.474547 + 0.880230i \(0.342612\pi\)
\(338\) 0 0
\(339\) −18.7142 −1.01641
\(340\) 0 0
\(341\) 7.49684 0.405977
\(342\) 0 0
\(343\) 28.5810 1.54323
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.88097 0.262024 0.131012 0.991381i \(-0.458177\pi\)
0.131012 + 0.991381i \(0.458177\pi\)
\(348\) 0 0
\(349\) 24.0389 1.28677 0.643387 0.765542i \(-0.277529\pi\)
0.643387 + 0.765542i \(0.277529\pi\)
\(350\) 0 0
\(351\) −43.3558 −2.31416
\(352\) 0 0
\(353\) 14.3442 0.763464 0.381732 0.924273i \(-0.375328\pi\)
0.381732 + 0.924273i \(0.375328\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 15.7402 0.833059
\(358\) 0 0
\(359\) −26.7814 −1.41347 −0.706734 0.707479i \(-0.749832\pi\)
−0.706734 + 0.707479i \(0.749832\pi\)
\(360\) 0 0
\(361\) 1.33763 0.0704015
\(362\) 0 0
\(363\) −24.3752 −1.27937
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −20.4761 −1.06884 −0.534422 0.845218i \(-0.679471\pi\)
−0.534422 + 0.845218i \(0.679471\pi\)
\(368\) 0 0
\(369\) 26.2433 1.36617
\(370\) 0 0
\(371\) 27.0584 1.40480
\(372\) 0 0
\(373\) 3.89386 0.201616 0.100808 0.994906i \(-0.467857\pi\)
0.100808 + 0.994906i \(0.467857\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −30.7142 −1.58186
\(378\) 0 0
\(379\) 30.3765 1.56034 0.780169 0.625569i \(-0.215133\pi\)
0.780169 + 0.625569i \(0.215133\pi\)
\(380\) 0 0
\(381\) 2.10614 0.107901
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 53.8266 2.73616
\(388\) 0 0
\(389\) −18.6818 −0.947206 −0.473603 0.880738i \(-0.657047\pi\)
−0.473603 + 0.880738i \(0.657047\pi\)
\(390\) 0 0
\(391\) 1.11903 0.0565916
\(392\) 0 0
\(393\) −42.7142 −2.15464
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 28.5757 1.43417 0.717086 0.696985i \(-0.245475\pi\)
0.717086 + 0.696985i \(0.245475\pi\)
\(398\) 0 0
\(399\) 63.4336 3.17565
\(400\) 0 0
\(401\) 12.1061 0.604552 0.302276 0.953220i \(-0.402254\pi\)
0.302276 + 0.953220i \(0.402254\pi\)
\(402\) 0 0
\(403\) −6.44377 −0.320987
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.38942 −0.168007
\(408\) 0 0
\(409\) 25.2911 1.25057 0.625283 0.780398i \(-0.284984\pi\)
0.625283 + 0.780398i \(0.284984\pi\)
\(410\) 0 0
\(411\) 23.4837 1.15837
\(412\) 0 0
\(413\) 10.0930 0.496644
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 14.5822 0.714096
\(418\) 0 0
\(419\) 17.3505 0.847628 0.423814 0.905749i \(-0.360691\pi\)
0.423814 + 0.905749i \(0.360691\pi\)
\(420\) 0 0
\(421\) 21.4230 1.04409 0.522047 0.852916i \(-0.325168\pi\)
0.522047 + 0.852916i \(0.325168\pi\)
\(422\) 0 0
\(423\) −77.0841 −3.74796
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 16.0376 0.776115
\(428\) 0 0
\(429\) 50.4412 2.43532
\(430\) 0 0
\(431\) −22.5822 −1.08775 −0.543874 0.839167i \(-0.683043\pi\)
−0.543874 + 0.839167i \(0.683043\pi\)
\(432\) 0 0
\(433\) −1.01417 −0.0487378 −0.0243689 0.999703i \(-0.507758\pi\)
−0.0243689 + 0.999703i \(0.507758\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.50973 0.215729
\(438\) 0 0
\(439\) 26.7478 1.27660 0.638301 0.769787i \(-0.279638\pi\)
0.638301 + 0.769787i \(0.279638\pi\)
\(440\) 0 0
\(441\) 89.7399 4.27333
\(442\) 0 0
\(443\) 10.2044 0.484827 0.242414 0.970173i \(-0.422061\pi\)
0.242414 + 0.970173i \(0.422061\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −23.4837 −1.11074
\(448\) 0 0
\(449\) 38.7867 1.83046 0.915228 0.402936i \(-0.132010\pi\)
0.915228 + 0.402936i \(0.132010\pi\)
\(450\) 0 0
\(451\) −16.9186 −0.796665
\(452\) 0 0
\(453\) −41.6611 −1.95741
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −34.9522 −1.63500 −0.817498 0.575932i \(-0.804639\pi\)
−0.817498 + 0.575932i \(0.804639\pi\)
\(458\) 0 0
\(459\) 13.0129 0.607389
\(460\) 0 0
\(461\) 16.3700 0.762425 0.381213 0.924487i \(-0.375507\pi\)
0.381213 + 0.924487i \(0.375507\pi\)
\(462\) 0 0
\(463\) 29.2186 1.35790 0.678952 0.734183i \(-0.262435\pi\)
0.678952 + 0.734183i \(0.262435\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.2770 1.12340 0.561702 0.827340i \(-0.310147\pi\)
0.561702 + 0.827340i \(0.310147\pi\)
\(468\) 0 0
\(469\) 10.9911 0.507523
\(470\) 0 0
\(471\) 50.6469 2.33369
\(472\) 0 0
\(473\) −34.7010 −1.59555
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 40.3700 1.84841
\(478\) 0 0
\(479\) −24.6080 −1.12437 −0.562185 0.827012i \(-0.690039\pi\)
−0.562185 + 0.827012i \(0.690039\pi\)
\(480\) 0 0
\(481\) 2.91331 0.132835
\(482\) 0 0
\(483\) 14.0660 0.640023
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −30.2381 −1.37022 −0.685108 0.728441i \(-0.740245\pi\)
−0.685108 + 0.728441i \(0.740245\pi\)
\(488\) 0 0
\(489\) 10.2651 0.464204
\(490\) 0 0
\(491\) −12.3311 −0.556493 −0.278246 0.960510i \(-0.589753\pi\)
−0.278246 + 0.960510i \(0.589753\pi\)
\(492\) 0 0
\(493\) 9.21860 0.415185
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −32.1049 −1.44010
\(498\) 0 0
\(499\) 26.9133 1.20481 0.602403 0.798192i \(-0.294210\pi\)
0.602403 + 0.798192i \(0.294210\pi\)
\(500\) 0 0
\(501\) −71.4672 −3.19292
\(502\) 0 0
\(503\) 20.5097 0.914483 0.457242 0.889342i \(-0.348837\pi\)
0.457242 + 0.889342i \(0.348837\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −2.80845 −0.124728
\(508\) 0 0
\(509\) −36.7142 −1.62733 −0.813663 0.581336i \(-0.802530\pi\)
−0.813663 + 0.581336i \(0.802530\pi\)
\(510\) 0 0
\(511\) 42.6469 1.88659
\(512\) 0 0
\(513\) 52.4425 2.31539
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 49.6947 2.18557
\(518\) 0 0
\(519\) 1.79557 0.0788166
\(520\) 0 0
\(521\) −4.91331 −0.215256 −0.107628 0.994191i \(-0.534326\pi\)
−0.107628 + 0.994191i \(0.534326\pi\)
\(522\) 0 0
\(523\) −0.344196 −0.0150506 −0.00752531 0.999972i \(-0.502395\pi\)
−0.00752531 + 0.999972i \(0.502395\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.93404 0.0842483
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 15.0584 0.653477
\(532\) 0 0
\(533\) 14.5421 0.629887
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 15.6558 0.675598
\(538\) 0 0
\(539\) −57.8537 −2.49193
\(540\) 0 0
\(541\) −6.13191 −0.263631 −0.131816 0.991274i \(-0.542081\pi\)
−0.131816 + 0.991274i \(0.542081\pi\)
\(542\) 0 0
\(543\) 35.9598 1.54318
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −9.18498 −0.392721 −0.196361 0.980532i \(-0.562912\pi\)
−0.196361 + 0.980532i \(0.562912\pi\)
\(548\) 0 0
\(549\) 23.9275 1.02120
\(550\) 0 0
\(551\) 37.1514 1.58270
\(552\) 0 0
\(553\) 67.2549 2.85997
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.30529 0.182421 0.0912105 0.995832i \(-0.470926\pi\)
0.0912105 + 0.995832i \(0.470926\pi\)
\(558\) 0 0
\(559\) 29.8266 1.26153
\(560\) 0 0
\(561\) −15.1395 −0.639191
\(562\) 0 0
\(563\) 11.1256 0.468888 0.234444 0.972130i \(-0.424673\pi\)
0.234444 + 0.972130i \(0.424673\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 72.5408 3.04643
\(568\) 0 0
\(569\) −16.0389 −0.672386 −0.336193 0.941793i \(-0.609139\pi\)
−0.336193 + 0.941793i \(0.609139\pi\)
\(570\) 0 0
\(571\) −17.9004 −0.749109 −0.374555 0.927205i \(-0.622204\pi\)
−0.374555 + 0.927205i \(0.622204\pi\)
\(572\) 0 0
\(573\) −58.3700 −2.43844
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 9.12559 0.379903 0.189952 0.981793i \(-0.439167\pi\)
0.189952 + 0.981793i \(0.439167\pi\)
\(578\) 0 0
\(579\) 73.2833 3.04555
\(580\) 0 0
\(581\) 12.5433 0.520386
\(582\) 0 0
\(583\) −26.0258 −1.07788
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −33.6340 −1.38823 −0.694113 0.719866i \(-0.744203\pi\)
−0.694113 + 0.719866i \(0.744203\pi\)
\(588\) 0 0
\(589\) 7.79428 0.321158
\(590\) 0 0
\(591\) −56.5744 −2.32716
\(592\) 0 0
\(593\) 17.4567 0.716859 0.358429 0.933557i \(-0.383312\pi\)
0.358429 + 0.933557i \(0.383312\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −72.5408 −2.96890
\(598\) 0 0
\(599\) 11.5951 0.473764 0.236882 0.971538i \(-0.423874\pi\)
0.236882 + 0.971538i \(0.423874\pi\)
\(600\) 0 0
\(601\) −31.6611 −1.29148 −0.645741 0.763556i \(-0.723452\pi\)
−0.645741 + 0.763556i \(0.723452\pi\)
\(602\) 0 0
\(603\) 16.3983 0.667790
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −36.0778 −1.46435 −0.732177 0.681115i \(-0.761495\pi\)
−0.732177 + 0.681115i \(0.761495\pi\)
\(608\) 0 0
\(609\) 115.876 4.69554
\(610\) 0 0
\(611\) −42.7142 −1.72803
\(612\) 0 0
\(613\) 32.0389 1.29404 0.647020 0.762473i \(-0.276015\pi\)
0.647020 + 0.762473i \(0.276015\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.3960 0.539302 0.269651 0.962958i \(-0.413092\pi\)
0.269651 + 0.962958i \(0.413092\pi\)
\(618\) 0 0
\(619\) −37.1309 −1.49242 −0.746208 0.665713i \(-0.768128\pi\)
−0.746208 + 0.665713i \(0.768128\pi\)
\(620\) 0 0
\(621\) 11.6288 0.466646
\(622\) 0 0
\(623\) −34.7010 −1.39027
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −61.0129 −2.43662
\(628\) 0 0
\(629\) −0.874406 −0.0348648
\(630\) 0 0
\(631\) −11.1125 −0.442380 −0.221190 0.975231i \(-0.570994\pi\)
−0.221190 + 0.975231i \(0.570994\pi\)
\(632\) 0 0
\(633\) 13.5497 0.538551
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 49.7270 1.97026
\(638\) 0 0
\(639\) −47.8991 −1.89486
\(640\) 0 0
\(641\) 12.3831 0.489103 0.244552 0.969636i \(-0.421359\pi\)
0.244552 + 0.969636i \(0.421359\pi\)
\(642\) 0 0
\(643\) −37.4956 −1.47868 −0.739340 0.673332i \(-0.764862\pi\)
−0.739340 + 0.673332i \(0.764862\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.5691 0.572771 0.286385 0.958114i \(-0.407546\pi\)
0.286385 + 0.958114i \(0.407546\pi\)
\(648\) 0 0
\(649\) −9.70784 −0.381066
\(650\) 0 0
\(651\) 24.3106 0.952807
\(652\) 0 0
\(653\) 4.41672 0.172840 0.0864198 0.996259i \(-0.472457\pi\)
0.0864198 + 0.996259i \(0.472457\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 63.6275 2.48234
\(658\) 0 0
\(659\) 31.8655 1.24130 0.620652 0.784086i \(-0.286868\pi\)
0.620652 + 0.784086i \(0.286868\pi\)
\(660\) 0 0
\(661\) 33.1190 1.28818 0.644090 0.764949i \(-0.277236\pi\)
0.644090 + 0.764949i \(0.277236\pi\)
\(662\) 0 0
\(663\) 13.0129 0.505379
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8.23805 0.318979
\(668\) 0 0
\(669\) −38.9133 −1.50448
\(670\) 0 0
\(671\) −15.4256 −0.595499
\(672\) 0 0
\(673\) −19.3505 −0.745907 −0.372954 0.927850i \(-0.621655\pi\)
−0.372954 + 0.927850i \(0.621655\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) 2.89939 0.111268
\(680\) 0 0
\(681\) −49.6947 −1.90431
\(682\) 0 0
\(683\) 38.3495 1.46740 0.733701 0.679472i \(-0.237791\pi\)
0.733701 + 0.679472i \(0.237791\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 11.1125 0.423967
\(688\) 0 0
\(689\) 22.3700 0.852228
\(690\) 0 0
\(691\) 21.0195 0.799618 0.399809 0.916599i \(-0.369077\pi\)
0.399809 + 0.916599i \(0.369077\pi\)
\(692\) 0 0
\(693\) −131.616 −4.99969
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −4.36468 −0.165324
\(698\) 0 0
\(699\) −85.7594 −3.24372
\(700\) 0 0
\(701\) 19.3169 0.729589 0.364794 0.931088i \(-0.381139\pi\)
0.364794 + 0.931088i \(0.381139\pi\)
\(702\) 0 0
\(703\) −3.52389 −0.132906
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −37.1514 −1.39722
\(708\) 0 0
\(709\) 12.2315 0.459363 0.229682 0.973266i \(-0.426232\pi\)
0.229682 + 0.973266i \(0.426232\pi\)
\(710\) 0 0
\(711\) 100.342 3.76311
\(712\) 0 0
\(713\) 1.72833 0.0647264
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 31.3116 1.16935
\(718\) 0 0
\(719\) 40.6416 1.51568 0.757839 0.652442i \(-0.226255\pi\)
0.757839 + 0.652442i \(0.226255\pi\)
\(720\) 0 0
\(721\) 55.6393 2.07212
\(722\) 0 0
\(723\) 73.9044 2.74854
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −23.4501 −0.869716 −0.434858 0.900499i \(-0.643201\pi\)
−0.434858 + 0.900499i \(0.643201\pi\)
\(728\) 0 0
\(729\) −0.583281 −0.0216030
\(730\) 0 0
\(731\) −8.95221 −0.331110
\(732\) 0 0
\(733\) 12.5150 0.462252 0.231126 0.972924i \(-0.425759\pi\)
0.231126 + 0.972924i \(0.425759\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −10.5717 −0.389413
\(738\) 0 0
\(739\) 21.3505 0.785391 0.392696 0.919668i \(-0.371543\pi\)
0.392696 + 0.919668i \(0.371543\pi\)
\(740\) 0 0
\(741\) 52.4425 1.92652
\(742\) 0 0
\(743\) 24.9858 0.916641 0.458321 0.888787i \(-0.348451\pi\)
0.458321 + 0.888787i \(0.348451\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 18.7142 0.684715
\(748\) 0 0
\(749\) −71.8524 −2.62543
\(750\) 0 0
\(751\) 33.6275 1.22708 0.613542 0.789662i \(-0.289744\pi\)
0.613542 + 0.789662i \(0.289744\pi\)
\(752\) 0 0
\(753\) 38.8085 1.41426
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 37.1230 1.34926 0.674630 0.738156i \(-0.264303\pi\)
0.674630 + 0.738156i \(0.264303\pi\)
\(758\) 0 0
\(759\) −13.5292 −0.491078
\(760\) 0 0
\(761\) −3.87337 −0.140410 −0.0702048 0.997533i \(-0.522365\pi\)
−0.0702048 + 0.997533i \(0.522365\pi\)
\(762\) 0 0
\(763\) −6.72073 −0.243307
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.34420 0.301291
\(768\) 0 0
\(769\) 23.1645 0.835333 0.417667 0.908600i \(-0.362848\pi\)
0.417667 + 0.908600i \(0.362848\pi\)
\(770\) 0 0
\(771\) 17.0195 0.612941
\(772\) 0 0
\(773\) 8.78140 0.315845 0.157922 0.987452i \(-0.449520\pi\)
0.157922 + 0.987452i \(0.449520\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −10.9911 −0.394304
\(778\) 0 0
\(779\) −17.5898 −0.630222
\(780\) 0 0
\(781\) 30.8797 1.10496
\(782\) 0 0
\(783\) 95.7983 3.42355
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 49.6275 1.76903 0.884514 0.466513i \(-0.154490\pi\)
0.884514 + 0.466513i \(0.154490\pi\)
\(788\) 0 0
\(789\) −0.431918 −0.0153767
\(790\) 0 0
\(791\) 27.0584 0.962084
\(792\) 0 0
\(793\) 13.2588 0.470833
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −18.3311 −0.649319 −0.324660 0.945831i \(-0.605250\pi\)
−0.324660 + 0.945831i \(0.605250\pi\)
\(798\) 0 0
\(799\) 12.8203 0.453550
\(800\) 0 0
\(801\) −51.7725 −1.82929
\(802\) 0 0
\(803\) −41.0195 −1.44755
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −45.7725 −1.61127
\(808\) 0 0
\(809\) −1.93933 −0.0681832 −0.0340916 0.999419i \(-0.510854\pi\)
−0.0340916 + 0.999419i \(0.510854\pi\)
\(810\) 0 0
\(811\) 5.41775 0.190243 0.0951215 0.995466i \(-0.469676\pi\)
0.0951215 + 0.995466i \(0.469676\pi\)
\(812\) 0 0
\(813\) −25.9209 −0.909086
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −36.0778 −1.26220
\(818\) 0 0
\(819\) 113.128 3.95302
\(820\) 0 0
\(821\) 37.8655 1.32152 0.660758 0.750599i \(-0.270235\pi\)
0.660758 + 0.750599i \(0.270235\pi\)
\(822\) 0 0
\(823\) 43.7336 1.52446 0.762229 0.647308i \(-0.224105\pi\)
0.762229 + 0.647308i \(0.224105\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.1991 0.980581 0.490290 0.871559i \(-0.336891\pi\)
0.490290 + 0.871559i \(0.336891\pi\)
\(828\) 0 0
\(829\) 1.12559 0.0390935 0.0195468 0.999809i \(-0.493778\pi\)
0.0195468 + 0.999809i \(0.493778\pi\)
\(830\) 0 0
\(831\) 40.2770 1.39719
\(832\) 0 0
\(833\) −14.9252 −0.517126
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 20.0983 0.694699
\(838\) 0 0
\(839\) −39.9328 −1.37863 −0.689316 0.724461i \(-0.742089\pi\)
−0.689316 + 0.724461i \(0.742089\pi\)
\(840\) 0 0
\(841\) 38.8655 1.34019
\(842\) 0 0
\(843\) −8.34420 −0.287389
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 35.2436 1.21098
\(848\) 0 0
\(849\) −2.31586 −0.0794801
\(850\) 0 0
\(851\) −0.781399 −0.0267860
\(852\) 0 0
\(853\) −47.9921 −1.64322 −0.821610 0.570050i \(-0.806924\pi\)
−0.821610 + 0.570050i \(0.806924\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 43.4283 1.48348 0.741742 0.670686i \(-0.234000\pi\)
0.741742 + 0.670686i \(0.234000\pi\)
\(858\) 0 0
\(859\) −32.5433 −1.11036 −0.555182 0.831729i \(-0.687352\pi\)
−0.555182 + 0.831729i \(0.687352\pi\)
\(860\) 0 0
\(861\) −54.8632 −1.86973
\(862\) 0 0
\(863\) 46.1036 1.56938 0.784692 0.619886i \(-0.212821\pi\)
0.784692 + 0.619886i \(0.212821\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 49.1177 1.66813
\(868\) 0 0
\(869\) −64.6884 −2.19440
\(870\) 0 0
\(871\) 9.08669 0.307891
\(872\) 0 0
\(873\) 4.32578 0.146405
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 24.0996 0.813785 0.406892 0.913476i \(-0.366612\pi\)
0.406892 + 0.913476i \(0.366612\pi\)
\(878\) 0 0
\(879\) −18.7142 −0.631213
\(880\) 0 0
\(881\) 2.34420 0.0789780 0.0394890 0.999220i \(-0.487427\pi\)
0.0394890 + 0.999220i \(0.487427\pi\)
\(882\) 0 0
\(883\) −41.0505 −1.38146 −0.690730 0.723113i \(-0.742711\pi\)
−0.690730 + 0.723113i \(0.742711\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 54.7788 1.83929 0.919647 0.392747i \(-0.128475\pi\)
0.919647 + 0.392747i \(0.128475\pi\)
\(888\) 0 0
\(889\) −3.04522 −0.102133
\(890\) 0 0
\(891\) −69.7725 −2.33747
\(892\) 0 0
\(893\) 51.6664 1.72895
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 11.6288 0.388273
\(898\) 0 0
\(899\) 14.2381 0.474866
\(900\) 0 0
\(901\) −6.71416 −0.223681
\(902\) 0 0
\(903\) −112.528 −3.74469
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −10.1061 −0.335569 −0.167784 0.985824i \(-0.553661\pi\)
−0.167784 + 0.985824i \(0.553661\pi\)
\(908\) 0 0
\(909\) −55.4283 −1.83844
\(910\) 0 0
\(911\) 25.4178 0.842128 0.421064 0.907031i \(-0.361657\pi\)
0.421064 + 0.907031i \(0.361657\pi\)
\(912\) 0 0
\(913\) −12.0647 −0.399282
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 61.7594 2.03947
\(918\) 0 0
\(919\) −23.6017 −0.778548 −0.389274 0.921122i \(-0.627274\pi\)
−0.389274 + 0.921122i \(0.627274\pi\)
\(920\) 0 0
\(921\) −95.1566 −3.13552
\(922\) 0 0
\(923\) −26.5421 −0.873643
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 83.0116 2.72646
\(928\) 0 0
\(929\) −7.08669 −0.232507 −0.116253 0.993220i \(-0.537088\pi\)
−0.116253 + 0.993220i \(0.537088\pi\)
\(930\) 0 0
\(931\) −60.1490 −1.97131
\(932\) 0 0
\(933\) 17.3505 0.568030
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −27.3169 −0.892404 −0.446202 0.894932i \(-0.647224\pi\)
−0.446202 + 0.894932i \(0.647224\pi\)
\(938\) 0 0
\(939\) 12.7023 0.414524
\(940\) 0 0
\(941\) 55.8979 1.82222 0.911109 0.412165i \(-0.135227\pi\)
0.911109 + 0.412165i \(0.135227\pi\)
\(942\) 0 0
\(943\) −3.90043 −0.127015
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 37.5939 1.22164 0.610818 0.791771i \(-0.290841\pi\)
0.610818 + 0.791771i \(0.290841\pi\)
\(948\) 0 0
\(949\) 35.2575 1.14451
\(950\) 0 0
\(951\) −19.2305 −0.623590
\(952\) 0 0
\(953\) 29.3828 0.951804 0.475902 0.879498i \(-0.342122\pi\)
0.475902 + 0.879498i \(0.342122\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −111.454 −3.60280
\(958\) 0 0
\(959\) −33.9545 −1.09645
\(960\) 0 0
\(961\) −28.0129 −0.903641
\(962\) 0 0
\(963\) −107.201 −3.45450
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −49.2292 −1.58310 −0.791552 0.611102i \(-0.790726\pi\)
−0.791552 + 0.611102i \(0.790726\pi\)
\(968\) 0 0
\(969\) −15.7402 −0.505647
\(970\) 0 0
\(971\) −9.62347 −0.308832 −0.154416 0.988006i \(-0.549350\pi\)
−0.154416 + 0.988006i \(0.549350\pi\)
\(972\) 0 0
\(973\) −21.0841 −0.675926
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −18.9858 −0.607411 −0.303705 0.952766i \(-0.598224\pi\)
−0.303705 + 0.952766i \(0.598224\pi\)
\(978\) 0 0
\(979\) 33.3768 1.06673
\(980\) 0 0
\(981\) −10.0271 −0.320139
\(982\) 0 0
\(983\) 4.33763 0.138349 0.0691744 0.997605i \(-0.477963\pi\)
0.0691744 + 0.997605i \(0.477963\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 161.149 5.12942
\(988\) 0 0
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) −1.96766 −0.0625049 −0.0312524 0.999512i \(-0.509950\pi\)
−0.0312524 + 0.999512i \(0.509950\pi\)
\(992\) 0 0
\(993\) 86.0495 2.73070
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −3.96110 −0.125449 −0.0627246 0.998031i \(-0.519979\pi\)
−0.0627246 + 0.998031i \(0.519979\pi\)
\(998\) 0 0
\(999\) −9.08669 −0.287490
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9200.2.a.cf.1.1 3
4.3 odd 2 1150.2.a.q.1.3 3
5.4 even 2 1840.2.a.r.1.3 3
20.3 even 4 1150.2.b.j.599.6 6
20.7 even 4 1150.2.b.j.599.1 6
20.19 odd 2 230.2.a.d.1.1 3
40.19 odd 2 7360.2.a.bz.1.3 3
40.29 even 2 7360.2.a.ce.1.1 3
60.59 even 2 2070.2.a.z.1.3 3
460.459 even 2 5290.2.a.r.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.2.a.d.1.1 3 20.19 odd 2
1150.2.a.q.1.3 3 4.3 odd 2
1150.2.b.j.599.1 6 20.7 even 4
1150.2.b.j.599.6 6 20.3 even 4
1840.2.a.r.1.3 3 5.4 even 2
2070.2.a.z.1.3 3 60.59 even 2
5290.2.a.r.1.1 3 460.459 even 2
7360.2.a.bz.1.3 3 40.19 odd 2
7360.2.a.ce.1.1 3 40.29 even 2
9200.2.a.cf.1.1 3 1.1 even 1 trivial