Properties

Label 9200.2.a.cd.1.3
Level $9200$
Weight $2$
Character 9200.1
Self dual yes
Analytic conductor $73.462$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9200 = 2^{4} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9200.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(73.4623698596\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
Defining polynomial: \(x^{3} - 6 x - 3\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 920)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.66908\) of defining polynomial
Character \(\chi\) \(=\) 9200.1

$q$-expansion

\(f(q)\) \(=\) \(q+2.66908 q^{3} +3.66908 q^{7} +4.12398 q^{9} +O(q^{10})\) \(q+2.66908 q^{3} +3.66908 q^{7} +4.12398 q^{9} +1.21417 q^{11} -2.21417 q^{13} -1.21417 q^{17} +2.57889 q^{19} +9.79306 q^{21} +1.00000 q^{23} +3.00000 q^{27} +1.45490 q^{29} +6.46214 q^{31} +3.24073 q^{33} -4.00000 q^{37} -5.90981 q^{39} -10.9170 q^{41} +6.90981 q^{43} +5.45490 q^{47} +6.46214 q^{49} -3.24073 q^{51} -3.81962 q^{53} +6.88325 q^{57} +4.24797 q^{59} +6.78583 q^{61} +15.1312 q^{63} +12.8567 q^{67} +2.66908 q^{69} +6.91705 q^{71} +15.2214 q^{73} +4.45490 q^{77} -4.36471 q^{81} -15.5861 q^{83} +3.88325 q^{87} -10.9098 q^{89} -8.12398 q^{91} +17.2480 q^{93} -1.69563 q^{97} +5.00724 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + 3q^{7} + 3q^{9} + O(q^{10}) \) \( 3q + 3q^{7} + 3q^{9} - 3q^{11} + 3q^{17} - 3q^{19} + 12q^{21} + 3q^{23} + 9q^{27} + 3q^{29} - 6q^{31} + 15q^{33} - 12q^{37} - 15q^{39} - 6q^{41} + 18q^{43} + 15q^{47} - 6q^{49} - 15q^{51} - 6q^{53} + 6q^{57} - 6q^{59} + 27q^{61} + 12q^{63} + 12q^{67} - 6q^{71} + 15q^{73} + 12q^{77} - 9q^{81} - 12q^{83} - 3q^{87} - 30q^{89} - 15q^{91} + 33q^{93} - 9q^{97} - 9q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.66908 1.54099 0.770497 0.637444i \(-0.220008\pi\)
0.770497 + 0.637444i \(0.220008\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.66908 1.38678 0.693391 0.720562i \(-0.256116\pi\)
0.693391 + 0.720562i \(0.256116\pi\)
\(8\) 0 0
\(9\) 4.12398 1.37466
\(10\) 0 0
\(11\) 1.21417 0.366088 0.183044 0.983105i \(-0.441405\pi\)
0.183044 + 0.983105i \(0.441405\pi\)
\(12\) 0 0
\(13\) −2.21417 −0.614102 −0.307051 0.951693i \(-0.599342\pi\)
−0.307051 + 0.951693i \(0.599342\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.21417 −0.294481 −0.147240 0.989101i \(-0.547039\pi\)
−0.147240 + 0.989101i \(0.547039\pi\)
\(18\) 0 0
\(19\) 2.57889 0.591637 0.295819 0.955244i \(-0.404408\pi\)
0.295819 + 0.955244i \(0.404408\pi\)
\(20\) 0 0
\(21\) 9.79306 2.13702
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.00000 0.577350
\(28\) 0 0
\(29\) 1.45490 0.270169 0.135084 0.990834i \(-0.456869\pi\)
0.135084 + 0.990834i \(0.456869\pi\)
\(30\) 0 0
\(31\) 6.46214 1.16063 0.580317 0.814390i \(-0.302928\pi\)
0.580317 + 0.814390i \(0.302928\pi\)
\(32\) 0 0
\(33\) 3.24073 0.564139
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) −5.90981 −0.946327
\(40\) 0 0
\(41\) −10.9170 −1.70496 −0.852478 0.522763i \(-0.824901\pi\)
−0.852478 + 0.522763i \(0.824901\pi\)
\(42\) 0 0
\(43\) 6.90981 1.05374 0.526868 0.849947i \(-0.323366\pi\)
0.526868 + 0.849947i \(0.323366\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.45490 0.795680 0.397840 0.917455i \(-0.369760\pi\)
0.397840 + 0.917455i \(0.369760\pi\)
\(48\) 0 0
\(49\) 6.46214 0.923163
\(50\) 0 0
\(51\) −3.24073 −0.453793
\(52\) 0 0
\(53\) −3.81962 −0.524665 −0.262332 0.964978i \(-0.584492\pi\)
−0.262332 + 0.964978i \(0.584492\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 6.88325 0.911709
\(58\) 0 0
\(59\) 4.24797 0.553038 0.276519 0.961008i \(-0.410819\pi\)
0.276519 + 0.961008i \(0.410819\pi\)
\(60\) 0 0
\(61\) 6.78583 0.868836 0.434418 0.900711i \(-0.356954\pi\)
0.434418 + 0.900711i \(0.356954\pi\)
\(62\) 0 0
\(63\) 15.1312 1.90635
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 12.8567 1.57070 0.785348 0.619055i \(-0.212484\pi\)
0.785348 + 0.619055i \(0.212484\pi\)
\(68\) 0 0
\(69\) 2.66908 0.321319
\(70\) 0 0
\(71\) 6.91705 0.820902 0.410451 0.911883i \(-0.365371\pi\)
0.410451 + 0.911883i \(0.365371\pi\)
\(72\) 0 0
\(73\) 15.2214 1.78153 0.890766 0.454463i \(-0.150169\pi\)
0.890766 + 0.454463i \(0.150169\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.45490 0.507683
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −4.36471 −0.484968
\(82\) 0 0
\(83\) −15.5861 −1.71080 −0.855400 0.517968i \(-0.826688\pi\)
−0.855400 + 0.517968i \(0.826688\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.88325 0.416329
\(88\) 0 0
\(89\) −10.9098 −1.15644 −0.578219 0.815882i \(-0.696252\pi\)
−0.578219 + 0.815882i \(0.696252\pi\)
\(90\) 0 0
\(91\) −8.12398 −0.851625
\(92\) 0 0
\(93\) 17.2480 1.78853
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.69563 −0.172165 −0.0860827 0.996288i \(-0.527435\pi\)
−0.0860827 + 0.996288i \(0.527435\pi\)
\(98\) 0 0
\(99\) 5.00724 0.503246
\(100\) 0 0
\(101\) −2.24797 −0.223681 −0.111841 0.993726i \(-0.535675\pi\)
−0.111841 + 0.993726i \(0.535675\pi\)
\(102\) 0 0
\(103\) −2.78583 −0.274495 −0.137248 0.990537i \(-0.543826\pi\)
−0.137248 + 0.990537i \(0.543826\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.1578 1.27201 0.636005 0.771685i \(-0.280586\pi\)
0.636005 + 0.771685i \(0.280586\pi\)
\(108\) 0 0
\(109\) 3.42111 0.327683 0.163842 0.986487i \(-0.447611\pi\)
0.163842 + 0.986487i \(0.447611\pi\)
\(110\) 0 0
\(111\) −10.6763 −1.01335
\(112\) 0 0
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −9.13122 −0.844182
\(118\) 0 0
\(119\) −4.45490 −0.408380
\(120\) 0 0
\(121\) −9.52578 −0.865980
\(122\) 0 0
\(123\) −29.1385 −2.62733
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 19.9508 1.77035 0.885175 0.465258i \(-0.154038\pi\)
0.885175 + 0.465258i \(0.154038\pi\)
\(128\) 0 0
\(129\) 18.4428 1.62380
\(130\) 0 0
\(131\) 9.70287 0.847744 0.423872 0.905722i \(-0.360671\pi\)
0.423872 + 0.905722i \(0.360671\pi\)
\(132\) 0 0
\(133\) 9.46214 0.820472
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.82685 −0.241514 −0.120757 0.992682i \(-0.538532\pi\)
−0.120757 + 0.992682i \(0.538532\pi\)
\(138\) 0 0
\(139\) −2.36471 −0.200572 −0.100286 0.994959i \(-0.531976\pi\)
−0.100286 + 0.994959i \(0.531976\pi\)
\(140\) 0 0
\(141\) 14.5596 1.22614
\(142\) 0 0
\(143\) −2.68840 −0.224815
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 17.2480 1.42259
\(148\) 0 0
\(149\) −11.9170 −0.976282 −0.488141 0.872765i \(-0.662325\pi\)
−0.488141 + 0.872765i \(0.662325\pi\)
\(150\) 0 0
\(151\) −9.57889 −0.779519 −0.389759 0.920917i \(-0.627442\pi\)
−0.389759 + 0.920917i \(0.627442\pi\)
\(152\) 0 0
\(153\) −5.00724 −0.404811
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 18.7439 1.49593 0.747963 0.663740i \(-0.231032\pi\)
0.747963 + 0.663740i \(0.231032\pi\)
\(158\) 0 0
\(159\) −10.1949 −0.808505
\(160\) 0 0
\(161\) 3.66908 0.289164
\(162\) 0 0
\(163\) −19.3188 −1.51317 −0.756584 0.653896i \(-0.773133\pi\)
−0.756584 + 0.653896i \(0.773133\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.81962 −0.140806 −0.0704031 0.997519i \(-0.522429\pi\)
−0.0704031 + 0.997519i \(0.522429\pi\)
\(168\) 0 0
\(169\) −8.09743 −0.622879
\(170\) 0 0
\(171\) 10.6353 0.813301
\(172\) 0 0
\(173\) −15.9581 −1.21327 −0.606635 0.794981i \(-0.707481\pi\)
−0.606635 + 0.794981i \(0.707481\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 11.3382 0.852228
\(178\) 0 0
\(179\) −17.9508 −1.34171 −0.670854 0.741589i \(-0.734072\pi\)
−0.670854 + 0.741589i \(0.734072\pi\)
\(180\) 0 0
\(181\) 6.33092 0.470574 0.235287 0.971926i \(-0.424397\pi\)
0.235287 + 0.971926i \(0.424397\pi\)
\(182\) 0 0
\(183\) 18.1119 1.33887
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.47422 −0.107806
\(188\) 0 0
\(189\) 11.0072 0.800659
\(190\) 0 0
\(191\) 15.1578 1.09678 0.548389 0.836223i \(-0.315241\pi\)
0.548389 + 0.836223i \(0.315241\pi\)
\(192\) 0 0
\(193\) −18.9879 −1.36678 −0.683390 0.730053i \(-0.739495\pi\)
−0.683390 + 0.730053i \(0.739495\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.1650 1.36545 0.682725 0.730675i \(-0.260795\pi\)
0.682725 + 0.730675i \(0.260795\pi\)
\(198\) 0 0
\(199\) 5.76651 0.408777 0.204388 0.978890i \(-0.434479\pi\)
0.204388 + 0.978890i \(0.434479\pi\)
\(200\) 0 0
\(201\) 34.3155 2.42043
\(202\) 0 0
\(203\) 5.33816 0.374665
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.12398 0.286637
\(208\) 0 0
\(209\) 3.13122 0.216591
\(210\) 0 0
\(211\) 17.4057 1.19826 0.599130 0.800652i \(-0.295513\pi\)
0.599130 + 0.800652i \(0.295513\pi\)
\(212\) 0 0
\(213\) 18.4621 1.26501
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 23.7101 1.60955
\(218\) 0 0
\(219\) 40.6272 2.74533
\(220\) 0 0
\(221\) 2.68840 0.180841
\(222\) 0 0
\(223\) −14.6763 −0.982799 −0.491399 0.870934i \(-0.663514\pi\)
−0.491399 + 0.870934i \(0.663514\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.4283 1.09039 0.545194 0.838310i \(-0.316456\pi\)
0.545194 + 0.838310i \(0.316456\pi\)
\(228\) 0 0
\(229\) 19.3526 1.27886 0.639429 0.768850i \(-0.279171\pi\)
0.639429 + 0.768850i \(0.279171\pi\)
\(230\) 0 0
\(231\) 11.8905 0.782337
\(232\) 0 0
\(233\) 19.4549 1.27453 0.637267 0.770643i \(-0.280065\pi\)
0.637267 + 0.770643i \(0.280065\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −23.7029 −1.53321 −0.766606 0.642118i \(-0.778056\pi\)
−0.766606 + 0.642118i \(0.778056\pi\)
\(240\) 0 0
\(241\) 0.233492 0.0150405 0.00752027 0.999972i \(-0.497606\pi\)
0.00752027 + 0.999972i \(0.497606\pi\)
\(242\) 0 0
\(243\) −20.6498 −1.32468
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.71011 −0.363325
\(248\) 0 0
\(249\) −41.6006 −2.63633
\(250\) 0 0
\(251\) −21.7511 −1.37292 −0.686460 0.727168i \(-0.740836\pi\)
−0.686460 + 0.727168i \(0.740836\pi\)
\(252\) 0 0
\(253\) 1.21417 0.0763345
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 16.3116 1.01749 0.508745 0.860917i \(-0.330110\pi\)
0.508745 + 0.860917i \(0.330110\pi\)
\(258\) 0 0
\(259\) −14.6763 −0.911942
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) −2.53786 −0.156491 −0.0782455 0.996934i \(-0.524932\pi\)
−0.0782455 + 0.996934i \(0.524932\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −29.1191 −1.78206
\(268\) 0 0
\(269\) −2.54510 −0.155177 −0.0775886 0.996985i \(-0.524722\pi\)
−0.0775886 + 0.996985i \(0.524722\pi\)
\(270\) 0 0
\(271\) −24.1795 −1.46880 −0.734400 0.678717i \(-0.762536\pi\)
−0.734400 + 0.678717i \(0.762536\pi\)
\(272\) 0 0
\(273\) −21.6836 −1.31235
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 21.2359 1.27594 0.637970 0.770061i \(-0.279774\pi\)
0.637970 + 0.770061i \(0.279774\pi\)
\(278\) 0 0
\(279\) 26.6498 1.59548
\(280\) 0 0
\(281\) −13.8872 −0.828441 −0.414220 0.910177i \(-0.635946\pi\)
−0.414220 + 0.910177i \(0.635946\pi\)
\(282\) 0 0
\(283\) −29.5330 −1.75556 −0.877778 0.479068i \(-0.840975\pi\)
−0.877778 + 0.479068i \(0.840975\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −40.0555 −2.36440
\(288\) 0 0
\(289\) −15.5258 −0.913281
\(290\) 0 0
\(291\) −4.52578 −0.265306
\(292\) 0 0
\(293\) 24.0821 1.40689 0.703444 0.710750i \(-0.251644\pi\)
0.703444 + 0.710750i \(0.251644\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 3.64252 0.211361
\(298\) 0 0
\(299\) −2.21417 −0.128049
\(300\) 0 0
\(301\) 25.3526 1.46130
\(302\) 0 0
\(303\) −6.00000 −0.344691
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 19.9436 1.13824 0.569121 0.822254i \(-0.307284\pi\)
0.569121 + 0.822254i \(0.307284\pi\)
\(308\) 0 0
\(309\) −7.43559 −0.422996
\(310\) 0 0
\(311\) 2.97345 0.168609 0.0843043 0.996440i \(-0.473133\pi\)
0.0843043 + 0.996440i \(0.473133\pi\)
\(312\) 0 0
\(313\) −15.4887 −0.875473 −0.437736 0.899103i \(-0.644220\pi\)
−0.437736 + 0.899103i \(0.644220\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.82685 −0.495765 −0.247883 0.968790i \(-0.579735\pi\)
−0.247883 + 0.968790i \(0.579735\pi\)
\(318\) 0 0
\(319\) 1.76651 0.0989055
\(320\) 0 0
\(321\) 35.1191 1.96016
\(322\) 0 0
\(323\) −3.13122 −0.174226
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 9.13122 0.504958
\(328\) 0 0
\(329\) 20.0145 1.10343
\(330\) 0 0
\(331\) −17.4018 −0.956489 −0.478245 0.878227i \(-0.658727\pi\)
−0.478245 + 0.878227i \(0.658727\pi\)
\(332\) 0 0
\(333\) −16.4959 −0.903972
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −26.9541 −1.46828 −0.734142 0.678995i \(-0.762416\pi\)
−0.734142 + 0.678995i \(0.762416\pi\)
\(338\) 0 0
\(339\) 26.6908 1.44964
\(340\) 0 0
\(341\) 7.84617 0.424894
\(342\) 0 0
\(343\) −1.97345 −0.106556
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.1240 −0.543484 −0.271742 0.962370i \(-0.587600\pi\)
−0.271742 + 0.962370i \(0.587600\pi\)
\(348\) 0 0
\(349\) 7.38732 0.395434 0.197717 0.980259i \(-0.436647\pi\)
0.197717 + 0.980259i \(0.436647\pi\)
\(350\) 0 0
\(351\) −6.64252 −0.354552
\(352\) 0 0
\(353\) −13.8833 −0.738931 −0.369466 0.929244i \(-0.620459\pi\)
−0.369466 + 0.929244i \(0.620459\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −11.8905 −0.629312
\(358\) 0 0
\(359\) −15.0902 −0.796430 −0.398215 0.917292i \(-0.630370\pi\)
−0.398215 + 0.917292i \(0.630370\pi\)
\(360\) 0 0
\(361\) −12.3493 −0.649965
\(362\) 0 0
\(363\) −25.4251 −1.33447
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −24.0289 −1.25430 −0.627150 0.778898i \(-0.715779\pi\)
−0.627150 + 0.778898i \(0.715779\pi\)
\(368\) 0 0
\(369\) −45.0217 −2.34374
\(370\) 0 0
\(371\) −14.0145 −0.727595
\(372\) 0 0
\(373\) −30.6908 −1.58911 −0.794554 0.607193i \(-0.792296\pi\)
−0.794554 + 0.607193i \(0.792296\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.22141 −0.165911
\(378\) 0 0
\(379\) −2.07087 −0.106374 −0.0531869 0.998585i \(-0.516938\pi\)
−0.0531869 + 0.998585i \(0.516938\pi\)
\(380\) 0 0
\(381\) 53.2504 2.72810
\(382\) 0 0
\(383\) −1.58612 −0.0810472 −0.0405236 0.999179i \(-0.512903\pi\)
−0.0405236 + 0.999179i \(0.512903\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 28.4959 1.44853
\(388\) 0 0
\(389\) 21.2142 1.07560 0.537801 0.843072i \(-0.319255\pi\)
0.537801 + 0.843072i \(0.319255\pi\)
\(390\) 0 0
\(391\) −1.21417 −0.0614035
\(392\) 0 0
\(393\) 25.8977 1.30637
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.93965 0.0973485 0.0486742 0.998815i \(-0.484500\pi\)
0.0486742 + 0.998815i \(0.484500\pi\)
\(398\) 0 0
\(399\) 25.2552 1.26434
\(400\) 0 0
\(401\) −5.69893 −0.284591 −0.142295 0.989824i \(-0.545448\pi\)
−0.142295 + 0.989824i \(0.545448\pi\)
\(402\) 0 0
\(403\) −14.3083 −0.712748
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.85670 −0.240738
\(408\) 0 0
\(409\) 3.53786 0.174936 0.0874679 0.996167i \(-0.472122\pi\)
0.0874679 + 0.996167i \(0.472122\pi\)
\(410\) 0 0
\(411\) −7.54510 −0.372172
\(412\) 0 0
\(413\) 15.5861 0.766943
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −6.31160 −0.309081
\(418\) 0 0
\(419\) −28.2624 −1.38071 −0.690355 0.723471i \(-0.742546\pi\)
−0.690355 + 0.723471i \(0.742546\pi\)
\(420\) 0 0
\(421\) 34.0974 1.66181 0.830904 0.556417i \(-0.187824\pi\)
0.830904 + 0.556417i \(0.187824\pi\)
\(422\) 0 0
\(423\) 22.4959 1.09379
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 24.8977 1.20489
\(428\) 0 0
\(429\) −7.17554 −0.346438
\(430\) 0 0
\(431\) 13.2850 0.639918 0.319959 0.947431i \(-0.396331\pi\)
0.319959 + 0.947431i \(0.396331\pi\)
\(432\) 0 0
\(433\) −11.0603 −0.531526 −0.265763 0.964038i \(-0.585624\pi\)
−0.265763 + 0.964038i \(0.585624\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.57889 0.123365
\(438\) 0 0
\(439\) 19.1916 0.915963 0.457982 0.888962i \(-0.348573\pi\)
0.457982 + 0.888962i \(0.348573\pi\)
\(440\) 0 0
\(441\) 26.6498 1.26904
\(442\) 0 0
\(443\) 24.2818 1.15366 0.576831 0.816864i \(-0.304289\pi\)
0.576831 + 0.816864i \(0.304289\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −31.8075 −1.50444
\(448\) 0 0
\(449\) 14.8413 0.700406 0.350203 0.936674i \(-0.386113\pi\)
0.350203 + 0.936674i \(0.386113\pi\)
\(450\) 0 0
\(451\) −13.2552 −0.624163
\(452\) 0 0
\(453\) −25.5668 −1.20123
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −15.5861 −0.729088 −0.364544 0.931186i \(-0.618775\pi\)
−0.364544 + 0.931186i \(0.618775\pi\)
\(458\) 0 0
\(459\) −3.64252 −0.170019
\(460\) 0 0
\(461\) −14.1312 −0.658157 −0.329078 0.944303i \(-0.606738\pi\)
−0.329078 + 0.944303i \(0.606738\pi\)
\(462\) 0 0
\(463\) 26.7584 1.24357 0.621784 0.783189i \(-0.286408\pi\)
0.621784 + 0.783189i \(0.286408\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 26.6908 1.23510 0.617551 0.786531i \(-0.288125\pi\)
0.617551 + 0.786531i \(0.288125\pi\)
\(468\) 0 0
\(469\) 47.1722 2.17821
\(470\) 0 0
\(471\) 50.0289 2.30521
\(472\) 0 0
\(473\) 8.38972 0.385760
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −15.7520 −0.721236
\(478\) 0 0
\(479\) −4.90981 −0.224335 −0.112167 0.993689i \(-0.535779\pi\)
−0.112167 + 0.993689i \(0.535779\pi\)
\(480\) 0 0
\(481\) 8.85670 0.403831
\(482\) 0 0
\(483\) 9.79306 0.445600
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 16.7786 0.760310 0.380155 0.924923i \(-0.375871\pi\)
0.380155 + 0.924923i \(0.375871\pi\)
\(488\) 0 0
\(489\) −51.5635 −2.33178
\(490\) 0 0
\(491\) −41.4839 −1.87214 −0.936070 0.351814i \(-0.885565\pi\)
−0.936070 + 0.351814i \(0.885565\pi\)
\(492\) 0 0
\(493\) −1.76651 −0.0795595
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 25.3792 1.13841
\(498\) 0 0
\(499\) 6.47751 0.289973 0.144987 0.989434i \(-0.453686\pi\)
0.144987 + 0.989434i \(0.453686\pi\)
\(500\) 0 0
\(501\) −4.85670 −0.216981
\(502\) 0 0
\(503\) 37.3825 1.66680 0.833401 0.552669i \(-0.186390\pi\)
0.833401 + 0.552669i \(0.186390\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −21.6127 −0.959853
\(508\) 0 0
\(509\) −15.0410 −0.666682 −0.333341 0.942806i \(-0.608176\pi\)
−0.333341 + 0.942806i \(0.608176\pi\)
\(510\) 0 0
\(511\) 55.8486 2.47060
\(512\) 0 0
\(513\) 7.73666 0.341582
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 6.62321 0.291288
\(518\) 0 0
\(519\) −42.5934 −1.86964
\(520\) 0 0
\(521\) 15.9469 0.698646 0.349323 0.937002i \(-0.386412\pi\)
0.349323 + 0.937002i \(0.386412\pi\)
\(522\) 0 0
\(523\) 10.8567 0.474730 0.237365 0.971420i \(-0.423716\pi\)
0.237365 + 0.971420i \(0.423716\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.84617 −0.341785
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 17.5185 0.760240
\(532\) 0 0
\(533\) 24.1722 1.04702
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −47.9122 −2.06756
\(538\) 0 0
\(539\) 7.84617 0.337958
\(540\) 0 0
\(541\) −30.3792 −1.30610 −0.653052 0.757313i \(-0.726512\pi\)
−0.653052 + 0.757313i \(0.726512\pi\)
\(542\) 0 0
\(543\) 16.8977 0.725151
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 28.4090 1.21468 0.607341 0.794441i \(-0.292236\pi\)
0.607341 + 0.794441i \(0.292236\pi\)
\(548\) 0 0
\(549\) 27.9846 1.19435
\(550\) 0 0
\(551\) 3.75203 0.159842
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −36.7584 −1.55750 −0.778751 0.627333i \(-0.784147\pi\)
−0.778751 + 0.627333i \(0.784147\pi\)
\(558\) 0 0
\(559\) −15.2995 −0.647101
\(560\) 0 0
\(561\) −3.93481 −0.166128
\(562\) 0 0
\(563\) −3.03708 −0.127998 −0.0639989 0.997950i \(-0.520385\pi\)
−0.0639989 + 0.997950i \(0.520385\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −16.0145 −0.672545
\(568\) 0 0
\(569\) −32.2093 −1.35029 −0.675143 0.737687i \(-0.735918\pi\)
−0.675143 + 0.737687i \(0.735918\pi\)
\(570\) 0 0
\(571\) −27.7777 −1.16246 −0.581230 0.813739i \(-0.697428\pi\)
−0.581230 + 0.813739i \(0.697428\pi\)
\(572\) 0 0
\(573\) 40.4573 1.69013
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −11.2890 −0.469967 −0.234984 0.971999i \(-0.575504\pi\)
−0.234984 + 0.971999i \(0.575504\pi\)
\(578\) 0 0
\(579\) −50.6803 −2.10620
\(580\) 0 0
\(581\) −57.1867 −2.37251
\(582\) 0 0
\(583\) −4.63768 −0.192073
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 23.6609 0.976592 0.488296 0.872678i \(-0.337619\pi\)
0.488296 + 0.872678i \(0.337619\pi\)
\(588\) 0 0
\(589\) 16.6651 0.686675
\(590\) 0 0
\(591\) 51.1529 2.10415
\(592\) 0 0
\(593\) 17.8341 0.732358 0.366179 0.930544i \(-0.380666\pi\)
0.366179 + 0.930544i \(0.380666\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 15.3913 0.629923
\(598\) 0 0
\(599\) 23.8308 0.973700 0.486850 0.873486i \(-0.338146\pi\)
0.486850 + 0.873486i \(0.338146\pi\)
\(600\) 0 0
\(601\) 12.5297 0.511098 0.255549 0.966796i \(-0.417744\pi\)
0.255549 + 0.966796i \(0.417744\pi\)
\(602\) 0 0
\(603\) 53.0208 2.15917
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −23.1722 −0.940533 −0.470266 0.882525i \(-0.655842\pi\)
−0.470266 + 0.882525i \(0.655842\pi\)
\(608\) 0 0
\(609\) 14.2480 0.577357
\(610\) 0 0
\(611\) −12.0781 −0.488628
\(612\) 0 0
\(613\) 44.5780 1.80049 0.900244 0.435386i \(-0.143388\pi\)
0.900244 + 0.435386i \(0.143388\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.1385 1.29385 0.646923 0.762556i \(-0.276056\pi\)
0.646923 + 0.762556i \(0.276056\pi\)
\(618\) 0 0
\(619\) −31.5708 −1.26894 −0.634468 0.772949i \(-0.718781\pi\)
−0.634468 + 0.772949i \(0.718781\pi\)
\(620\) 0 0
\(621\) 3.00000 0.120386
\(622\) 0 0
\(623\) −40.0289 −1.60373
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 8.35748 0.333765
\(628\) 0 0
\(629\) 4.85670 0.193649
\(630\) 0 0
\(631\) −24.0145 −0.956001 −0.478001 0.878360i \(-0.658638\pi\)
−0.478001 + 0.878360i \(0.658638\pi\)
\(632\) 0 0
\(633\) 46.4573 1.84651
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −14.3083 −0.566916
\(638\) 0 0
\(639\) 28.5258 1.12846
\(640\) 0 0
\(641\) −10.4428 −0.412467 −0.206233 0.978503i \(-0.566121\pi\)
−0.206233 + 0.978503i \(0.566121\pi\)
\(642\) 0 0
\(643\) 4.39940 0.173495 0.0867477 0.996230i \(-0.472353\pi\)
0.0867477 + 0.996230i \(0.472353\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −23.6498 −0.929768 −0.464884 0.885372i \(-0.653904\pi\)
−0.464884 + 0.885372i \(0.653904\pi\)
\(648\) 0 0
\(649\) 5.15777 0.202460
\(650\) 0 0
\(651\) 63.2842 2.48030
\(652\) 0 0
\(653\) −40.9194 −1.60130 −0.800651 0.599131i \(-0.795513\pi\)
−0.800651 + 0.599131i \(0.795513\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 62.7728 2.44900
\(658\) 0 0
\(659\) −48.8567 −1.90319 −0.951593 0.307360i \(-0.900555\pi\)
−0.951593 + 0.307360i \(0.900555\pi\)
\(660\) 0 0
\(661\) −12.1529 −0.472694 −0.236347 0.971669i \(-0.575950\pi\)
−0.236347 + 0.971669i \(0.575950\pi\)
\(662\) 0 0
\(663\) 7.17554 0.278675
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.45490 0.0563341
\(668\) 0 0
\(669\) −39.1722 −1.51449
\(670\) 0 0
\(671\) 8.23918 0.318070
\(672\) 0 0
\(673\) −9.20694 −0.354901 −0.177451 0.984130i \(-0.556785\pi\)
−0.177451 + 0.984130i \(0.556785\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 39.8196 1.53039 0.765196 0.643797i \(-0.222642\pi\)
0.765196 + 0.643797i \(0.222642\pi\)
\(678\) 0 0
\(679\) −6.22141 −0.238756
\(680\) 0 0
\(681\) 43.8486 1.68028
\(682\) 0 0
\(683\) −5.60544 −0.214486 −0.107243 0.994233i \(-0.534202\pi\)
−0.107243 + 0.994233i \(0.534202\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 51.6537 1.97071
\(688\) 0 0
\(689\) 8.45730 0.322197
\(690\) 0 0
\(691\) 2.84223 0.108123 0.0540617 0.998538i \(-0.482783\pi\)
0.0540617 + 0.998538i \(0.482783\pi\)
\(692\) 0 0
\(693\) 18.3719 0.697893
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 13.2552 0.502077
\(698\) 0 0
\(699\) 51.9267 1.96405
\(700\) 0 0
\(701\) −24.4130 −0.922065 −0.461033 0.887383i \(-0.652521\pi\)
−0.461033 + 0.887383i \(0.652521\pi\)
\(702\) 0 0
\(703\) −10.3155 −0.389058
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.24797 −0.310197
\(708\) 0 0
\(709\) 0.123983 0.00465629 0.00232814 0.999997i \(-0.499259\pi\)
0.00232814 + 0.999997i \(0.499259\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.46214 0.242009
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −63.2648 −2.36267
\(718\) 0 0
\(719\) −47.1569 −1.75865 −0.879327 0.476218i \(-0.842007\pi\)
−0.879327 + 0.476218i \(0.842007\pi\)
\(720\) 0 0
\(721\) −10.2214 −0.380665
\(722\) 0 0
\(723\) 0.623208 0.0231774
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 43.2962 1.60577 0.802884 0.596135i \(-0.203298\pi\)
0.802884 + 0.596135i \(0.203298\pi\)
\(728\) 0 0
\(729\) −42.0217 −1.55636
\(730\) 0 0
\(731\) −8.38972 −0.310305
\(732\) 0 0
\(733\) −11.5861 −0.427943 −0.213972 0.976840i \(-0.568640\pi\)
−0.213972 + 0.976840i \(0.568640\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15.6103 0.575012
\(738\) 0 0
\(739\) 30.3792 1.11752 0.558758 0.829331i \(-0.311278\pi\)
0.558758 + 0.829331i \(0.311278\pi\)
\(740\) 0 0
\(741\) −15.2407 −0.559882
\(742\) 0 0
\(743\) 35.5708 1.30496 0.652482 0.757804i \(-0.273728\pi\)
0.652482 + 0.757804i \(0.273728\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −64.2769 −2.35177
\(748\) 0 0
\(749\) 48.2769 1.76400
\(750\) 0 0
\(751\) 24.9774 0.911438 0.455719 0.890124i \(-0.349382\pi\)
0.455719 + 0.890124i \(0.349382\pi\)
\(752\) 0 0
\(753\) −58.0555 −2.11566
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −9.35263 −0.339927 −0.169964 0.985450i \(-0.554365\pi\)
−0.169964 + 0.985450i \(0.554365\pi\)
\(758\) 0 0
\(759\) 3.24073 0.117631
\(760\) 0 0
\(761\) −18.1466 −0.657813 −0.328907 0.944362i \(-0.606680\pi\)
−0.328907 + 0.944362i \(0.606680\pi\)
\(762\) 0 0
\(763\) 12.5523 0.454425
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.40574 −0.339622
\(768\) 0 0
\(769\) 44.3445 1.59910 0.799552 0.600597i \(-0.205070\pi\)
0.799552 + 0.600597i \(0.205070\pi\)
\(770\) 0 0
\(771\) 43.5370 1.56795
\(772\) 0 0
\(773\) 10.8036 0.388578 0.194289 0.980944i \(-0.437760\pi\)
0.194289 + 0.980944i \(0.437760\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −39.1722 −1.40530
\(778\) 0 0
\(779\) −28.1538 −1.00872
\(780\) 0 0
\(781\) 8.39850 0.300522
\(782\) 0 0
\(783\) 4.36471 0.155982
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −31.7810 −1.13287 −0.566435 0.824107i \(-0.691678\pi\)
−0.566435 + 0.824107i \(0.691678\pi\)
\(788\) 0 0
\(789\) −6.77375 −0.241152
\(790\) 0 0
\(791\) 36.6908 1.30457
\(792\) 0 0
\(793\) −15.0250 −0.533554
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −35.0594 −1.24187 −0.620935 0.783862i \(-0.713247\pi\)
−0.620935 + 0.783862i \(0.713247\pi\)
\(798\) 0 0
\(799\) −6.62321 −0.234312
\(800\) 0 0
\(801\) −44.9919 −1.58971
\(802\) 0 0
\(803\) 18.4815 0.652196
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −6.79306 −0.239127
\(808\) 0 0
\(809\) −51.4911 −1.81033 −0.905165 0.425060i \(-0.860253\pi\)
−0.905165 + 0.425060i \(0.860253\pi\)
\(810\) 0 0
\(811\) 19.7705 0.694235 0.347117 0.937822i \(-0.387161\pi\)
0.347117 + 0.937822i \(0.387161\pi\)
\(812\) 0 0
\(813\) −64.5370 −2.26341
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 17.8196 0.623429
\(818\) 0 0
\(819\) −33.5032 −1.17070
\(820\) 0 0
\(821\) 31.8486 1.11152 0.555761 0.831342i \(-0.312427\pi\)
0.555761 + 0.831342i \(0.312427\pi\)
\(822\) 0 0
\(823\) 9.34210 0.325645 0.162823 0.986655i \(-0.447940\pi\)
0.162823 + 0.986655i \(0.447940\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −30.9243 −1.07534 −0.537671 0.843155i \(-0.680696\pi\)
−0.537671 + 0.843155i \(0.680696\pi\)
\(828\) 0 0
\(829\) −32.5701 −1.13121 −0.565603 0.824678i \(-0.691357\pi\)
−0.565603 + 0.824678i \(0.691357\pi\)
\(830\) 0 0
\(831\) 56.6803 1.96622
\(832\) 0 0
\(833\) −7.84617 −0.271854
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 19.3864 0.670093
\(838\) 0 0
\(839\) −48.5635 −1.67660 −0.838299 0.545210i \(-0.816450\pi\)
−0.838299 + 0.545210i \(0.816450\pi\)
\(840\) 0 0
\(841\) −26.8833 −0.927009
\(842\) 0 0
\(843\) −37.0660 −1.27662
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −34.9508 −1.20092
\(848\) 0 0
\(849\) −78.8260 −2.70530
\(850\) 0 0
\(851\) −4.00000 −0.137118
\(852\) 0 0
\(853\) 33.6546 1.15231 0.576156 0.817340i \(-0.304552\pi\)
0.576156 + 0.817340i \(0.304552\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24.4081 −0.833766 −0.416883 0.908960i \(-0.636878\pi\)
−0.416883 + 0.908960i \(0.636878\pi\)
\(858\) 0 0
\(859\) 11.1394 0.380070 0.190035 0.981777i \(-0.439140\pi\)
0.190035 + 0.981777i \(0.439140\pi\)
\(860\) 0 0
\(861\) −106.911 −3.64353
\(862\) 0 0
\(863\) −15.7173 −0.535025 −0.267512 0.963554i \(-0.586202\pi\)
−0.267512 + 0.963554i \(0.586202\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −41.4395 −1.40736
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −28.4670 −0.964567
\(872\) 0 0
\(873\) −6.99276 −0.236669
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 33.2818 1.12385 0.561923 0.827190i \(-0.310062\pi\)
0.561923 + 0.827190i \(0.310062\pi\)
\(878\) 0 0
\(879\) 64.2769 2.16801
\(880\) 0 0
\(881\) 8.99187 0.302944 0.151472 0.988462i \(-0.451599\pi\)
0.151472 + 0.988462i \(0.451599\pi\)
\(882\) 0 0
\(883\) 58.5258 1.96955 0.984775 0.173836i \(-0.0556162\pi\)
0.984775 + 0.173836i \(0.0556162\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 32.8220 1.10206 0.551028 0.834487i \(-0.314236\pi\)
0.551028 + 0.834487i \(0.314236\pi\)
\(888\) 0 0
\(889\) 73.2012 2.45509
\(890\) 0 0
\(891\) −5.29952 −0.177541
\(892\) 0 0
\(893\) 14.0676 0.470754
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −5.90981 −0.197323
\(898\) 0 0
\(899\) 9.40180 0.313567
\(900\) 0 0
\(901\) 4.63768 0.154504
\(902\) 0 0
\(903\) 67.6682 2.25186
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 28.3300 0.940683 0.470341 0.882484i \(-0.344131\pi\)
0.470341 + 0.882484i \(0.344131\pi\)
\(908\) 0 0
\(909\) −9.27058 −0.307486
\(910\) 0 0
\(911\) −15.3382 −0.508176 −0.254088 0.967181i \(-0.581775\pi\)
−0.254088 + 0.967181i \(0.581775\pi\)
\(912\) 0 0
\(913\) −18.9243 −0.626302
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 35.6006 1.17564
\(918\) 0 0
\(919\) 38.8036 1.28001 0.640006 0.768370i \(-0.278932\pi\)
0.640006 + 0.768370i \(0.278932\pi\)
\(920\) 0 0
\(921\) 53.2310 1.75402
\(922\) 0 0
\(923\) −15.3155 −0.504117
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −11.4887 −0.377338
\(928\) 0 0
\(929\) 4.01053 0.131581 0.0657906 0.997833i \(-0.479043\pi\)
0.0657906 + 0.997833i \(0.479043\pi\)
\(930\) 0 0
\(931\) 16.6651 0.546178
\(932\) 0 0
\(933\) 7.93636 0.259825
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −43.6836 −1.42708 −0.713540 0.700615i \(-0.752909\pi\)
−0.713540 + 0.700615i \(0.752909\pi\)
\(938\) 0 0
\(939\) −41.3406 −1.34910
\(940\) 0 0
\(941\) −24.8534 −0.810198 −0.405099 0.914273i \(-0.632763\pi\)
−0.405099 + 0.914273i \(0.632763\pi\)
\(942\) 0 0
\(943\) −10.9170 −0.355508
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −22.1690 −0.720394 −0.360197 0.932876i \(-0.617291\pi\)
−0.360197 + 0.932876i \(0.617291\pi\)
\(948\) 0 0
\(949\) −33.7029 −1.09404
\(950\) 0 0
\(951\) −23.5596 −0.763971
\(952\) 0 0
\(953\) −15.9050 −0.515212 −0.257606 0.966250i \(-0.582934\pi\)
−0.257606 + 0.966250i \(0.582934\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 4.71495 0.152413
\(958\) 0 0
\(959\) −10.3719 −0.334928
\(960\) 0 0
\(961\) 10.7593 0.347073
\(962\) 0 0
\(963\) 54.2624 1.74858
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 50.6272 1.62806 0.814030 0.580823i \(-0.197269\pi\)
0.814030 + 0.580823i \(0.197269\pi\)
\(968\) 0 0
\(969\) −8.35748 −0.268481
\(970\) 0 0
\(971\) 52.4009 1.68162 0.840812 0.541327i \(-0.182078\pi\)
0.840812 + 0.541327i \(0.182078\pi\)
\(972\) 0 0
\(973\) −8.67632 −0.278150
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.5258 −0.336750 −0.168375 0.985723i \(-0.553852\pi\)
−0.168375 + 0.985723i \(0.553852\pi\)
\(978\) 0 0
\(979\) −13.2464 −0.423357
\(980\) 0 0
\(981\) 14.1086 0.450453
\(982\) 0 0
\(983\) 9.44767 0.301334 0.150667 0.988585i \(-0.451858\pi\)
0.150667 + 0.988585i \(0.451858\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 53.4202 1.70038
\(988\) 0 0
\(989\) 6.90981 0.219719
\(990\) 0 0
\(991\) −33.3252 −1.05861 −0.529305 0.848432i \(-0.677547\pi\)
−0.529305 + 0.848432i \(0.677547\pi\)
\(992\) 0 0
\(993\) −46.4468 −1.47394
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −54.0289 −1.71111 −0.855557 0.517709i \(-0.826785\pi\)
−0.855557 + 0.517709i \(0.826785\pi\)
\(998\) 0 0
\(999\) −12.0000 −0.379663
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9200.2.a.cd.1.3 3
4.3 odd 2 4600.2.a.y.1.1 3
5.4 even 2 1840.2.a.t.1.1 3
20.3 even 4 4600.2.e.r.4049.1 6
20.7 even 4 4600.2.e.r.4049.6 6
20.19 odd 2 920.2.a.g.1.3 3
40.19 odd 2 7360.2.a.cb.1.1 3
40.29 even 2 7360.2.a.ca.1.3 3
60.59 even 2 8280.2.a.bo.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.a.g.1.3 3 20.19 odd 2
1840.2.a.t.1.1 3 5.4 even 2
4600.2.a.y.1.1 3 4.3 odd 2
4600.2.e.r.4049.1 6 20.3 even 4
4600.2.e.r.4049.6 6 20.7 even 4
7360.2.a.ca.1.3 3 40.29 even 2
7360.2.a.cb.1.1 3 40.19 odd 2
8280.2.a.bo.1.3 3 60.59 even 2
9200.2.a.cd.1.3 3 1.1 even 1 trivial