Properties

Label 9200.2.a.ca
Level $9200$
Weight $2$
Character orbit 9200.a
Self dual yes
Analytic conductor $73.462$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9200,2,Mod(1,9200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9200.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9200 = 2^{4} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9200.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,3,0,0,0,3,0,5,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4623698596\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{13})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{3} + ( - \beta + 2) q^{7} + (3 \beta + 1) q^{9} + (\beta + 3) q^{11} + (\beta - 2) q^{13} + (3 \beta - 3) q^{17} + (3 \beta - 2) q^{19} - q^{21} - q^{23} + (4 \beta + 7) q^{27} + 2 \beta q^{29}+ \cdots + (13 \beta + 12) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} + 3 q^{7} + 5 q^{9} + 7 q^{11} - 3 q^{13} - 3 q^{17} - q^{19} - 2 q^{21} - 2 q^{23} + 18 q^{27} + 2 q^{29} + 5 q^{31} + 17 q^{33} - 16 q^{37} + 2 q^{39} - 9 q^{41} - 4 q^{43} + 2 q^{47} - 3 q^{49}+ \cdots + 37 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.30278
2.30278
0 −0.302776 0 0 0 3.30278 0 −2.90833 0
1.2 0 3.30278 0 0 0 −0.302776 0 7.90833 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9200.2.a.ca 2
4.b odd 2 1 1150.2.a.m 2
5.b even 2 1 1840.2.a.j 2
20.d odd 2 1 230.2.a.b 2
20.e even 4 2 1150.2.b.f 4
40.e odd 2 1 7360.2.a.bc 2
40.f even 2 1 7360.2.a.bu 2
60.h even 2 1 2070.2.a.w 2
460.g even 2 1 5290.2.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
230.2.a.b 2 20.d odd 2 1
1150.2.a.m 2 4.b odd 2 1
1150.2.b.f 4 20.e even 4 2
1840.2.a.j 2 5.b even 2 1
2070.2.a.w 2 60.h even 2 1
5290.2.a.j 2 460.g even 2 1
7360.2.a.bc 2 40.e odd 2 1
7360.2.a.bu 2 40.f even 2 1
9200.2.a.ca 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9200))\):

\( T_{3}^{2} - 3T_{3} - 1 \) Copy content Toggle raw display
\( T_{7}^{2} - 3T_{7} - 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 7T_{11} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 3T - 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 3T - 1 \) Copy content Toggle raw display
$11$ \( T^{2} - 7T + 9 \) Copy content Toggle raw display
$13$ \( T^{2} + 3T - 1 \) Copy content Toggle raw display
$17$ \( T^{2} + 3T - 27 \) Copy content Toggle raw display
$19$ \( T^{2} + T - 29 \) Copy content Toggle raw display
$23$ \( (T + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 2T - 12 \) Copy content Toggle raw display
$31$ \( T^{2} - 5T - 23 \) Copy content Toggle raw display
$37$ \( (T + 8)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 9T - 9 \) Copy content Toggle raw display
$43$ \( T^{2} + 4T - 48 \) Copy content Toggle raw display
$47$ \( T^{2} - 2T - 12 \) Copy content Toggle raw display
$53$ \( T^{2} - 8T - 36 \) Copy content Toggle raw display
$59$ \( T^{2} - 14T + 36 \) Copy content Toggle raw display
$61$ \( T^{2} - 5T - 75 \) Copy content Toggle raw display
$67$ \( (T + 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 29T + 207 \) Copy content Toggle raw display
$73$ \( T^{2} + 10T - 92 \) Copy content Toggle raw display
$79$ \( T^{2} - 208 \) Copy content Toggle raw display
$83$ \( T^{2} - 8T - 36 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 9T + 17 \) Copy content Toggle raw display
show more
show less