# Properties

 Label 9200.2.a.bj.1.1 Level $9200$ Weight $2$ Character 9200.1 Self dual yes Analytic conductor $73.462$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$9200 = 2^{4} \cdot 5^{2} \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 9200.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$73.4623698596$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 184) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 9200.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+3.00000 q^{3} -2.00000 q^{7} +6.00000 q^{9} +O(q^{10})$$ $$q+3.00000 q^{3} -2.00000 q^{7} +6.00000 q^{9} +5.00000 q^{13} +6.00000 q^{17} -6.00000 q^{19} -6.00000 q^{21} +1.00000 q^{23} +9.00000 q^{27} +9.00000 q^{29} -3.00000 q^{31} +8.00000 q^{37} +15.0000 q^{39} +3.00000 q^{41} -8.00000 q^{43} +7.00000 q^{47} -3.00000 q^{49} +18.0000 q^{51} +2.00000 q^{53} -18.0000 q^{57} -4.00000 q^{59} -10.0000 q^{61} -12.0000 q^{63} +8.00000 q^{67} +3.00000 q^{69} -7.00000 q^{71} -9.00000 q^{73} +6.00000 q^{79} +9.00000 q^{81} -14.0000 q^{83} +27.0000 q^{87} +16.0000 q^{89} -10.0000 q^{91} -9.00000 q^{93} -6.00000 q^{97} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 3.00000 1.73205 0.866025 0.500000i $$-0.166667\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ −2.00000 −0.755929 −0.377964 0.925820i $$-0.623376\pi$$
−0.377964 + 0.925820i $$0.623376\pi$$
$$8$$ 0 0
$$9$$ 6.00000 2.00000
$$10$$ 0 0
$$11$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$12$$ 0 0
$$13$$ 5.00000 1.38675 0.693375 0.720577i $$-0.256123\pi$$
0.693375 + 0.720577i $$0.256123\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 6.00000 1.45521 0.727607 0.685994i $$-0.240633\pi$$
0.727607 + 0.685994i $$0.240633\pi$$
$$18$$ 0 0
$$19$$ −6.00000 −1.37649 −0.688247 0.725476i $$-0.741620\pi$$
−0.688247 + 0.725476i $$0.741620\pi$$
$$20$$ 0 0
$$21$$ −6.00000 −1.30931
$$22$$ 0 0
$$23$$ 1.00000 0.208514
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 9.00000 1.73205
$$28$$ 0 0
$$29$$ 9.00000 1.67126 0.835629 0.549294i $$-0.185103\pi$$
0.835629 + 0.549294i $$0.185103\pi$$
$$30$$ 0 0
$$31$$ −3.00000 −0.538816 −0.269408 0.963026i $$-0.586828\pi$$
−0.269408 + 0.963026i $$0.586828\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 8.00000 1.31519 0.657596 0.753371i $$-0.271573\pi$$
0.657596 + 0.753371i $$0.271573\pi$$
$$38$$ 0 0
$$39$$ 15.0000 2.40192
$$40$$ 0 0
$$41$$ 3.00000 0.468521 0.234261 0.972174i $$-0.424733\pi$$
0.234261 + 0.972174i $$0.424733\pi$$
$$42$$ 0 0
$$43$$ −8.00000 −1.21999 −0.609994 0.792406i $$-0.708828\pi$$
−0.609994 + 0.792406i $$0.708828\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 7.00000 1.02105 0.510527 0.859861i $$-0.329450\pi$$
0.510527 + 0.859861i $$0.329450\pi$$
$$48$$ 0 0
$$49$$ −3.00000 −0.428571
$$50$$ 0 0
$$51$$ 18.0000 2.52050
$$52$$ 0 0
$$53$$ 2.00000 0.274721 0.137361 0.990521i $$-0.456138\pi$$
0.137361 + 0.990521i $$0.456138\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ −18.0000 −2.38416
$$58$$ 0 0
$$59$$ −4.00000 −0.520756 −0.260378 0.965507i $$-0.583847\pi$$
−0.260378 + 0.965507i $$0.583847\pi$$
$$60$$ 0 0
$$61$$ −10.0000 −1.28037 −0.640184 0.768221i $$-0.721142\pi$$
−0.640184 + 0.768221i $$0.721142\pi$$
$$62$$ 0 0
$$63$$ −12.0000 −1.51186
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 8.00000 0.977356 0.488678 0.872464i $$-0.337479\pi$$
0.488678 + 0.872464i $$0.337479\pi$$
$$68$$ 0 0
$$69$$ 3.00000 0.361158
$$70$$ 0 0
$$71$$ −7.00000 −0.830747 −0.415374 0.909651i $$-0.636349\pi$$
−0.415374 + 0.909651i $$0.636349\pi$$
$$72$$ 0 0
$$73$$ −9.00000 −1.05337 −0.526685 0.850060i $$-0.676565\pi$$
−0.526685 + 0.850060i $$0.676565\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 6.00000 0.675053 0.337526 0.941316i $$-0.390410\pi$$
0.337526 + 0.941316i $$0.390410\pi$$
$$80$$ 0 0
$$81$$ 9.00000 1.00000
$$82$$ 0 0
$$83$$ −14.0000 −1.53670 −0.768350 0.640030i $$-0.778922\pi$$
−0.768350 + 0.640030i $$0.778922\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 27.0000 2.89470
$$88$$ 0 0
$$89$$ 16.0000 1.69600 0.847998 0.529999i $$-0.177808\pi$$
0.847998 + 0.529999i $$0.177808\pi$$
$$90$$ 0 0
$$91$$ −10.0000 −1.04828
$$92$$ 0 0
$$93$$ −9.00000 −0.933257
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −6.00000 −0.609208 −0.304604 0.952479i $$-0.598524\pi$$
−0.304604 + 0.952479i $$0.598524\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 6.00000 0.597022 0.298511 0.954406i $$-0.403510\pi$$
0.298511 + 0.954406i $$0.403510\pi$$
$$102$$ 0 0
$$103$$ 14.0000 1.37946 0.689730 0.724066i $$-0.257729\pi$$
0.689730 + 0.724066i $$0.257729\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 14.0000 1.35343 0.676716 0.736245i $$-0.263403\pi$$
0.676716 + 0.736245i $$0.263403\pi$$
$$108$$ 0 0
$$109$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$110$$ 0 0
$$111$$ 24.0000 2.27798
$$112$$ 0 0
$$113$$ −2.00000 −0.188144 −0.0940721 0.995565i $$-0.529988\pi$$
−0.0940721 + 0.995565i $$0.529988\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 30.0000 2.77350
$$118$$ 0 0
$$119$$ −12.0000 −1.10004
$$120$$ 0 0
$$121$$ −11.0000 −1.00000
$$122$$ 0 0
$$123$$ 9.00000 0.811503
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 5.00000 0.443678 0.221839 0.975083i $$-0.428794\pi$$
0.221839 + 0.975083i $$0.428794\pi$$
$$128$$ 0 0
$$129$$ −24.0000 −2.11308
$$130$$ 0 0
$$131$$ 9.00000 0.786334 0.393167 0.919467i $$-0.371379\pi$$
0.393167 + 0.919467i $$0.371379\pi$$
$$132$$ 0 0
$$133$$ 12.0000 1.04053
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −4.00000 −0.341743 −0.170872 0.985293i $$-0.554658\pi$$
−0.170872 + 0.985293i $$0.554658\pi$$
$$138$$ 0 0
$$139$$ 23.0000 1.95083 0.975417 0.220366i $$-0.0707252\pi$$
0.975417 + 0.220366i $$0.0707252\pi$$
$$140$$ 0 0
$$141$$ 21.0000 1.76852
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ −9.00000 −0.742307
$$148$$ 0 0
$$149$$ 14.0000 1.14692 0.573462 0.819232i $$-0.305600\pi$$
0.573462 + 0.819232i $$0.305600\pi$$
$$150$$ 0 0
$$151$$ −7.00000 −0.569652 −0.284826 0.958579i $$-0.591936\pi$$
−0.284826 + 0.958579i $$0.591936\pi$$
$$152$$ 0 0
$$153$$ 36.0000 2.91043
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ −12.0000 −0.957704 −0.478852 0.877896i $$-0.658947\pi$$
−0.478852 + 0.877896i $$0.658947\pi$$
$$158$$ 0 0
$$159$$ 6.00000 0.475831
$$160$$ 0 0
$$161$$ −2.00000 −0.157622
$$162$$ 0 0
$$163$$ −11.0000 −0.861586 −0.430793 0.902451i $$-0.641766\pi$$
−0.430793 + 0.902451i $$0.641766\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 4.00000 0.309529 0.154765 0.987951i $$-0.450538\pi$$
0.154765 + 0.987951i $$0.450538\pi$$
$$168$$ 0 0
$$169$$ 12.0000 0.923077
$$170$$ 0 0
$$171$$ −36.0000 −2.75299
$$172$$ 0 0
$$173$$ 10.0000 0.760286 0.380143 0.924928i $$-0.375875\pi$$
0.380143 + 0.924928i $$0.375875\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ −12.0000 −0.901975
$$178$$ 0 0
$$179$$ 3.00000 0.224231 0.112115 0.993695i $$-0.464237\pi$$
0.112115 + 0.993695i $$0.464237\pi$$
$$180$$ 0 0
$$181$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$182$$ 0 0
$$183$$ −30.0000 −2.21766
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ −18.0000 −1.30931
$$190$$ 0 0
$$191$$ 16.0000 1.15772 0.578860 0.815427i $$-0.303498\pi$$
0.578860 + 0.815427i $$0.303498\pi$$
$$192$$ 0 0
$$193$$ 7.00000 0.503871 0.251936 0.967744i $$-0.418933\pi$$
0.251936 + 0.967744i $$0.418933\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 27.0000 1.92367 0.961835 0.273629i $$-0.0882242\pi$$
0.961835 + 0.273629i $$0.0882242\pi$$
$$198$$ 0 0
$$199$$ −20.0000 −1.41776 −0.708881 0.705328i $$-0.750800\pi$$
−0.708881 + 0.705328i $$0.750800\pi$$
$$200$$ 0 0
$$201$$ 24.0000 1.69283
$$202$$ 0 0
$$203$$ −18.0000 −1.26335
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 6.00000 0.417029
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ −8.00000 −0.550743 −0.275371 0.961338i $$-0.588801\pi$$
−0.275371 + 0.961338i $$0.588801\pi$$
$$212$$ 0 0
$$213$$ −21.0000 −1.43890
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 6.00000 0.407307
$$218$$ 0 0
$$219$$ −27.0000 −1.82449
$$220$$ 0 0
$$221$$ 30.0000 2.01802
$$222$$ 0 0
$$223$$ 8.00000 0.535720 0.267860 0.963458i $$-0.413684\pi$$
0.267860 + 0.963458i $$0.413684\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −10.0000 −0.663723 −0.331862 0.943328i $$-0.607677\pi$$
−0.331862 + 0.943328i $$0.607677\pi$$
$$228$$ 0 0
$$229$$ −20.0000 −1.32164 −0.660819 0.750546i $$-0.729791\pi$$
−0.660819 + 0.750546i $$0.729791\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −15.0000 −0.982683 −0.491341 0.870967i $$-0.663493\pi$$
−0.491341 + 0.870967i $$0.663493\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 18.0000 1.16923
$$238$$ 0 0
$$239$$ 13.0000 0.840900 0.420450 0.907316i $$-0.361872\pi$$
0.420450 + 0.907316i $$0.361872\pi$$
$$240$$ 0 0
$$241$$ −4.00000 −0.257663 −0.128831 0.991667i $$-0.541123\pi$$
−0.128831 + 0.991667i $$0.541123\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ −30.0000 −1.90885
$$248$$ 0 0
$$249$$ −42.0000 −2.66164
$$250$$ 0 0
$$251$$ −10.0000 −0.631194 −0.315597 0.948893i $$-0.602205\pi$$
−0.315597 + 0.948893i $$0.602205\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 13.0000 0.810918 0.405459 0.914113i $$-0.367112\pi$$
0.405459 + 0.914113i $$0.367112\pi$$
$$258$$ 0 0
$$259$$ −16.0000 −0.994192
$$260$$ 0 0
$$261$$ 54.0000 3.34252
$$262$$ 0 0
$$263$$ 6.00000 0.369976 0.184988 0.982741i $$-0.440775\pi$$
0.184988 + 0.982741i $$0.440775\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 48.0000 2.93755
$$268$$ 0 0
$$269$$ 5.00000 0.304855 0.152428 0.988315i $$-0.451291\pi$$
0.152428 + 0.988315i $$0.451291\pi$$
$$270$$ 0 0
$$271$$ 8.00000 0.485965 0.242983 0.970031i $$-0.421874\pi$$
0.242983 + 0.970031i $$0.421874\pi$$
$$272$$ 0 0
$$273$$ −30.0000 −1.81568
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 23.0000 1.38194 0.690968 0.722885i $$-0.257185\pi$$
0.690968 + 0.722885i $$0.257185\pi$$
$$278$$ 0 0
$$279$$ −18.0000 −1.07763
$$280$$ 0 0
$$281$$ −18.0000 −1.07379 −0.536895 0.843649i $$-0.680403\pi$$
−0.536895 + 0.843649i $$0.680403\pi$$
$$282$$ 0 0
$$283$$ 4.00000 0.237775 0.118888 0.992908i $$-0.462067\pi$$
0.118888 + 0.992908i $$0.462067\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ −6.00000 −0.354169
$$288$$ 0 0
$$289$$ 19.0000 1.11765
$$290$$ 0 0
$$291$$ −18.0000 −1.05518
$$292$$ 0 0
$$293$$ −12.0000 −0.701047 −0.350524 0.936554i $$-0.613996\pi$$
−0.350524 + 0.936554i $$0.613996\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 5.00000 0.289157
$$300$$ 0 0
$$301$$ 16.0000 0.922225
$$302$$ 0 0
$$303$$ 18.0000 1.03407
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 4.00000 0.228292 0.114146 0.993464i $$-0.463587\pi$$
0.114146 + 0.993464i $$0.463587\pi$$
$$308$$ 0 0
$$309$$ 42.0000 2.38930
$$310$$ 0 0
$$311$$ 17.0000 0.963982 0.481991 0.876176i $$-0.339914\pi$$
0.481991 + 0.876176i $$0.339914\pi$$
$$312$$ 0 0
$$313$$ 20.0000 1.13047 0.565233 0.824931i $$-0.308786\pi$$
0.565233 + 0.824931i $$0.308786\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 2.00000 0.112331 0.0561656 0.998421i $$-0.482113\pi$$
0.0561656 + 0.998421i $$0.482113\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 42.0000 2.34421
$$322$$ 0 0
$$323$$ −36.0000 −2.00309
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ −14.0000 −0.771845
$$330$$ 0 0
$$331$$ 19.0000 1.04433 0.522167 0.852843i $$-0.325124\pi$$
0.522167 + 0.852843i $$0.325124\pi$$
$$332$$ 0 0
$$333$$ 48.0000 2.63038
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ −8.00000 −0.435788 −0.217894 0.975972i $$-0.569919\pi$$
−0.217894 + 0.975972i $$0.569919\pi$$
$$338$$ 0 0
$$339$$ −6.00000 −0.325875
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 20.0000 1.07990
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −12.0000 −0.644194 −0.322097 0.946707i $$-0.604388\pi$$
−0.322097 + 0.946707i $$0.604388\pi$$
$$348$$ 0 0
$$349$$ −7.00000 −0.374701 −0.187351 0.982293i $$-0.559990\pi$$
−0.187351 + 0.982293i $$0.559990\pi$$
$$350$$ 0 0
$$351$$ 45.0000 2.40192
$$352$$ 0 0
$$353$$ 11.0000 0.585471 0.292735 0.956193i $$-0.405434\pi$$
0.292735 + 0.956193i $$0.405434\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ −36.0000 −1.90532
$$358$$ 0 0
$$359$$ 18.0000 0.950004 0.475002 0.879985i $$-0.342447\pi$$
0.475002 + 0.879985i $$0.342447\pi$$
$$360$$ 0 0
$$361$$ 17.0000 0.894737
$$362$$ 0 0
$$363$$ −33.0000 −1.73205
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ −10.0000 −0.521996 −0.260998 0.965339i $$-0.584052\pi$$
−0.260998 + 0.965339i $$0.584052\pi$$
$$368$$ 0 0
$$369$$ 18.0000 0.937043
$$370$$ 0 0
$$371$$ −4.00000 −0.207670
$$372$$ 0 0
$$373$$ −4.00000 −0.207112 −0.103556 0.994624i $$-0.533022\pi$$
−0.103556 + 0.994624i $$0.533022\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 45.0000 2.31762
$$378$$ 0 0
$$379$$ 4.00000 0.205466 0.102733 0.994709i $$-0.467241\pi$$
0.102733 + 0.994709i $$0.467241\pi$$
$$380$$ 0 0
$$381$$ 15.0000 0.768473
$$382$$ 0 0
$$383$$ −12.0000 −0.613171 −0.306586 0.951843i $$-0.599187\pi$$
−0.306586 + 0.951843i $$0.599187\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −48.0000 −2.43998
$$388$$ 0 0
$$389$$ −4.00000 −0.202808 −0.101404 0.994845i $$-0.532333\pi$$
−0.101404 + 0.994845i $$0.532333\pi$$
$$390$$ 0 0
$$391$$ 6.00000 0.303433
$$392$$ 0 0
$$393$$ 27.0000 1.36197
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ −31.0000 −1.55585 −0.777923 0.628360i $$-0.783727\pi$$
−0.777923 + 0.628360i $$0.783727\pi$$
$$398$$ 0 0
$$399$$ 36.0000 1.80225
$$400$$ 0 0
$$401$$ −24.0000 −1.19850 −0.599251 0.800561i $$-0.704535\pi$$
−0.599251 + 0.800561i $$0.704535\pi$$
$$402$$ 0 0
$$403$$ −15.0000 −0.747203
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 25.0000 1.23617 0.618085 0.786111i $$-0.287909\pi$$
0.618085 + 0.786111i $$0.287909\pi$$
$$410$$ 0 0
$$411$$ −12.0000 −0.591916
$$412$$ 0 0
$$413$$ 8.00000 0.393654
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 69.0000 3.37894
$$418$$ 0 0
$$419$$ −28.0000 −1.36789 −0.683945 0.729534i $$-0.739737\pi$$
−0.683945 + 0.729534i $$0.739737\pi$$
$$420$$ 0 0
$$421$$ −22.0000 −1.07221 −0.536107 0.844150i $$-0.680106\pi$$
−0.536107 + 0.844150i $$0.680106\pi$$
$$422$$ 0 0
$$423$$ 42.0000 2.04211
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 20.0000 0.967868
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −36.0000 −1.73406 −0.867029 0.498257i $$-0.833974\pi$$
−0.867029 + 0.498257i $$0.833974\pi$$
$$432$$ 0 0
$$433$$ 16.0000 0.768911 0.384455 0.923144i $$-0.374389\pi$$
0.384455 + 0.923144i $$0.374389\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ −6.00000 −0.287019
$$438$$ 0 0
$$439$$ −5.00000 −0.238637 −0.119318 0.992856i $$-0.538071\pi$$
−0.119318 + 0.992856i $$0.538071\pi$$
$$440$$ 0 0
$$441$$ −18.0000 −0.857143
$$442$$ 0 0
$$443$$ −9.00000 −0.427603 −0.213801 0.976877i $$-0.568585\pi$$
−0.213801 + 0.976877i $$0.568585\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 42.0000 1.98653
$$448$$ 0 0
$$449$$ 6.00000 0.283158 0.141579 0.989927i $$-0.454782\pi$$
0.141579 + 0.989927i $$0.454782\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ −21.0000 −0.986666
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −38.0000 −1.77757 −0.888783 0.458329i $$-0.848448\pi$$
−0.888783 + 0.458329i $$0.848448\pi$$
$$458$$ 0 0
$$459$$ 54.0000 2.52050
$$460$$ 0 0
$$461$$ 1.00000 0.0465746 0.0232873 0.999729i $$-0.492587\pi$$
0.0232873 + 0.999729i $$0.492587\pi$$
$$462$$ 0 0
$$463$$ 16.0000 0.743583 0.371792 0.928316i $$-0.378744\pi$$
0.371792 + 0.928316i $$0.378744\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 6.00000 0.277647 0.138823 0.990317i $$-0.455668\pi$$
0.138823 + 0.990317i $$0.455668\pi$$
$$468$$ 0 0
$$469$$ −16.0000 −0.738811
$$470$$ 0 0
$$471$$ −36.0000 −1.65879
$$472$$ 0 0
$$473$$ 0 0
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 12.0000 0.549442
$$478$$ 0 0
$$479$$ −38.0000 −1.73626 −0.868132 0.496333i $$-0.834679\pi$$
−0.868132 + 0.496333i $$0.834679\pi$$
$$480$$ 0 0
$$481$$ 40.0000 1.82384
$$482$$ 0 0
$$483$$ −6.00000 −0.273009
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 17.0000 0.770344 0.385172 0.922845i $$-0.374142\pi$$
0.385172 + 0.922845i $$0.374142\pi$$
$$488$$ 0 0
$$489$$ −33.0000 −1.49231
$$490$$ 0 0
$$491$$ 7.00000 0.315906 0.157953 0.987447i $$-0.449511\pi$$
0.157953 + 0.987447i $$0.449511\pi$$
$$492$$ 0 0
$$493$$ 54.0000 2.43204
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 14.0000 0.627986
$$498$$ 0 0
$$499$$ 1.00000 0.0447661 0.0223831 0.999749i $$-0.492875\pi$$
0.0223831 + 0.999749i $$0.492875\pi$$
$$500$$ 0 0
$$501$$ 12.0000 0.536120
$$502$$ 0 0
$$503$$ 10.0000 0.445878 0.222939 0.974832i $$-0.428435\pi$$
0.222939 + 0.974832i $$0.428435\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 36.0000 1.59882
$$508$$ 0 0
$$509$$ −15.0000 −0.664863 −0.332432 0.943127i $$-0.607869\pi$$
−0.332432 + 0.943127i $$0.607869\pi$$
$$510$$ 0 0
$$511$$ 18.0000 0.796273
$$512$$ 0 0
$$513$$ −54.0000 −2.38416
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 30.0000 1.31685
$$520$$ 0 0
$$521$$ 8.00000 0.350486 0.175243 0.984525i $$-0.443929\pi$$
0.175243 + 0.984525i $$0.443929\pi$$
$$522$$ 0 0
$$523$$ 18.0000 0.787085 0.393543 0.919306i $$-0.371249\pi$$
0.393543 + 0.919306i $$0.371249\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −18.0000 −0.784092
$$528$$ 0 0
$$529$$ 1.00000 0.0434783
$$530$$ 0 0
$$531$$ −24.0000 −1.04151
$$532$$ 0 0
$$533$$ 15.0000 0.649722
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 9.00000 0.388379
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −43.0000 −1.84871 −0.924357 0.381528i $$-0.875398\pi$$
−0.924357 + 0.381528i $$0.875398\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ −19.0000 −0.812381 −0.406191 0.913788i $$-0.633143\pi$$
−0.406191 + 0.913788i $$0.633143\pi$$
$$548$$ 0 0
$$549$$ −60.0000 −2.56074
$$550$$ 0 0
$$551$$ −54.0000 −2.30048
$$552$$ 0 0
$$553$$ −12.0000 −0.510292
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −8.00000 −0.338971 −0.169485 0.985533i $$-0.554211\pi$$
−0.169485 + 0.985533i $$0.554211\pi$$
$$558$$ 0 0
$$559$$ −40.0000 −1.69182
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 44.0000 1.85438 0.927189 0.374593i $$-0.122217\pi$$
0.927189 + 0.374593i $$0.122217\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ −18.0000 −0.755929
$$568$$ 0 0
$$569$$ −24.0000 −1.00613 −0.503066 0.864248i $$-0.667795\pi$$
−0.503066 + 0.864248i $$0.667795\pi$$
$$570$$ 0 0
$$571$$ −26.0000 −1.08807 −0.544033 0.839064i $$-0.683103\pi$$
−0.544033 + 0.839064i $$0.683103\pi$$
$$572$$ 0 0
$$573$$ 48.0000 2.00523
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ −33.0000 −1.37381 −0.686904 0.726748i $$-0.741031\pi$$
−0.686904 + 0.726748i $$0.741031\pi$$
$$578$$ 0 0
$$579$$ 21.0000 0.872730
$$580$$ 0 0
$$581$$ 28.0000 1.16164
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 15.0000 0.619116 0.309558 0.950881i $$-0.399819\pi$$
0.309558 + 0.950881i $$0.399819\pi$$
$$588$$ 0 0
$$589$$ 18.0000 0.741677
$$590$$ 0 0
$$591$$ 81.0000 3.33189
$$592$$ 0 0
$$593$$ −22.0000 −0.903432 −0.451716 0.892162i $$-0.649188\pi$$
−0.451716 + 0.892162i $$0.649188\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ −60.0000 −2.45564
$$598$$ 0 0
$$599$$ 24.0000 0.980613 0.490307 0.871550i $$-0.336885\pi$$
0.490307 + 0.871550i $$0.336885\pi$$
$$600$$ 0 0
$$601$$ 13.0000 0.530281 0.265141 0.964210i $$-0.414582\pi$$
0.265141 + 0.964210i $$0.414582\pi$$
$$602$$ 0 0
$$603$$ 48.0000 1.95471
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 40.0000 1.62355 0.811775 0.583970i $$-0.198502\pi$$
0.811775 + 0.583970i $$0.198502\pi$$
$$608$$ 0 0
$$609$$ −54.0000 −2.18819
$$610$$ 0 0
$$611$$ 35.0000 1.41595
$$612$$ 0 0
$$613$$ −2.00000 −0.0807792 −0.0403896 0.999184i $$-0.512860\pi$$
−0.0403896 + 0.999184i $$0.512860\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 18.0000 0.724653 0.362326 0.932051i $$-0.381983\pi$$
0.362326 + 0.932051i $$0.381983\pi$$
$$618$$ 0 0
$$619$$ 4.00000 0.160774 0.0803868 0.996764i $$-0.474384\pi$$
0.0803868 + 0.996764i $$0.474384\pi$$
$$620$$ 0 0
$$621$$ 9.00000 0.361158
$$622$$ 0 0
$$623$$ −32.0000 −1.28205
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 48.0000 1.91389
$$630$$ 0 0
$$631$$ 40.0000 1.59237 0.796187 0.605050i $$-0.206847\pi$$
0.796187 + 0.605050i $$0.206847\pi$$
$$632$$ 0 0
$$633$$ −24.0000 −0.953914
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ −15.0000 −0.594322
$$638$$ 0 0
$$639$$ −42.0000 −1.66149
$$640$$ 0 0
$$641$$ −40.0000 −1.57991 −0.789953 0.613168i $$-0.789895\pi$$
−0.789953 + 0.613168i $$0.789895\pi$$
$$642$$ 0 0
$$643$$ −44.0000 −1.73519 −0.867595 0.497271i $$-0.834335\pi$$
−0.867595 + 0.497271i $$0.834335\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −33.0000 −1.29736 −0.648682 0.761060i $$-0.724679\pi$$
−0.648682 + 0.761060i $$0.724679\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 18.0000 0.705476
$$652$$ 0 0
$$653$$ −39.0000 −1.52619 −0.763094 0.646288i $$-0.776321\pi$$
−0.763094 + 0.646288i $$0.776321\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ −54.0000 −2.10674
$$658$$ 0 0
$$659$$ −50.0000 −1.94772 −0.973862 0.227142i $$-0.927062\pi$$
−0.973862 + 0.227142i $$0.927062\pi$$
$$660$$ 0 0
$$661$$ −42.0000 −1.63361 −0.816805 0.576913i $$-0.804257\pi$$
−0.816805 + 0.576913i $$0.804257\pi$$
$$662$$ 0 0
$$663$$ 90.0000 3.49531
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 9.00000 0.348481
$$668$$ 0 0
$$669$$ 24.0000 0.927894
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 5.00000 0.192736 0.0963679 0.995346i $$-0.469277\pi$$
0.0963679 + 0.995346i $$0.469277\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 22.0000 0.845529 0.422764 0.906240i $$-0.361060\pi$$
0.422764 + 0.906240i $$0.361060\pi$$
$$678$$ 0 0
$$679$$ 12.0000 0.460518
$$680$$ 0 0
$$681$$ −30.0000 −1.14960
$$682$$ 0 0
$$683$$ 29.0000 1.10965 0.554827 0.831966i $$-0.312784\pi$$
0.554827 + 0.831966i $$0.312784\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ −60.0000 −2.28914
$$688$$ 0 0
$$689$$ 10.0000 0.380970
$$690$$ 0 0
$$691$$ −4.00000 −0.152167 −0.0760836 0.997101i $$-0.524242\pi$$
−0.0760836 + 0.997101i $$0.524242\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 18.0000 0.681799
$$698$$ 0 0
$$699$$ −45.0000 −1.70206
$$700$$ 0 0
$$701$$ −42.0000 −1.58632 −0.793159 0.609015i $$-0.791565\pi$$
−0.793159 + 0.609015i $$0.791565\pi$$
$$702$$ 0 0
$$703$$ −48.0000 −1.81035
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ −12.0000 −0.451306
$$708$$ 0 0
$$709$$ 14.0000 0.525781 0.262891 0.964826i $$-0.415324\pi$$
0.262891 + 0.964826i $$0.415324\pi$$
$$710$$ 0 0
$$711$$ 36.0000 1.35011
$$712$$ 0 0
$$713$$ −3.00000 −0.112351
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 39.0000 1.45648
$$718$$ 0 0
$$719$$ −16.0000 −0.596699 −0.298350 0.954457i $$-0.596436\pi$$
−0.298350 + 0.954457i $$0.596436\pi$$
$$720$$ 0 0
$$721$$ −28.0000 −1.04277
$$722$$ 0 0
$$723$$ −12.0000 −0.446285
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ −36.0000 −1.33517 −0.667583 0.744535i $$-0.732671\pi$$
−0.667583 + 0.744535i $$0.732671\pi$$
$$728$$ 0 0
$$729$$ −27.0000 −1.00000
$$730$$ 0 0
$$731$$ −48.0000 −1.77534
$$732$$ 0 0
$$733$$ 14.0000 0.517102 0.258551 0.965998i $$-0.416755\pi$$
0.258551 + 0.965998i $$0.416755\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0 0
$$738$$ 0 0
$$739$$ −29.0000 −1.06678 −0.533391 0.845869i $$-0.679083\pi$$
−0.533391 + 0.845869i $$0.679083\pi$$
$$740$$ 0 0
$$741$$ −90.0000 −3.30623
$$742$$ 0 0
$$743$$ −6.00000 −0.220119 −0.110059 0.993925i $$-0.535104\pi$$
−0.110059 + 0.993925i $$0.535104\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ −84.0000 −3.07340
$$748$$ 0 0
$$749$$ −28.0000 −1.02310
$$750$$ 0 0
$$751$$ −4.00000 −0.145962 −0.0729810 0.997333i $$-0.523251\pi$$
−0.0729810 + 0.997333i $$0.523251\pi$$
$$752$$ 0 0
$$753$$ −30.0000 −1.09326
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 12.0000 0.436147 0.218074 0.975932i $$-0.430023\pi$$
0.218074 + 0.975932i $$0.430023\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 41.0000 1.48625 0.743124 0.669153i $$-0.233343\pi$$
0.743124 + 0.669153i $$0.233343\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −20.0000 −0.722158
$$768$$ 0 0
$$769$$ −28.0000 −1.00971 −0.504853 0.863205i $$-0.668453\pi$$
−0.504853 + 0.863205i $$0.668453\pi$$
$$770$$ 0 0
$$771$$ 39.0000 1.40455
$$772$$ 0 0
$$773$$ −8.00000 −0.287740 −0.143870 0.989597i $$-0.545955\pi$$
−0.143870 + 0.989597i $$0.545955\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ −48.0000 −1.72199
$$778$$ 0 0
$$779$$ −18.0000 −0.644917
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 81.0000 2.89470
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 40.0000 1.42585 0.712923 0.701242i $$-0.247371\pi$$
0.712923 + 0.701242i $$0.247371\pi$$
$$788$$ 0 0
$$789$$ 18.0000 0.640817
$$790$$ 0 0
$$791$$ 4.00000 0.142224
$$792$$ 0 0
$$793$$ −50.0000 −1.77555
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −42.0000 −1.48772 −0.743858 0.668338i $$-0.767006\pi$$
−0.743858 + 0.668338i $$0.767006\pi$$
$$798$$ 0 0
$$799$$ 42.0000 1.48585
$$800$$ 0 0
$$801$$ 96.0000 3.39199
$$802$$ 0 0
$$803$$ 0 0
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 15.0000 0.528025
$$808$$ 0 0
$$809$$ 2.00000 0.0703163 0.0351581 0.999382i $$-0.488807\pi$$
0.0351581 + 0.999382i $$0.488807\pi$$
$$810$$ 0 0
$$811$$ 5.00000 0.175574 0.0877869 0.996139i $$-0.472021\pi$$
0.0877869 + 0.996139i $$0.472021\pi$$
$$812$$ 0 0
$$813$$ 24.0000 0.841717
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 48.0000 1.67931
$$818$$ 0 0
$$819$$ −60.0000 −2.09657
$$820$$ 0 0
$$821$$ −54.0000 −1.88461 −0.942306 0.334751i $$-0.891348\pi$$
−0.942306 + 0.334751i $$0.891348\pi$$
$$822$$ 0 0
$$823$$ −57.0000 −1.98690 −0.993448 0.114289i $$-0.963541\pi$$
−0.993448 + 0.114289i $$0.963541\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ −12.0000 −0.417281 −0.208640 0.977992i $$-0.566904\pi$$
−0.208640 + 0.977992i $$0.566904\pi$$
$$828$$ 0 0
$$829$$ 54.0000 1.87550 0.937749 0.347314i $$-0.112906\pi$$
0.937749 + 0.347314i $$0.112906\pi$$
$$830$$ 0 0
$$831$$ 69.0000 2.39358
$$832$$ 0 0
$$833$$ −18.0000 −0.623663
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ −27.0000 −0.933257
$$838$$ 0 0
$$839$$ −30.0000 −1.03572 −0.517858 0.855467i $$-0.673270\pi$$
−0.517858 + 0.855467i $$0.673270\pi$$
$$840$$ 0 0
$$841$$ 52.0000 1.79310
$$842$$ 0 0
$$843$$ −54.0000 −1.85986
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 22.0000 0.755929
$$848$$ 0 0
$$849$$ 12.0000 0.411839
$$850$$ 0 0
$$851$$ 8.00000 0.274236
$$852$$ 0 0
$$853$$ 14.0000 0.479351 0.239675 0.970853i $$-0.422959\pi$$
0.239675 + 0.970853i $$0.422959\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ −23.0000 −0.785665 −0.392833 0.919610i $$-0.628505\pi$$
−0.392833 + 0.919610i $$0.628505\pi$$
$$858$$ 0 0
$$859$$ 17.0000 0.580033 0.290016 0.957022i $$-0.406339\pi$$
0.290016 + 0.957022i $$0.406339\pi$$
$$860$$ 0 0
$$861$$ −18.0000 −0.613438
$$862$$ 0 0
$$863$$ 49.0000 1.66798 0.833990 0.551780i $$-0.186051\pi$$
0.833990 + 0.551780i $$0.186051\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 57.0000 1.93582
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ 40.0000 1.35535
$$872$$ 0 0
$$873$$ −36.0000 −1.21842
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ −18.0000 −0.607817 −0.303908 0.952701i $$-0.598292\pi$$
−0.303908 + 0.952701i $$0.598292\pi$$
$$878$$ 0 0
$$879$$ −36.0000 −1.21425
$$880$$ 0 0
$$881$$ −18.0000 −0.606435 −0.303218 0.952921i $$-0.598061\pi$$
−0.303218 + 0.952921i $$0.598061\pi$$
$$882$$ 0 0
$$883$$ −36.0000 −1.21150 −0.605748 0.795656i $$-0.707126\pi$$
−0.605748 + 0.795656i $$0.707126\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 27.0000 0.906571 0.453286 0.891365i $$-0.350252\pi$$
0.453286 + 0.891365i $$0.350252\pi$$
$$888$$ 0 0
$$889$$ −10.0000 −0.335389
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ −42.0000 −1.40548
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 15.0000 0.500835
$$898$$ 0 0
$$899$$ −27.0000 −0.900500
$$900$$ 0 0
$$901$$ 12.0000 0.399778
$$902$$ 0 0
$$903$$ 48.0000 1.59734
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ −10.0000 −0.332045 −0.166022 0.986122i $$-0.553092\pi$$
−0.166022 + 0.986122i $$0.553092\pi$$
$$908$$ 0 0
$$909$$ 36.0000 1.19404
$$910$$ 0 0
$$911$$ 50.0000 1.65657 0.828287 0.560304i $$-0.189316\pi$$
0.828287 + 0.560304i $$0.189316\pi$$
$$912$$ 0 0
$$913$$ 0 0
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ −18.0000 −0.594412
$$918$$ 0 0
$$919$$ −10.0000 −0.329870 −0.164935 0.986304i $$-0.552741\pi$$
−0.164935 + 0.986304i $$0.552741\pi$$
$$920$$ 0 0
$$921$$ 12.0000 0.395413
$$922$$ 0 0
$$923$$ −35.0000 −1.15204
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 84.0000 2.75892
$$928$$ 0 0
$$929$$ 7.00000 0.229663 0.114831 0.993385i $$-0.463367\pi$$
0.114831 + 0.993385i $$0.463367\pi$$
$$930$$ 0 0
$$931$$ 18.0000 0.589926
$$932$$ 0 0
$$933$$ 51.0000 1.66967
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ −4.00000 −0.130674 −0.0653372 0.997863i $$-0.520812\pi$$
−0.0653372 + 0.997863i $$0.520812\pi$$
$$938$$ 0 0
$$939$$ 60.0000 1.95803
$$940$$ 0 0
$$941$$ 6.00000 0.195594 0.0977972 0.995206i $$-0.468820\pi$$
0.0977972 + 0.995206i $$0.468820\pi$$
$$942$$ 0 0
$$943$$ 3.00000 0.0976934
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 7.00000 0.227469 0.113735 0.993511i $$-0.463719\pi$$
0.113735 + 0.993511i $$0.463719\pi$$
$$948$$ 0 0
$$949$$ −45.0000 −1.46076
$$950$$ 0 0
$$951$$ 6.00000 0.194563
$$952$$ 0 0
$$953$$ −42.0000 −1.36051 −0.680257 0.732974i $$-0.738132\pi$$
−0.680257 + 0.732974i $$0.738132\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 8.00000 0.258333
$$960$$ 0 0
$$961$$ −22.0000 −0.709677
$$962$$ 0 0
$$963$$ 84.0000 2.70686
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ −47.0000 −1.51142 −0.755709 0.654907i $$-0.772708\pi$$
−0.755709 + 0.654907i $$0.772708\pi$$
$$968$$ 0 0
$$969$$ −108.000 −3.46946
$$970$$ 0 0
$$971$$ 26.0000 0.834380 0.417190 0.908819i $$-0.363015\pi$$
0.417190 + 0.908819i $$0.363015\pi$$
$$972$$ 0 0
$$973$$ −46.0000 −1.47469
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$978$$ 0 0
$$979$$ 0 0
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ −14.0000 −0.446531 −0.223265 0.974758i $$-0.571672\pi$$
−0.223265 + 0.974758i $$0.571672\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ −42.0000 −1.33687
$$988$$ 0 0
$$989$$ −8.00000 −0.254385
$$990$$ 0 0
$$991$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$992$$ 0 0
$$993$$ 57.0000 1.80884
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 50.0000 1.58352 0.791758 0.610835i $$-0.209166\pi$$
0.791758 + 0.610835i $$0.209166\pi$$
$$998$$ 0 0
$$999$$ 72.0000 2.27798
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9200.2.a.bj.1.1 1
4.3 odd 2 4600.2.a.a.1.1 1
5.4 even 2 368.2.a.a.1.1 1
15.14 odd 2 3312.2.a.i.1.1 1
20.3 even 4 4600.2.e.a.4049.1 2
20.7 even 4 4600.2.e.a.4049.2 2
20.19 odd 2 184.2.a.d.1.1 1
40.19 odd 2 1472.2.a.a.1.1 1
40.29 even 2 1472.2.a.m.1.1 1
60.59 even 2 1656.2.a.c.1.1 1
115.114 odd 2 8464.2.a.b.1.1 1
140.139 even 2 9016.2.a.b.1.1 1
460.459 even 2 4232.2.a.j.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
184.2.a.d.1.1 1 20.19 odd 2
368.2.a.a.1.1 1 5.4 even 2
1472.2.a.a.1.1 1 40.19 odd 2
1472.2.a.m.1.1 1 40.29 even 2
1656.2.a.c.1.1 1 60.59 even 2
3312.2.a.i.1.1 1 15.14 odd 2
4232.2.a.j.1.1 1 460.459 even 2
4600.2.a.a.1.1 1 4.3 odd 2
4600.2.e.a.4049.1 2 20.3 even 4
4600.2.e.a.4049.2 2 20.7 even 4
8464.2.a.b.1.1 1 115.114 odd 2
9016.2.a.b.1.1 1 140.139 even 2
9200.2.a.bj.1.1 1 1.1 even 1 trivial