Properties

Label 920.4.a.b.1.6
Level $920$
Weight $4$
Character 920.1
Self dual yes
Analytic conductor $54.282$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [920,4,Mod(1,920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("920.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(920, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 920.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2817572053\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 81x^{4} + 161x^{3} + 1520x^{2} - 3915x + 588 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(7.55347\) of defining polynomial
Character \(\chi\) \(=\) 920.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.55347 q^{3} -5.00000 q^{5} +4.93892 q^{7} +30.0549 q^{9} -25.3248 q^{11} -23.7663 q^{13} -37.7674 q^{15} -86.0484 q^{17} +5.67472 q^{19} +37.3060 q^{21} -23.0000 q^{23} +25.0000 q^{25} +23.0753 q^{27} -198.859 q^{29} -214.255 q^{31} -191.290 q^{33} -24.6946 q^{35} +0.432409 q^{37} -179.518 q^{39} +215.124 q^{41} -127.168 q^{43} -150.275 q^{45} +413.634 q^{47} -318.607 q^{49} -649.964 q^{51} +302.342 q^{53} +126.624 q^{55} +42.8638 q^{57} -426.766 q^{59} +693.800 q^{61} +148.439 q^{63} +118.831 q^{65} -569.947 q^{67} -173.730 q^{69} +250.438 q^{71} -782.465 q^{73} +188.837 q^{75} -125.077 q^{77} -1130.12 q^{79} -637.184 q^{81} -1052.18 q^{83} +430.242 q^{85} -1502.08 q^{87} +901.023 q^{89} -117.380 q^{91} -1618.37 q^{93} -28.3736 q^{95} +75.8213 q^{97} -761.135 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 30 q^{5} + 28 q^{7} + 4 q^{9} - 3 q^{11} - 28 q^{13} - 10 q^{15} + 24 q^{17} - 3 q^{19} + 60 q^{21} - 138 q^{23} + 150 q^{25} - 97 q^{27} + 76 q^{29} - 381 q^{31} - 3 q^{33} - 140 q^{35}+ \cdots - 525 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 7.55347 1.45367 0.726833 0.686814i \(-0.240991\pi\)
0.726833 + 0.686814i \(0.240991\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 4.93892 0.266677 0.133338 0.991071i \(-0.457430\pi\)
0.133338 + 0.991071i \(0.457430\pi\)
\(8\) 0 0
\(9\) 30.0549 1.11315
\(10\) 0 0
\(11\) −25.3248 −0.694156 −0.347078 0.937836i \(-0.612826\pi\)
−0.347078 + 0.937836i \(0.612826\pi\)
\(12\) 0 0
\(13\) −23.7663 −0.507044 −0.253522 0.967330i \(-0.581589\pi\)
−0.253522 + 0.967330i \(0.581589\pi\)
\(14\) 0 0
\(15\) −37.7674 −0.650099
\(16\) 0 0
\(17\) −86.0484 −1.22763 −0.613817 0.789448i \(-0.710367\pi\)
−0.613817 + 0.789448i \(0.710367\pi\)
\(18\) 0 0
\(19\) 5.67472 0.0685194 0.0342597 0.999413i \(-0.489093\pi\)
0.0342597 + 0.999413i \(0.489093\pi\)
\(20\) 0 0
\(21\) 37.3060 0.387659
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 23.0753 0.164476
\(28\) 0 0
\(29\) −198.859 −1.27335 −0.636677 0.771130i \(-0.719692\pi\)
−0.636677 + 0.771130i \(0.719692\pi\)
\(30\) 0 0
\(31\) −214.255 −1.24133 −0.620666 0.784075i \(-0.713138\pi\)
−0.620666 + 0.784075i \(0.713138\pi\)
\(32\) 0 0
\(33\) −191.290 −1.00907
\(34\) 0 0
\(35\) −24.6946 −0.119262
\(36\) 0 0
\(37\) 0.432409 0.00192129 0.000960644 1.00000i \(-0.499694\pi\)
0.000960644 1.00000i \(0.499694\pi\)
\(38\) 0 0
\(39\) −179.518 −0.737073
\(40\) 0 0
\(41\) 215.124 0.819431 0.409715 0.912213i \(-0.365628\pi\)
0.409715 + 0.912213i \(0.365628\pi\)
\(42\) 0 0
\(43\) −127.168 −0.450998 −0.225499 0.974243i \(-0.572401\pi\)
−0.225499 + 0.974243i \(0.572401\pi\)
\(44\) 0 0
\(45\) −150.275 −0.497814
\(46\) 0 0
\(47\) 413.634 1.28372 0.641859 0.766823i \(-0.278163\pi\)
0.641859 + 0.766823i \(0.278163\pi\)
\(48\) 0 0
\(49\) −318.607 −0.928883
\(50\) 0 0
\(51\) −649.964 −1.78457
\(52\) 0 0
\(53\) 302.342 0.783581 0.391791 0.920054i \(-0.371856\pi\)
0.391791 + 0.920054i \(0.371856\pi\)
\(54\) 0 0
\(55\) 126.624 0.310436
\(56\) 0 0
\(57\) 42.8638 0.0996044
\(58\) 0 0
\(59\) −426.766 −0.941699 −0.470850 0.882214i \(-0.656053\pi\)
−0.470850 + 0.882214i \(0.656053\pi\)
\(60\) 0 0
\(61\) 693.800 1.45626 0.728131 0.685438i \(-0.240389\pi\)
0.728131 + 0.685438i \(0.240389\pi\)
\(62\) 0 0
\(63\) 148.439 0.296850
\(64\) 0 0
\(65\) 118.831 0.226757
\(66\) 0 0
\(67\) −569.947 −1.03926 −0.519628 0.854393i \(-0.673929\pi\)
−0.519628 + 0.854393i \(0.673929\pi\)
\(68\) 0 0
\(69\) −173.730 −0.303110
\(70\) 0 0
\(71\) 250.438 0.418613 0.209306 0.977850i \(-0.432879\pi\)
0.209306 + 0.977850i \(0.432879\pi\)
\(72\) 0 0
\(73\) −782.465 −1.25453 −0.627264 0.778806i \(-0.715825\pi\)
−0.627264 + 0.778806i \(0.715825\pi\)
\(74\) 0 0
\(75\) 188.837 0.290733
\(76\) 0 0
\(77\) −125.077 −0.185115
\(78\) 0 0
\(79\) −1130.12 −1.60947 −0.804735 0.593635i \(-0.797692\pi\)
−0.804735 + 0.593635i \(0.797692\pi\)
\(80\) 0 0
\(81\) −637.184 −0.874053
\(82\) 0 0
\(83\) −1052.18 −1.39147 −0.695733 0.718300i \(-0.744920\pi\)
−0.695733 + 0.718300i \(0.744920\pi\)
\(84\) 0 0
\(85\) 430.242 0.549015
\(86\) 0 0
\(87\) −1502.08 −1.85103
\(88\) 0 0
\(89\) 901.023 1.07313 0.536563 0.843860i \(-0.319722\pi\)
0.536563 + 0.843860i \(0.319722\pi\)
\(90\) 0 0
\(91\) −117.380 −0.135217
\(92\) 0 0
\(93\) −1618.37 −1.80448
\(94\) 0 0
\(95\) −28.3736 −0.0306428
\(96\) 0 0
\(97\) 75.8213 0.0793658 0.0396829 0.999212i \(-0.487365\pi\)
0.0396829 + 0.999212i \(0.487365\pi\)
\(98\) 0 0
\(99\) −761.135 −0.772697
\(100\) 0 0
\(101\) −39.1964 −0.0386157 −0.0193079 0.999814i \(-0.506146\pi\)
−0.0193079 + 0.999814i \(0.506146\pi\)
\(102\) 0 0
\(103\) −1160.67 −1.11033 −0.555165 0.831740i \(-0.687345\pi\)
−0.555165 + 0.831740i \(0.687345\pi\)
\(104\) 0 0
\(105\) −186.530 −0.173366
\(106\) 0 0
\(107\) 2097.40 1.89498 0.947491 0.319781i \(-0.103609\pi\)
0.947491 + 0.319781i \(0.103609\pi\)
\(108\) 0 0
\(109\) 1317.62 1.15784 0.578922 0.815383i \(-0.303474\pi\)
0.578922 + 0.815383i \(0.303474\pi\)
\(110\) 0 0
\(111\) 3.26619 0.00279291
\(112\) 0 0
\(113\) 1483.69 1.23517 0.617584 0.786505i \(-0.288111\pi\)
0.617584 + 0.786505i \(0.288111\pi\)
\(114\) 0 0
\(115\) 115.000 0.0932505
\(116\) 0 0
\(117\) −714.293 −0.564414
\(118\) 0 0
\(119\) −424.986 −0.327382
\(120\) 0 0
\(121\) −689.654 −0.518147
\(122\) 0 0
\(123\) 1624.93 1.19118
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 164.209 0.114733 0.0573667 0.998353i \(-0.481730\pi\)
0.0573667 + 0.998353i \(0.481730\pi\)
\(128\) 0 0
\(129\) −960.559 −0.655601
\(130\) 0 0
\(131\) 222.370 0.148310 0.0741549 0.997247i \(-0.476374\pi\)
0.0741549 + 0.997247i \(0.476374\pi\)
\(132\) 0 0
\(133\) 28.0270 0.0182726
\(134\) 0 0
\(135\) −115.376 −0.0735557
\(136\) 0 0
\(137\) −2400.82 −1.49720 −0.748599 0.663023i \(-0.769273\pi\)
−0.748599 + 0.663023i \(0.769273\pi\)
\(138\) 0 0
\(139\) 248.735 0.151780 0.0758901 0.997116i \(-0.475820\pi\)
0.0758901 + 0.997116i \(0.475820\pi\)
\(140\) 0 0
\(141\) 3124.37 1.86610
\(142\) 0 0
\(143\) 601.876 0.351968
\(144\) 0 0
\(145\) 994.297 0.569461
\(146\) 0 0
\(147\) −2406.59 −1.35029
\(148\) 0 0
\(149\) 556.747 0.306111 0.153055 0.988218i \(-0.451089\pi\)
0.153055 + 0.988218i \(0.451089\pi\)
\(150\) 0 0
\(151\) 1113.72 0.600221 0.300110 0.953904i \(-0.402976\pi\)
0.300110 + 0.953904i \(0.402976\pi\)
\(152\) 0 0
\(153\) −2586.18 −1.36654
\(154\) 0 0
\(155\) 1071.27 0.555140
\(156\) 0 0
\(157\) −860.641 −0.437495 −0.218747 0.975782i \(-0.570197\pi\)
−0.218747 + 0.975782i \(0.570197\pi\)
\(158\) 0 0
\(159\) 2283.73 1.13907
\(160\) 0 0
\(161\) −113.595 −0.0556060
\(162\) 0 0
\(163\) 1545.13 0.742476 0.371238 0.928538i \(-0.378933\pi\)
0.371238 + 0.928538i \(0.378933\pi\)
\(164\) 0 0
\(165\) 956.451 0.451271
\(166\) 0 0
\(167\) 109.841 0.0508965 0.0254483 0.999676i \(-0.491899\pi\)
0.0254483 + 0.999676i \(0.491899\pi\)
\(168\) 0 0
\(169\) −1632.17 −0.742906
\(170\) 0 0
\(171\) 170.553 0.0762721
\(172\) 0 0
\(173\) −853.947 −0.375286 −0.187643 0.982237i \(-0.560085\pi\)
−0.187643 + 0.982237i \(0.560085\pi\)
\(174\) 0 0
\(175\) 123.473 0.0533354
\(176\) 0 0
\(177\) −3223.57 −1.36892
\(178\) 0 0
\(179\) −2035.16 −0.849803 −0.424902 0.905239i \(-0.639691\pi\)
−0.424902 + 0.905239i \(0.639691\pi\)
\(180\) 0 0
\(181\) 1006.29 0.413243 0.206621 0.978421i \(-0.433753\pi\)
0.206621 + 0.978421i \(0.433753\pi\)
\(182\) 0 0
\(183\) 5240.60 2.11692
\(184\) 0 0
\(185\) −2.16205 −0.000859226 0
\(186\) 0 0
\(187\) 2179.16 0.852171
\(188\) 0 0
\(189\) 113.967 0.0438618
\(190\) 0 0
\(191\) 2400.21 0.909281 0.454641 0.890675i \(-0.349768\pi\)
0.454641 + 0.890675i \(0.349768\pi\)
\(192\) 0 0
\(193\) −2883.63 −1.07548 −0.537742 0.843110i \(-0.680722\pi\)
−0.537742 + 0.843110i \(0.680722\pi\)
\(194\) 0 0
\(195\) 897.588 0.329629
\(196\) 0 0
\(197\) −4894.79 −1.77025 −0.885125 0.465353i \(-0.845928\pi\)
−0.885125 + 0.465353i \(0.845928\pi\)
\(198\) 0 0
\(199\) −751.449 −0.267682 −0.133841 0.991003i \(-0.542731\pi\)
−0.133841 + 0.991003i \(0.542731\pi\)
\(200\) 0 0
\(201\) −4305.08 −1.51073
\(202\) 0 0
\(203\) −982.152 −0.339574
\(204\) 0 0
\(205\) −1075.62 −0.366461
\(206\) 0 0
\(207\) −691.263 −0.232107
\(208\) 0 0
\(209\) −143.711 −0.0475632
\(210\) 0 0
\(211\) 1258.11 0.410484 0.205242 0.978711i \(-0.434202\pi\)
0.205242 + 0.978711i \(0.434202\pi\)
\(212\) 0 0
\(213\) 1891.67 0.608523
\(214\) 0 0
\(215\) 635.840 0.201693
\(216\) 0 0
\(217\) −1058.19 −0.331034
\(218\) 0 0
\(219\) −5910.33 −1.82367
\(220\) 0 0
\(221\) 2045.05 0.622465
\(222\) 0 0
\(223\) 402.761 0.120946 0.0604728 0.998170i \(-0.480739\pi\)
0.0604728 + 0.998170i \(0.480739\pi\)
\(224\) 0 0
\(225\) 751.373 0.222629
\(226\) 0 0
\(227\) −4056.30 −1.18602 −0.593008 0.805196i \(-0.702060\pi\)
−0.593008 + 0.805196i \(0.702060\pi\)
\(228\) 0 0
\(229\) 398.823 0.115087 0.0575437 0.998343i \(-0.481673\pi\)
0.0575437 + 0.998343i \(0.481673\pi\)
\(230\) 0 0
\(231\) −944.768 −0.269096
\(232\) 0 0
\(233\) 6395.65 1.79825 0.899127 0.437689i \(-0.144203\pi\)
0.899127 + 0.437689i \(0.144203\pi\)
\(234\) 0 0
\(235\) −2068.17 −0.574096
\(236\) 0 0
\(237\) −8536.30 −2.33963
\(238\) 0 0
\(239\) 1325.15 0.358647 0.179324 0.983790i \(-0.442609\pi\)
0.179324 + 0.983790i \(0.442609\pi\)
\(240\) 0 0
\(241\) −1610.06 −0.430344 −0.215172 0.976576i \(-0.569031\pi\)
−0.215172 + 0.976576i \(0.569031\pi\)
\(242\) 0 0
\(243\) −5435.99 −1.43506
\(244\) 0 0
\(245\) 1593.04 0.415409
\(246\) 0 0
\(247\) −134.867 −0.0347424
\(248\) 0 0
\(249\) −7947.61 −2.02273
\(250\) 0 0
\(251\) 1891.58 0.475680 0.237840 0.971304i \(-0.423561\pi\)
0.237840 + 0.971304i \(0.423561\pi\)
\(252\) 0 0
\(253\) 582.471 0.144742
\(254\) 0 0
\(255\) 3249.82 0.798085
\(256\) 0 0
\(257\) −2772.37 −0.672901 −0.336451 0.941701i \(-0.609227\pi\)
−0.336451 + 0.941701i \(0.609227\pi\)
\(258\) 0 0
\(259\) 2.13564 0.000512363 0
\(260\) 0 0
\(261\) −5976.71 −1.41743
\(262\) 0 0
\(263\) 3133.14 0.734592 0.367296 0.930104i \(-0.380284\pi\)
0.367296 + 0.930104i \(0.380284\pi\)
\(264\) 0 0
\(265\) −1511.71 −0.350428
\(266\) 0 0
\(267\) 6805.85 1.55997
\(268\) 0 0
\(269\) 3459.75 0.784182 0.392091 0.919926i \(-0.371752\pi\)
0.392091 + 0.919926i \(0.371752\pi\)
\(270\) 0 0
\(271\) 169.887 0.0380809 0.0190404 0.999819i \(-0.493939\pi\)
0.0190404 + 0.999819i \(0.493939\pi\)
\(272\) 0 0
\(273\) −886.624 −0.196560
\(274\) 0 0
\(275\) −633.120 −0.138831
\(276\) 0 0
\(277\) −4742.37 −1.02867 −0.514334 0.857590i \(-0.671961\pi\)
−0.514334 + 0.857590i \(0.671961\pi\)
\(278\) 0 0
\(279\) −6439.41 −1.38178
\(280\) 0 0
\(281\) −2489.30 −0.528467 −0.264234 0.964459i \(-0.585119\pi\)
−0.264234 + 0.964459i \(0.585119\pi\)
\(282\) 0 0
\(283\) 5867.18 1.23239 0.616197 0.787592i \(-0.288672\pi\)
0.616197 + 0.787592i \(0.288672\pi\)
\(284\) 0 0
\(285\) −214.319 −0.0445444
\(286\) 0 0
\(287\) 1062.48 0.218523
\(288\) 0 0
\(289\) 2491.32 0.507088
\(290\) 0 0
\(291\) 572.714 0.115371
\(292\) 0 0
\(293\) 7462.95 1.48802 0.744010 0.668168i \(-0.232921\pi\)
0.744010 + 0.668168i \(0.232921\pi\)
\(294\) 0 0
\(295\) 2133.83 0.421141
\(296\) 0 0
\(297\) −584.377 −0.114172
\(298\) 0 0
\(299\) 546.624 0.105726
\(300\) 0 0
\(301\) −628.073 −0.120271
\(302\) 0 0
\(303\) −296.069 −0.0561344
\(304\) 0 0
\(305\) −3469.00 −0.651261
\(306\) 0 0
\(307\) −7285.04 −1.35433 −0.677164 0.735832i \(-0.736791\pi\)
−0.677164 + 0.735832i \(0.736791\pi\)
\(308\) 0 0
\(309\) −8767.07 −1.61405
\(310\) 0 0
\(311\) 4198.11 0.765444 0.382722 0.923864i \(-0.374987\pi\)
0.382722 + 0.923864i \(0.374987\pi\)
\(312\) 0 0
\(313\) −7610.41 −1.37433 −0.687166 0.726501i \(-0.741145\pi\)
−0.687166 + 0.726501i \(0.741145\pi\)
\(314\) 0 0
\(315\) −742.195 −0.132755
\(316\) 0 0
\(317\) −6039.30 −1.07003 −0.535017 0.844841i \(-0.679695\pi\)
−0.535017 + 0.844841i \(0.679695\pi\)
\(318\) 0 0
\(319\) 5036.08 0.883907
\(320\) 0 0
\(321\) 15842.6 2.75467
\(322\) 0 0
\(323\) −488.300 −0.0841169
\(324\) 0 0
\(325\) −594.156 −0.101409
\(326\) 0 0
\(327\) 9952.59 1.68312
\(328\) 0 0
\(329\) 2042.91 0.342338
\(330\) 0 0
\(331\) 2824.86 0.469089 0.234544 0.972105i \(-0.424640\pi\)
0.234544 + 0.972105i \(0.424640\pi\)
\(332\) 0 0
\(333\) 12.9960 0.00213867
\(334\) 0 0
\(335\) 2849.73 0.464769
\(336\) 0 0
\(337\) 3175.13 0.513235 0.256618 0.966513i \(-0.417392\pi\)
0.256618 + 0.966513i \(0.417392\pi\)
\(338\) 0 0
\(339\) 11207.0 1.79552
\(340\) 0 0
\(341\) 5425.96 0.861678
\(342\) 0 0
\(343\) −3267.63 −0.514389
\(344\) 0 0
\(345\) 868.649 0.135555
\(346\) 0 0
\(347\) −1395.28 −0.215857 −0.107928 0.994159i \(-0.534422\pi\)
−0.107928 + 0.994159i \(0.534422\pi\)
\(348\) 0 0
\(349\) 248.886 0.0381735 0.0190867 0.999818i \(-0.493924\pi\)
0.0190867 + 0.999818i \(0.493924\pi\)
\(350\) 0 0
\(351\) −548.413 −0.0833963
\(352\) 0 0
\(353\) −3289.01 −0.495910 −0.247955 0.968772i \(-0.579759\pi\)
−0.247955 + 0.968772i \(0.579759\pi\)
\(354\) 0 0
\(355\) −1252.19 −0.187209
\(356\) 0 0
\(357\) −3210.12 −0.475904
\(358\) 0 0
\(359\) 6061.01 0.891052 0.445526 0.895269i \(-0.353017\pi\)
0.445526 + 0.895269i \(0.353017\pi\)
\(360\) 0 0
\(361\) −6826.80 −0.995305
\(362\) 0 0
\(363\) −5209.28 −0.753213
\(364\) 0 0
\(365\) 3912.32 0.561042
\(366\) 0 0
\(367\) 12067.3 1.71636 0.858182 0.513346i \(-0.171594\pi\)
0.858182 + 0.513346i \(0.171594\pi\)
\(368\) 0 0
\(369\) 6465.52 0.912146
\(370\) 0 0
\(371\) 1493.24 0.208963
\(372\) 0 0
\(373\) 5665.83 0.786503 0.393252 0.919431i \(-0.371350\pi\)
0.393252 + 0.919431i \(0.371350\pi\)
\(374\) 0 0
\(375\) −944.184 −0.130020
\(376\) 0 0
\(377\) 4726.14 0.645647
\(378\) 0 0
\(379\) −820.068 −0.111145 −0.0555727 0.998455i \(-0.517698\pi\)
−0.0555727 + 0.998455i \(0.517698\pi\)
\(380\) 0 0
\(381\) 1240.34 0.166784
\(382\) 0 0
\(383\) 8037.19 1.07227 0.536137 0.844131i \(-0.319883\pi\)
0.536137 + 0.844131i \(0.319883\pi\)
\(384\) 0 0
\(385\) 625.387 0.0827861
\(386\) 0 0
\(387\) −3822.02 −0.502027
\(388\) 0 0
\(389\) −3224.48 −0.420277 −0.210138 0.977672i \(-0.567391\pi\)
−0.210138 + 0.977672i \(0.567391\pi\)
\(390\) 0 0
\(391\) 1979.11 0.255980
\(392\) 0 0
\(393\) 1679.67 0.215593
\(394\) 0 0
\(395\) 5650.58 0.719776
\(396\) 0 0
\(397\) −6180.53 −0.781340 −0.390670 0.920531i \(-0.627757\pi\)
−0.390670 + 0.920531i \(0.627757\pi\)
\(398\) 0 0
\(399\) 211.701 0.0265622
\(400\) 0 0
\(401\) −5156.49 −0.642152 −0.321076 0.947053i \(-0.604044\pi\)
−0.321076 + 0.947053i \(0.604044\pi\)
\(402\) 0 0
\(403\) 5092.03 0.629410
\(404\) 0 0
\(405\) 3185.92 0.390888
\(406\) 0 0
\(407\) −10.9507 −0.00133367
\(408\) 0 0
\(409\) 4306.36 0.520626 0.260313 0.965524i \(-0.416174\pi\)
0.260313 + 0.965524i \(0.416174\pi\)
\(410\) 0 0
\(411\) −18134.6 −2.17643
\(412\) 0 0
\(413\) −2107.77 −0.251129
\(414\) 0 0
\(415\) 5260.90 0.622283
\(416\) 0 0
\(417\) 1878.81 0.220638
\(418\) 0 0
\(419\) −6086.11 −0.709608 −0.354804 0.934941i \(-0.615452\pi\)
−0.354804 + 0.934941i \(0.615452\pi\)
\(420\) 0 0
\(421\) −1120.54 −0.129719 −0.0648594 0.997894i \(-0.520660\pi\)
−0.0648594 + 0.997894i \(0.520660\pi\)
\(422\) 0 0
\(423\) 12431.7 1.42896
\(424\) 0 0
\(425\) −2151.21 −0.245527
\(426\) 0 0
\(427\) 3426.63 0.388352
\(428\) 0 0
\(429\) 4546.25 0.511644
\(430\) 0 0
\(431\) 8278.90 0.925245 0.462623 0.886555i \(-0.346908\pi\)
0.462623 + 0.886555i \(0.346908\pi\)
\(432\) 0 0
\(433\) 14843.9 1.64747 0.823734 0.566976i \(-0.191887\pi\)
0.823734 + 0.566976i \(0.191887\pi\)
\(434\) 0 0
\(435\) 7510.40 0.827807
\(436\) 0 0
\(437\) −130.518 −0.0142873
\(438\) 0 0
\(439\) 4226.81 0.459532 0.229766 0.973246i \(-0.426204\pi\)
0.229766 + 0.973246i \(0.426204\pi\)
\(440\) 0 0
\(441\) −9575.71 −1.03398
\(442\) 0 0
\(443\) 1327.36 0.142359 0.0711793 0.997464i \(-0.477324\pi\)
0.0711793 + 0.997464i \(0.477324\pi\)
\(444\) 0 0
\(445\) −4505.12 −0.479917
\(446\) 0 0
\(447\) 4205.38 0.444983
\(448\) 0 0
\(449\) −8822.31 −0.927284 −0.463642 0.886022i \(-0.653458\pi\)
−0.463642 + 0.886022i \(0.653458\pi\)
\(450\) 0 0
\(451\) −5447.97 −0.568813
\(452\) 0 0
\(453\) 8412.46 0.872521
\(454\) 0 0
\(455\) 586.899 0.0604708
\(456\) 0 0
\(457\) 10364.9 1.06094 0.530470 0.847703i \(-0.322015\pi\)
0.530470 + 0.847703i \(0.322015\pi\)
\(458\) 0 0
\(459\) −1985.59 −0.201916
\(460\) 0 0
\(461\) 16974.6 1.71494 0.857469 0.514535i \(-0.172035\pi\)
0.857469 + 0.514535i \(0.172035\pi\)
\(462\) 0 0
\(463\) 12837.0 1.28852 0.644260 0.764807i \(-0.277166\pi\)
0.644260 + 0.764807i \(0.277166\pi\)
\(464\) 0 0
\(465\) 8091.83 0.806989
\(466\) 0 0
\(467\) 18616.1 1.84465 0.922326 0.386413i \(-0.126286\pi\)
0.922326 + 0.386413i \(0.126286\pi\)
\(468\) 0 0
\(469\) −2814.93 −0.277145
\(470\) 0 0
\(471\) −6500.83 −0.635971
\(472\) 0 0
\(473\) 3220.51 0.313063
\(474\) 0 0
\(475\) 141.868 0.0137039
\(476\) 0 0
\(477\) 9086.85 0.872240
\(478\) 0 0
\(479\) −10882.8 −1.03810 −0.519048 0.854745i \(-0.673713\pi\)
−0.519048 + 0.854745i \(0.673713\pi\)
\(480\) 0 0
\(481\) −10.2767 −0.000974178 0
\(482\) 0 0
\(483\) −858.039 −0.0808325
\(484\) 0 0
\(485\) −379.106 −0.0354935
\(486\) 0 0
\(487\) −2974.99 −0.276817 −0.138408 0.990375i \(-0.544199\pi\)
−0.138408 + 0.990375i \(0.544199\pi\)
\(488\) 0 0
\(489\) 11671.1 1.07931
\(490\) 0 0
\(491\) 6366.96 0.585207 0.292604 0.956234i \(-0.405478\pi\)
0.292604 + 0.956234i \(0.405478\pi\)
\(492\) 0 0
\(493\) 17111.5 1.56321
\(494\) 0 0
\(495\) 3805.68 0.345561
\(496\) 0 0
\(497\) 1236.89 0.111634
\(498\) 0 0
\(499\) −4739.07 −0.425150 −0.212575 0.977145i \(-0.568185\pi\)
−0.212575 + 0.977145i \(0.568185\pi\)
\(500\) 0 0
\(501\) 829.678 0.0739866
\(502\) 0 0
\(503\) 10254.9 0.909035 0.454517 0.890738i \(-0.349812\pi\)
0.454517 + 0.890738i \(0.349812\pi\)
\(504\) 0 0
\(505\) 195.982 0.0172695
\(506\) 0 0
\(507\) −12328.5 −1.07994
\(508\) 0 0
\(509\) 9219.13 0.802811 0.401405 0.915900i \(-0.368522\pi\)
0.401405 + 0.915900i \(0.368522\pi\)
\(510\) 0 0
\(511\) −3864.54 −0.334554
\(512\) 0 0
\(513\) 130.946 0.0112698
\(514\) 0 0
\(515\) 5803.34 0.496555
\(516\) 0 0
\(517\) −10475.2 −0.891101
\(518\) 0 0
\(519\) −6450.27 −0.545540
\(520\) 0 0
\(521\) −10904.6 −0.916963 −0.458482 0.888704i \(-0.651607\pi\)
−0.458482 + 0.888704i \(0.651607\pi\)
\(522\) 0 0
\(523\) −15804.3 −1.32137 −0.660683 0.750665i \(-0.729733\pi\)
−0.660683 + 0.750665i \(0.729733\pi\)
\(524\) 0 0
\(525\) 932.651 0.0775318
\(526\) 0 0
\(527\) 18436.3 1.52390
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −12826.4 −1.04825
\(532\) 0 0
\(533\) −5112.68 −0.415487
\(534\) 0 0
\(535\) −10487.0 −0.847462
\(536\) 0 0
\(537\) −15372.5 −1.23533
\(538\) 0 0
\(539\) 8068.67 0.644790
\(540\) 0 0
\(541\) −4716.49 −0.374820 −0.187410 0.982282i \(-0.560009\pi\)
−0.187410 + 0.982282i \(0.560009\pi\)
\(542\) 0 0
\(543\) 7600.98 0.600717
\(544\) 0 0
\(545\) −6588.09 −0.517803
\(546\) 0 0
\(547\) 13363.9 1.04461 0.522304 0.852759i \(-0.325072\pi\)
0.522304 + 0.852759i \(0.325072\pi\)
\(548\) 0 0
\(549\) 20852.1 1.62103
\(550\) 0 0
\(551\) −1128.47 −0.0872495
\(552\) 0 0
\(553\) −5581.56 −0.429208
\(554\) 0 0
\(555\) −16.3310 −0.00124903
\(556\) 0 0
\(557\) 6080.36 0.462537 0.231268 0.972890i \(-0.425712\pi\)
0.231268 + 0.972890i \(0.425712\pi\)
\(558\) 0 0
\(559\) 3022.31 0.228676
\(560\) 0 0
\(561\) 16460.2 1.23877
\(562\) 0 0
\(563\) −17362.3 −1.29971 −0.649854 0.760059i \(-0.725170\pi\)
−0.649854 + 0.760059i \(0.725170\pi\)
\(564\) 0 0
\(565\) −7418.46 −0.552384
\(566\) 0 0
\(567\) −3147.01 −0.233090
\(568\) 0 0
\(569\) −5264.30 −0.387857 −0.193929 0.981016i \(-0.562123\pi\)
−0.193929 + 0.981016i \(0.562123\pi\)
\(570\) 0 0
\(571\) −19270.6 −1.41235 −0.706174 0.708038i \(-0.749581\pi\)
−0.706174 + 0.708038i \(0.749581\pi\)
\(572\) 0 0
\(573\) 18129.9 1.32179
\(574\) 0 0
\(575\) −575.000 −0.0417029
\(576\) 0 0
\(577\) −18225.4 −1.31496 −0.657481 0.753471i \(-0.728378\pi\)
−0.657481 + 0.753471i \(0.728378\pi\)
\(578\) 0 0
\(579\) −21781.4 −1.56339
\(580\) 0 0
\(581\) −5196.63 −0.371072
\(582\) 0 0
\(583\) −7656.75 −0.543928
\(584\) 0 0
\(585\) 3571.46 0.252413
\(586\) 0 0
\(587\) 26714.8 1.87843 0.939214 0.343333i \(-0.111556\pi\)
0.939214 + 0.343333i \(0.111556\pi\)
\(588\) 0 0
\(589\) −1215.83 −0.0850553
\(590\) 0 0
\(591\) −36972.7 −2.57335
\(592\) 0 0
\(593\) 7707.57 0.533747 0.266874 0.963732i \(-0.414009\pi\)
0.266874 + 0.963732i \(0.414009\pi\)
\(594\) 0 0
\(595\) 2124.93 0.146410
\(596\) 0 0
\(597\) −5676.05 −0.389121
\(598\) 0 0
\(599\) −16530.7 −1.12759 −0.563795 0.825915i \(-0.690659\pi\)
−0.563795 + 0.825915i \(0.690659\pi\)
\(600\) 0 0
\(601\) 2351.15 0.159576 0.0797880 0.996812i \(-0.474576\pi\)
0.0797880 + 0.996812i \(0.474576\pi\)
\(602\) 0 0
\(603\) −17129.7 −1.15684
\(604\) 0 0
\(605\) 3448.27 0.231722
\(606\) 0 0
\(607\) −19245.5 −1.28691 −0.643453 0.765486i \(-0.722499\pi\)
−0.643453 + 0.765486i \(0.722499\pi\)
\(608\) 0 0
\(609\) −7418.66 −0.493627
\(610\) 0 0
\(611\) −9830.53 −0.650901
\(612\) 0 0
\(613\) 29069.6 1.91535 0.957675 0.287853i \(-0.0929413\pi\)
0.957675 + 0.287853i \(0.0929413\pi\)
\(614\) 0 0
\(615\) −8124.65 −0.532711
\(616\) 0 0
\(617\) −9134.94 −0.596043 −0.298022 0.954559i \(-0.596327\pi\)
−0.298022 + 0.954559i \(0.596327\pi\)
\(618\) 0 0
\(619\) 5251.25 0.340978 0.170489 0.985360i \(-0.445465\pi\)
0.170489 + 0.985360i \(0.445465\pi\)
\(620\) 0 0
\(621\) −530.731 −0.0342955
\(622\) 0 0
\(623\) 4450.09 0.286178
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −1085.52 −0.0691410
\(628\) 0 0
\(629\) −37.2081 −0.00235864
\(630\) 0 0
\(631\) −20458.1 −1.29069 −0.645344 0.763892i \(-0.723286\pi\)
−0.645344 + 0.763892i \(0.723286\pi\)
\(632\) 0 0
\(633\) 9503.12 0.596706
\(634\) 0 0
\(635\) −821.043 −0.0513104
\(636\) 0 0
\(637\) 7572.09 0.470985
\(638\) 0 0
\(639\) 7526.89 0.465977
\(640\) 0 0
\(641\) −12101.2 −0.745664 −0.372832 0.927899i \(-0.621613\pi\)
−0.372832 + 0.927899i \(0.621613\pi\)
\(642\) 0 0
\(643\) 10876.0 0.667042 0.333521 0.942743i \(-0.391763\pi\)
0.333521 + 0.942743i \(0.391763\pi\)
\(644\) 0 0
\(645\) 4802.80 0.293194
\(646\) 0 0
\(647\) −8656.66 −0.526010 −0.263005 0.964794i \(-0.584714\pi\)
−0.263005 + 0.964794i \(0.584714\pi\)
\(648\) 0 0
\(649\) 10807.8 0.653686
\(650\) 0 0
\(651\) −7992.99 −0.481214
\(652\) 0 0
\(653\) 20070.1 1.20276 0.601381 0.798962i \(-0.294617\pi\)
0.601381 + 0.798962i \(0.294617\pi\)
\(654\) 0 0
\(655\) −1111.85 −0.0663262
\(656\) 0 0
\(657\) −23516.9 −1.39647
\(658\) 0 0
\(659\) −24532.2 −1.45014 −0.725068 0.688677i \(-0.758192\pi\)
−0.725068 + 0.688677i \(0.758192\pi\)
\(660\) 0 0
\(661\) 305.872 0.0179985 0.00899926 0.999960i \(-0.497135\pi\)
0.00899926 + 0.999960i \(0.497135\pi\)
\(662\) 0 0
\(663\) 15447.2 0.904856
\(664\) 0 0
\(665\) −140.135 −0.00817173
\(666\) 0 0
\(667\) 4573.77 0.265513
\(668\) 0 0
\(669\) 3042.24 0.175814
\(670\) 0 0
\(671\) −17570.4 −1.01087
\(672\) 0 0
\(673\) −1428.57 −0.0818234 −0.0409117 0.999163i \(-0.513026\pi\)
−0.0409117 + 0.999163i \(0.513026\pi\)
\(674\) 0 0
\(675\) 576.882 0.0328951
\(676\) 0 0
\(677\) −14353.7 −0.814858 −0.407429 0.913237i \(-0.633575\pi\)
−0.407429 + 0.913237i \(0.633575\pi\)
\(678\) 0 0
\(679\) 374.476 0.0211650
\(680\) 0 0
\(681\) −30639.1 −1.72407
\(682\) 0 0
\(683\) −3227.68 −0.180825 −0.0904126 0.995904i \(-0.528819\pi\)
−0.0904126 + 0.995904i \(0.528819\pi\)
\(684\) 0 0
\(685\) 12004.1 0.669568
\(686\) 0 0
\(687\) 3012.50 0.167299
\(688\) 0 0
\(689\) −7185.53 −0.397310
\(690\) 0 0
\(691\) −15581.0 −0.857784 −0.428892 0.903356i \(-0.641096\pi\)
−0.428892 + 0.903356i \(0.641096\pi\)
\(692\) 0 0
\(693\) −3759.19 −0.206060
\(694\) 0 0
\(695\) −1243.68 −0.0678782
\(696\) 0 0
\(697\) −18511.0 −1.00596
\(698\) 0 0
\(699\) 48309.4 2.61406
\(700\) 0 0
\(701\) −14792.3 −0.797000 −0.398500 0.917168i \(-0.630469\pi\)
−0.398500 + 0.917168i \(0.630469\pi\)
\(702\) 0 0
\(703\) 2.45380 0.000131646 0
\(704\) 0 0
\(705\) −15621.9 −0.834544
\(706\) 0 0
\(707\) −193.588 −0.0102979
\(708\) 0 0
\(709\) 11123.5 0.589215 0.294607 0.955618i \(-0.404811\pi\)
0.294607 + 0.955618i \(0.404811\pi\)
\(710\) 0 0
\(711\) −33965.6 −1.79157
\(712\) 0 0
\(713\) 4927.86 0.258836
\(714\) 0 0
\(715\) −3009.38 −0.157405
\(716\) 0 0
\(717\) 10009.5 0.521354
\(718\) 0 0
\(719\) −4074.76 −0.211353 −0.105677 0.994401i \(-0.533701\pi\)
−0.105677 + 0.994401i \(0.533701\pi\)
\(720\) 0 0
\(721\) −5732.45 −0.296099
\(722\) 0 0
\(723\) −12161.5 −0.625576
\(724\) 0 0
\(725\) −4971.49 −0.254671
\(726\) 0 0
\(727\) 341.016 0.0173970 0.00869848 0.999962i \(-0.497231\pi\)
0.00869848 + 0.999962i \(0.497231\pi\)
\(728\) 0 0
\(729\) −23856.6 −1.21204
\(730\) 0 0
\(731\) 10942.6 0.553661
\(732\) 0 0
\(733\) −6235.62 −0.314213 −0.157106 0.987582i \(-0.550217\pi\)
−0.157106 + 0.987582i \(0.550217\pi\)
\(734\) 0 0
\(735\) 12032.9 0.603866
\(736\) 0 0
\(737\) 14433.8 0.721406
\(738\) 0 0
\(739\) 27056.2 1.34679 0.673397 0.739281i \(-0.264835\pi\)
0.673397 + 0.739281i \(0.264835\pi\)
\(740\) 0 0
\(741\) −1018.71 −0.0505038
\(742\) 0 0
\(743\) 34029.6 1.68025 0.840124 0.542394i \(-0.182482\pi\)
0.840124 + 0.542394i \(0.182482\pi\)
\(744\) 0 0
\(745\) −2783.74 −0.136897
\(746\) 0 0
\(747\) −31623.2 −1.54890
\(748\) 0 0
\(749\) 10358.9 0.505348
\(750\) 0 0
\(751\) −8377.99 −0.407080 −0.203540 0.979067i \(-0.565245\pi\)
−0.203540 + 0.979067i \(0.565245\pi\)
\(752\) 0 0
\(753\) 14288.0 0.691479
\(754\) 0 0
\(755\) −5568.60 −0.268427
\(756\) 0 0
\(757\) −5812.74 −0.279085 −0.139543 0.990216i \(-0.544563\pi\)
−0.139543 + 0.990216i \(0.544563\pi\)
\(758\) 0 0
\(759\) 4399.68 0.210406
\(760\) 0 0
\(761\) −825.051 −0.0393010 −0.0196505 0.999807i \(-0.506255\pi\)
−0.0196505 + 0.999807i \(0.506255\pi\)
\(762\) 0 0
\(763\) 6507.62 0.308770
\(764\) 0 0
\(765\) 12930.9 0.611134
\(766\) 0 0
\(767\) 10142.6 0.477483
\(768\) 0 0
\(769\) 1916.89 0.0898893 0.0449446 0.998989i \(-0.485689\pi\)
0.0449446 + 0.998989i \(0.485689\pi\)
\(770\) 0 0
\(771\) −20941.0 −0.978174
\(772\) 0 0
\(773\) −12874.3 −0.599039 −0.299520 0.954090i \(-0.596826\pi\)
−0.299520 + 0.954090i \(0.596826\pi\)
\(774\) 0 0
\(775\) −5356.37 −0.248266
\(776\) 0 0
\(777\) 16.1315 0.000744805 0
\(778\) 0 0
\(779\) 1220.77 0.0561469
\(780\) 0 0
\(781\) −6342.29 −0.290583
\(782\) 0 0
\(783\) −4588.74 −0.209436
\(784\) 0 0
\(785\) 4303.21 0.195654
\(786\) 0 0
\(787\) 23099.8 1.04628 0.523139 0.852248i \(-0.324761\pi\)
0.523139 + 0.852248i \(0.324761\pi\)
\(788\) 0 0
\(789\) 23666.1 1.06785
\(790\) 0 0
\(791\) 7327.85 0.329391
\(792\) 0 0
\(793\) −16489.0 −0.738389
\(794\) 0 0
\(795\) −11418.6 −0.509406
\(796\) 0 0
\(797\) 1192.59 0.0530034 0.0265017 0.999649i \(-0.491563\pi\)
0.0265017 + 0.999649i \(0.491563\pi\)
\(798\) 0 0
\(799\) −35592.5 −1.57594
\(800\) 0 0
\(801\) 27080.2 1.19455
\(802\) 0 0
\(803\) 19815.8 0.870839
\(804\) 0 0
\(805\) 567.976 0.0248677
\(806\) 0 0
\(807\) 26133.2 1.13994
\(808\) 0 0
\(809\) −20412.6 −0.887104 −0.443552 0.896249i \(-0.646282\pi\)
−0.443552 + 0.896249i \(0.646282\pi\)
\(810\) 0 0
\(811\) −25753.0 −1.11505 −0.557527 0.830159i \(-0.688250\pi\)
−0.557527 + 0.830159i \(0.688250\pi\)
\(812\) 0 0
\(813\) 1283.24 0.0553569
\(814\) 0 0
\(815\) −7725.63 −0.332046
\(816\) 0 0
\(817\) −721.642 −0.0309022
\(818\) 0 0
\(819\) −3527.84 −0.150516
\(820\) 0 0
\(821\) −22757.9 −0.967425 −0.483712 0.875227i \(-0.660712\pi\)
−0.483712 + 0.875227i \(0.660712\pi\)
\(822\) 0 0
\(823\) −21532.3 −0.911991 −0.455995 0.889982i \(-0.650717\pi\)
−0.455995 + 0.889982i \(0.650717\pi\)
\(824\) 0 0
\(825\) −4782.26 −0.201814
\(826\) 0 0
\(827\) 21257.1 0.893811 0.446906 0.894581i \(-0.352526\pi\)
0.446906 + 0.894581i \(0.352526\pi\)
\(828\) 0 0
\(829\) −39959.2 −1.67411 −0.837057 0.547115i \(-0.815726\pi\)
−0.837057 + 0.547115i \(0.815726\pi\)
\(830\) 0 0
\(831\) −35821.3 −1.49534
\(832\) 0 0
\(833\) 27415.6 1.14033
\(834\) 0 0
\(835\) −549.203 −0.0227616
\(836\) 0 0
\(837\) −4943.99 −0.204169
\(838\) 0 0
\(839\) −18083.9 −0.744132 −0.372066 0.928206i \(-0.621350\pi\)
−0.372066 + 0.928206i \(0.621350\pi\)
\(840\) 0 0
\(841\) 15156.1 0.621431
\(842\) 0 0
\(843\) −18802.9 −0.768215
\(844\) 0 0
\(845\) 8160.83 0.332238
\(846\) 0 0
\(847\) −3406.15 −0.138178
\(848\) 0 0
\(849\) 44317.6 1.79149
\(850\) 0 0
\(851\) −9.94541 −0.000400616 0
\(852\) 0 0
\(853\) −37161.5 −1.49166 −0.745829 0.666137i \(-0.767946\pi\)
−0.745829 + 0.666137i \(0.767946\pi\)
\(854\) 0 0
\(855\) −852.766 −0.0341099
\(856\) 0 0
\(857\) 11094.9 0.442235 0.221118 0.975247i \(-0.429030\pi\)
0.221118 + 0.975247i \(0.429030\pi\)
\(858\) 0 0
\(859\) −27181.7 −1.07966 −0.539830 0.841774i \(-0.681511\pi\)
−0.539830 + 0.841774i \(0.681511\pi\)
\(860\) 0 0
\(861\) 8025.41 0.317660
\(862\) 0 0
\(863\) −5902.79 −0.232831 −0.116416 0.993201i \(-0.537140\pi\)
−0.116416 + 0.993201i \(0.537140\pi\)
\(864\) 0 0
\(865\) 4269.74 0.167833
\(866\) 0 0
\(867\) 18818.1 0.737136
\(868\) 0 0
\(869\) 28620.0 1.11722
\(870\) 0 0
\(871\) 13545.5 0.526948
\(872\) 0 0
\(873\) 2278.80 0.0883457
\(874\) 0 0
\(875\) −617.366 −0.0238523
\(876\) 0 0
\(877\) −35394.3 −1.36281 −0.681403 0.731908i \(-0.738630\pi\)
−0.681403 + 0.731908i \(0.738630\pi\)
\(878\) 0 0
\(879\) 56371.2 2.16309
\(880\) 0 0
\(881\) −46842.6 −1.79134 −0.895668 0.444724i \(-0.853302\pi\)
−0.895668 + 0.444724i \(0.853302\pi\)
\(882\) 0 0
\(883\) 24311.0 0.926537 0.463268 0.886218i \(-0.346677\pi\)
0.463268 + 0.886218i \(0.346677\pi\)
\(884\) 0 0
\(885\) 16117.8 0.612198
\(886\) 0 0
\(887\) −2411.91 −0.0913009 −0.0456504 0.998957i \(-0.514536\pi\)
−0.0456504 + 0.998957i \(0.514536\pi\)
\(888\) 0 0
\(889\) 811.014 0.0305968
\(890\) 0 0
\(891\) 16136.6 0.606729
\(892\) 0 0
\(893\) 2347.26 0.0879596
\(894\) 0 0
\(895\) 10175.8 0.380044
\(896\) 0 0
\(897\) 4128.91 0.153690
\(898\) 0 0
\(899\) 42606.6 1.58065
\(900\) 0 0
\(901\) −26016.0 −0.961952
\(902\) 0 0
\(903\) −4744.13 −0.174834
\(904\) 0 0
\(905\) −5031.45 −0.184808
\(906\) 0 0
\(907\) −26207.5 −0.959435 −0.479717 0.877423i \(-0.659261\pi\)
−0.479717 + 0.877423i \(0.659261\pi\)
\(908\) 0 0
\(909\) −1178.05 −0.0429849
\(910\) 0 0
\(911\) 12187.3 0.443231 0.221615 0.975134i \(-0.428867\pi\)
0.221615 + 0.975134i \(0.428867\pi\)
\(912\) 0 0
\(913\) 26646.2 0.965895
\(914\) 0 0
\(915\) −26203.0 −0.946715
\(916\) 0 0
\(917\) 1098.27 0.0395508
\(918\) 0 0
\(919\) −14643.3 −0.525614 −0.262807 0.964848i \(-0.584648\pi\)
−0.262807 + 0.964848i \(0.584648\pi\)
\(920\) 0 0
\(921\) −55027.3 −1.96874
\(922\) 0 0
\(923\) −5951.97 −0.212255
\(924\) 0 0
\(925\) 10.8102 0.000384258 0
\(926\) 0 0
\(927\) −34883.8 −1.23596
\(928\) 0 0
\(929\) −19281.5 −0.680954 −0.340477 0.940253i \(-0.610589\pi\)
−0.340477 + 0.940253i \(0.610589\pi\)
\(930\) 0 0
\(931\) −1808.00 −0.0636466
\(932\) 0 0
\(933\) 31710.3 1.11270
\(934\) 0 0
\(935\) −10895.8 −0.381102
\(936\) 0 0
\(937\) −26610.7 −0.927784 −0.463892 0.885892i \(-0.653547\pi\)
−0.463892 + 0.885892i \(0.653547\pi\)
\(938\) 0 0
\(939\) −57485.0 −1.99782
\(940\) 0 0
\(941\) 50369.2 1.74494 0.872470 0.488668i \(-0.162517\pi\)
0.872470 + 0.488668i \(0.162517\pi\)
\(942\) 0 0
\(943\) −4947.84 −0.170863
\(944\) 0 0
\(945\) −569.835 −0.0196156
\(946\) 0 0
\(947\) 27235.5 0.934568 0.467284 0.884107i \(-0.345233\pi\)
0.467284 + 0.884107i \(0.345233\pi\)
\(948\) 0 0
\(949\) 18596.3 0.636101
\(950\) 0 0
\(951\) −45617.7 −1.55547
\(952\) 0 0
\(953\) −37676.1 −1.28064 −0.640319 0.768109i \(-0.721198\pi\)
−0.640319 + 0.768109i \(0.721198\pi\)
\(954\) 0 0
\(955\) −12001.0 −0.406643
\(956\) 0 0
\(957\) 38039.9 1.28491
\(958\) 0 0
\(959\) −11857.5 −0.399268
\(960\) 0 0
\(961\) 16114.1 0.540904
\(962\) 0 0
\(963\) 63037.1 2.10939
\(964\) 0 0
\(965\) 14418.2 0.480971
\(966\) 0 0
\(967\) −43160.6 −1.43532 −0.717658 0.696396i \(-0.754786\pi\)
−0.717658 + 0.696396i \(0.754786\pi\)
\(968\) 0 0
\(969\) −3688.36 −0.122278
\(970\) 0 0
\(971\) 10023.6 0.331281 0.165641 0.986186i \(-0.447031\pi\)
0.165641 + 0.986186i \(0.447031\pi\)
\(972\) 0 0
\(973\) 1228.48 0.0404763
\(974\) 0 0
\(975\) −4487.94 −0.147415
\(976\) 0 0
\(977\) −41061.0 −1.34458 −0.672291 0.740287i \(-0.734690\pi\)
−0.672291 + 0.740287i \(0.734690\pi\)
\(978\) 0 0
\(979\) −22818.2 −0.744918
\(980\) 0 0
\(981\) 39600.9 1.28885
\(982\) 0 0
\(983\) 16922.9 0.549091 0.274545 0.961574i \(-0.411473\pi\)
0.274545 + 0.961574i \(0.411473\pi\)
\(984\) 0 0
\(985\) 24474.0 0.791680
\(986\) 0 0
\(987\) 15431.0 0.497645
\(988\) 0 0
\(989\) 2924.86 0.0940397
\(990\) 0 0
\(991\) −12342.5 −0.395632 −0.197816 0.980239i \(-0.563385\pi\)
−0.197816 + 0.980239i \(0.563385\pi\)
\(992\) 0 0
\(993\) 21337.5 0.681898
\(994\) 0 0
\(995\) 3757.25 0.119711
\(996\) 0 0
\(997\) 39279.5 1.24774 0.623869 0.781529i \(-0.285560\pi\)
0.623869 + 0.781529i \(0.285560\pi\)
\(998\) 0 0
\(999\) 9.97796 0.000316005 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.4.a.b.1.6 6
4.3 odd 2 1840.4.a.s.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.4.a.b.1.6 6 1.1 even 1 trivial
1840.4.a.s.1.1 6 4.3 odd 2