Properties

Label 920.4.a.b.1.3
Level $920$
Weight $4$
Character 920.1
Self dual yes
Analytic conductor $54.282$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [920,4,Mod(1,920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("920.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(920, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 920.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2817572053\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 81x^{4} + 161x^{3} + 1520x^{2} - 3915x + 588 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.160327\) of defining polynomial
Character \(\chi\) \(=\) 920.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.160327 q^{3} -5.00000 q^{5} -2.26267 q^{7} -26.9743 q^{9} -8.80426 q^{11} +37.4404 q^{13} -0.801636 q^{15} +71.0912 q^{17} +106.599 q^{19} -0.362767 q^{21} -23.0000 q^{23} +25.0000 q^{25} -8.65355 q^{27} -10.8619 q^{29} +42.2033 q^{31} -1.41156 q^{33} +11.3133 q^{35} -140.769 q^{37} +6.00272 q^{39} +1.84812 q^{41} -503.969 q^{43} +134.871 q^{45} -219.338 q^{47} -337.880 q^{49} +11.3979 q^{51} -59.4388 q^{53} +44.0213 q^{55} +17.0906 q^{57} -91.0125 q^{59} -93.1843 q^{61} +61.0338 q^{63} -187.202 q^{65} -940.265 q^{67} -3.68753 q^{69} -178.289 q^{71} -47.2604 q^{73} +4.00818 q^{75} +19.9211 q^{77} +1082.23 q^{79} +726.919 q^{81} +484.557 q^{83} -355.456 q^{85} -1.74145 q^{87} -392.280 q^{89} -84.7151 q^{91} +6.76634 q^{93} -532.993 q^{95} -1650.20 q^{97} +237.489 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 30 q^{5} + 28 q^{7} + 4 q^{9} - 3 q^{11} - 28 q^{13} - 10 q^{15} + 24 q^{17} - 3 q^{19} + 60 q^{21} - 138 q^{23} + 150 q^{25} - 97 q^{27} + 76 q^{29} - 381 q^{31} - 3 q^{33} - 140 q^{35}+ \cdots - 525 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.160327 0.0308550 0.0154275 0.999881i \(-0.495089\pi\)
0.0154275 + 0.999881i \(0.495089\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −2.26267 −0.122172 −0.0610862 0.998132i \(-0.519456\pi\)
−0.0610862 + 0.998132i \(0.519456\pi\)
\(8\) 0 0
\(9\) −26.9743 −0.999048
\(10\) 0 0
\(11\) −8.80426 −0.241326 −0.120663 0.992694i \(-0.538502\pi\)
−0.120663 + 0.992694i \(0.538502\pi\)
\(12\) 0 0
\(13\) 37.4404 0.798777 0.399389 0.916782i \(-0.369222\pi\)
0.399389 + 0.916782i \(0.369222\pi\)
\(14\) 0 0
\(15\) −0.801636 −0.0137988
\(16\) 0 0
\(17\) 71.0912 1.01424 0.507122 0.861874i \(-0.330709\pi\)
0.507122 + 0.861874i \(0.330709\pi\)
\(18\) 0 0
\(19\) 106.599 1.28713 0.643563 0.765393i \(-0.277456\pi\)
0.643563 + 0.765393i \(0.277456\pi\)
\(20\) 0 0
\(21\) −0.362767 −0.00376963
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −8.65355 −0.0616806
\(28\) 0 0
\(29\) −10.8619 −0.0695516 −0.0347758 0.999395i \(-0.511072\pi\)
−0.0347758 + 0.999395i \(0.511072\pi\)
\(30\) 0 0
\(31\) 42.2033 0.244514 0.122257 0.992498i \(-0.460987\pi\)
0.122257 + 0.992498i \(0.460987\pi\)
\(32\) 0 0
\(33\) −1.41156 −0.00744611
\(34\) 0 0
\(35\) 11.3133 0.0546372
\(36\) 0 0
\(37\) −140.769 −0.625468 −0.312734 0.949841i \(-0.601245\pi\)
−0.312734 + 0.949841i \(0.601245\pi\)
\(38\) 0 0
\(39\) 6.00272 0.0246463
\(40\) 0 0
\(41\) 1.84812 0.00703969 0.00351985 0.999994i \(-0.498880\pi\)
0.00351985 + 0.999994i \(0.498880\pi\)
\(42\) 0 0
\(43\) −503.969 −1.78731 −0.893657 0.448751i \(-0.851869\pi\)
−0.893657 + 0.448751i \(0.851869\pi\)
\(44\) 0 0
\(45\) 134.871 0.446788
\(46\) 0 0
\(47\) −219.338 −0.680719 −0.340359 0.940295i \(-0.610549\pi\)
−0.340359 + 0.940295i \(0.610549\pi\)
\(48\) 0 0
\(49\) −337.880 −0.985074
\(50\) 0 0
\(51\) 11.3979 0.0312945
\(52\) 0 0
\(53\) −59.4388 −0.154048 −0.0770240 0.997029i \(-0.524542\pi\)
−0.0770240 + 0.997029i \(0.524542\pi\)
\(54\) 0 0
\(55\) 44.0213 0.107924
\(56\) 0 0
\(57\) 17.0906 0.0397142
\(58\) 0 0
\(59\) −91.0125 −0.200828 −0.100414 0.994946i \(-0.532017\pi\)
−0.100414 + 0.994946i \(0.532017\pi\)
\(60\) 0 0
\(61\) −93.1843 −0.195591 −0.0977953 0.995207i \(-0.531179\pi\)
−0.0977953 + 0.995207i \(0.531179\pi\)
\(62\) 0 0
\(63\) 61.0338 0.122056
\(64\) 0 0
\(65\) −187.202 −0.357224
\(66\) 0 0
\(67\) −940.265 −1.71450 −0.857251 0.514899i \(-0.827830\pi\)
−0.857251 + 0.514899i \(0.827830\pi\)
\(68\) 0 0
\(69\) −3.68753 −0.00643371
\(70\) 0 0
\(71\) −178.289 −0.298015 −0.149007 0.988836i \(-0.547608\pi\)
−0.149007 + 0.988836i \(0.547608\pi\)
\(72\) 0 0
\(73\) −47.2604 −0.0757728 −0.0378864 0.999282i \(-0.512062\pi\)
−0.0378864 + 0.999282i \(0.512062\pi\)
\(74\) 0 0
\(75\) 4.00818 0.00617100
\(76\) 0 0
\(77\) 19.9211 0.0294834
\(78\) 0 0
\(79\) 1082.23 1.54126 0.770632 0.637280i \(-0.219941\pi\)
0.770632 + 0.637280i \(0.219941\pi\)
\(80\) 0 0
\(81\) 726.919 0.997145
\(82\) 0 0
\(83\) 484.557 0.640808 0.320404 0.947281i \(-0.396181\pi\)
0.320404 + 0.947281i \(0.396181\pi\)
\(84\) 0 0
\(85\) −355.456 −0.453584
\(86\) 0 0
\(87\) −1.74145 −0.00214601
\(88\) 0 0
\(89\) −392.280 −0.467209 −0.233604 0.972332i \(-0.575052\pi\)
−0.233604 + 0.972332i \(0.575052\pi\)
\(90\) 0 0
\(91\) −84.7151 −0.0975886
\(92\) 0 0
\(93\) 6.76634 0.00754448
\(94\) 0 0
\(95\) −532.993 −0.575620
\(96\) 0 0
\(97\) −1650.20 −1.72734 −0.863672 0.504054i \(-0.831841\pi\)
−0.863672 + 0.504054i \(0.831841\pi\)
\(98\) 0 0
\(99\) 237.489 0.241096
\(100\) 0 0
\(101\) −1209.95 −1.19202 −0.596011 0.802977i \(-0.703248\pi\)
−0.596011 + 0.802977i \(0.703248\pi\)
\(102\) 0 0
\(103\) −1214.33 −1.16167 −0.580834 0.814022i \(-0.697273\pi\)
−0.580834 + 0.814022i \(0.697273\pi\)
\(104\) 0 0
\(105\) 1.81383 0.00168583
\(106\) 0 0
\(107\) 881.150 0.796112 0.398056 0.917361i \(-0.369685\pi\)
0.398056 + 0.917361i \(0.369685\pi\)
\(108\) 0 0
\(109\) −1400.89 −1.23102 −0.615509 0.788130i \(-0.711050\pi\)
−0.615509 + 0.788130i \(0.711050\pi\)
\(110\) 0 0
\(111\) −22.5691 −0.0192988
\(112\) 0 0
\(113\) 2303.58 1.91772 0.958862 0.283873i \(-0.0916196\pi\)
0.958862 + 0.283873i \(0.0916196\pi\)
\(114\) 0 0
\(115\) 115.000 0.0932505
\(116\) 0 0
\(117\) −1009.93 −0.798017
\(118\) 0 0
\(119\) −160.856 −0.123913
\(120\) 0 0
\(121\) −1253.48 −0.941762
\(122\) 0 0
\(123\) 0.296304 0.000217210 0
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 29.7959 0.0208186 0.0104093 0.999946i \(-0.496687\pi\)
0.0104093 + 0.999946i \(0.496687\pi\)
\(128\) 0 0
\(129\) −80.7999 −0.0551476
\(130\) 0 0
\(131\) −944.060 −0.629640 −0.314820 0.949151i \(-0.601944\pi\)
−0.314820 + 0.949151i \(0.601944\pi\)
\(132\) 0 0
\(133\) −241.197 −0.157251
\(134\) 0 0
\(135\) 43.2677 0.0275844
\(136\) 0 0
\(137\) −1545.96 −0.964091 −0.482046 0.876146i \(-0.660106\pi\)
−0.482046 + 0.876146i \(0.660106\pi\)
\(138\) 0 0
\(139\) −464.196 −0.283256 −0.141628 0.989920i \(-0.545234\pi\)
−0.141628 + 0.989920i \(0.545234\pi\)
\(140\) 0 0
\(141\) −35.1659 −0.0210036
\(142\) 0 0
\(143\) −329.635 −0.192766
\(144\) 0 0
\(145\) 54.3093 0.0311044
\(146\) 0 0
\(147\) −54.1714 −0.0303944
\(148\) 0 0
\(149\) −2401.34 −1.32030 −0.660152 0.751132i \(-0.729508\pi\)
−0.660152 + 0.751132i \(0.729508\pi\)
\(150\) 0 0
\(151\) 2669.19 1.43851 0.719256 0.694745i \(-0.244483\pi\)
0.719256 + 0.694745i \(0.244483\pi\)
\(152\) 0 0
\(153\) −1917.64 −1.01328
\(154\) 0 0
\(155\) −211.017 −0.109350
\(156\) 0 0
\(157\) 1946.79 0.989622 0.494811 0.869001i \(-0.335237\pi\)
0.494811 + 0.869001i \(0.335237\pi\)
\(158\) 0 0
\(159\) −9.52965 −0.00475315
\(160\) 0 0
\(161\) 52.0413 0.0254747
\(162\) 0 0
\(163\) 2336.46 1.12273 0.561367 0.827567i \(-0.310276\pi\)
0.561367 + 0.827567i \(0.310276\pi\)
\(164\) 0 0
\(165\) 7.05782 0.00333000
\(166\) 0 0
\(167\) −1787.58 −0.828307 −0.414153 0.910207i \(-0.635922\pi\)
−0.414153 + 0.910207i \(0.635922\pi\)
\(168\) 0 0
\(169\) −795.215 −0.361955
\(170\) 0 0
\(171\) −2875.42 −1.28590
\(172\) 0 0
\(173\) −2033.68 −0.893744 −0.446872 0.894598i \(-0.647462\pi\)
−0.446872 + 0.894598i \(0.647462\pi\)
\(174\) 0 0
\(175\) −56.5666 −0.0244345
\(176\) 0 0
\(177\) −14.5918 −0.00619653
\(178\) 0 0
\(179\) 3860.15 1.61185 0.805926 0.592016i \(-0.201668\pi\)
0.805926 + 0.592016i \(0.201668\pi\)
\(180\) 0 0
\(181\) −2735.90 −1.12353 −0.561763 0.827298i \(-0.689877\pi\)
−0.561763 + 0.827298i \(0.689877\pi\)
\(182\) 0 0
\(183\) −14.9400 −0.00603494
\(184\) 0 0
\(185\) 703.846 0.279718
\(186\) 0 0
\(187\) −625.906 −0.244763
\(188\) 0 0
\(189\) 19.5801 0.00753567
\(190\) 0 0
\(191\) −2818.53 −1.06776 −0.533878 0.845561i \(-0.679266\pi\)
−0.533878 + 0.845561i \(0.679266\pi\)
\(192\) 0 0
\(193\) 1493.07 0.556858 0.278429 0.960457i \(-0.410186\pi\)
0.278429 + 0.960457i \(0.410186\pi\)
\(194\) 0 0
\(195\) −30.0136 −0.0110221
\(196\) 0 0
\(197\) 2748.53 0.994033 0.497017 0.867741i \(-0.334429\pi\)
0.497017 + 0.867741i \(0.334429\pi\)
\(198\) 0 0
\(199\) −3400.87 −1.21146 −0.605732 0.795669i \(-0.707120\pi\)
−0.605732 + 0.795669i \(0.707120\pi\)
\(200\) 0 0
\(201\) −150.750 −0.0529009
\(202\) 0 0
\(203\) 24.5767 0.00849729
\(204\) 0 0
\(205\) −9.24059 −0.00314825
\(206\) 0 0
\(207\) 620.409 0.208316
\(208\) 0 0
\(209\) −938.522 −0.310617
\(210\) 0 0
\(211\) −1348.57 −0.439998 −0.219999 0.975500i \(-0.570605\pi\)
−0.219999 + 0.975500i \(0.570605\pi\)
\(212\) 0 0
\(213\) −28.5846 −0.00919524
\(214\) 0 0
\(215\) 2519.84 0.799311
\(216\) 0 0
\(217\) −95.4920 −0.0298729
\(218\) 0 0
\(219\) −7.57713 −0.00233797
\(220\) 0 0
\(221\) 2661.68 0.810155
\(222\) 0 0
\(223\) −196.177 −0.0589102 −0.0294551 0.999566i \(-0.509377\pi\)
−0.0294551 + 0.999566i \(0.509377\pi\)
\(224\) 0 0
\(225\) −674.357 −0.199810
\(226\) 0 0
\(227\) 5337.12 1.56052 0.780258 0.625457i \(-0.215088\pi\)
0.780258 + 0.625457i \(0.215088\pi\)
\(228\) 0 0
\(229\) −499.327 −0.144089 −0.0720447 0.997401i \(-0.522952\pi\)
−0.0720447 + 0.997401i \(0.522952\pi\)
\(230\) 0 0
\(231\) 3.19390 0.000909709 0
\(232\) 0 0
\(233\) −4591.49 −1.29098 −0.645490 0.763769i \(-0.723347\pi\)
−0.645490 + 0.763769i \(0.723347\pi\)
\(234\) 0 0
\(235\) 1096.69 0.304427
\(236\) 0 0
\(237\) 173.510 0.0475557
\(238\) 0 0
\(239\) −800.167 −0.216563 −0.108281 0.994120i \(-0.534535\pi\)
−0.108281 + 0.994120i \(0.534535\pi\)
\(240\) 0 0
\(241\) −4311.30 −1.15234 −0.576172 0.817328i \(-0.695454\pi\)
−0.576172 + 0.817328i \(0.695454\pi\)
\(242\) 0 0
\(243\) 350.191 0.0924475
\(244\) 0 0
\(245\) 1689.40 0.440538
\(246\) 0 0
\(247\) 3991.09 1.02813
\(248\) 0 0
\(249\) 77.6877 0.0197721
\(250\) 0 0
\(251\) −1791.71 −0.450564 −0.225282 0.974294i \(-0.572330\pi\)
−0.225282 + 0.974294i \(0.572330\pi\)
\(252\) 0 0
\(253\) 202.498 0.0503199
\(254\) 0 0
\(255\) −56.9893 −0.0139953
\(256\) 0 0
\(257\) −6620.73 −1.60697 −0.803483 0.595328i \(-0.797022\pi\)
−0.803483 + 0.595328i \(0.797022\pi\)
\(258\) 0 0
\(259\) 318.513 0.0764149
\(260\) 0 0
\(261\) 292.991 0.0694854
\(262\) 0 0
\(263\) 8208.98 1.92467 0.962333 0.271873i \(-0.0876432\pi\)
0.962333 + 0.271873i \(0.0876432\pi\)
\(264\) 0 0
\(265\) 297.194 0.0688923
\(266\) 0 0
\(267\) −62.8931 −0.0144157
\(268\) 0 0
\(269\) −1976.84 −0.448068 −0.224034 0.974581i \(-0.571923\pi\)
−0.224034 + 0.974581i \(0.571923\pi\)
\(270\) 0 0
\(271\) 4413.16 0.989226 0.494613 0.869113i \(-0.335310\pi\)
0.494613 + 0.869113i \(0.335310\pi\)
\(272\) 0 0
\(273\) −13.5821 −0.00301109
\(274\) 0 0
\(275\) −220.107 −0.0482652
\(276\) 0 0
\(277\) −4558.54 −0.988794 −0.494397 0.869236i \(-0.664611\pi\)
−0.494397 + 0.869236i \(0.664611\pi\)
\(278\) 0 0
\(279\) −1138.40 −0.244281
\(280\) 0 0
\(281\) −3221.73 −0.683959 −0.341980 0.939707i \(-0.611097\pi\)
−0.341980 + 0.939707i \(0.611097\pi\)
\(282\) 0 0
\(283\) −4111.86 −0.863691 −0.431845 0.901948i \(-0.642137\pi\)
−0.431845 + 0.901948i \(0.642137\pi\)
\(284\) 0 0
\(285\) −85.4532 −0.0177607
\(286\) 0 0
\(287\) −4.18167 −0.000860057 0
\(288\) 0 0
\(289\) 140.959 0.0286910
\(290\) 0 0
\(291\) −264.572 −0.0532972
\(292\) 0 0
\(293\) −1558.54 −0.310754 −0.155377 0.987855i \(-0.549659\pi\)
−0.155377 + 0.987855i \(0.549659\pi\)
\(294\) 0 0
\(295\) 455.063 0.0898128
\(296\) 0 0
\(297\) 76.1881 0.0148851
\(298\) 0 0
\(299\) −861.130 −0.166557
\(300\) 0 0
\(301\) 1140.31 0.218360
\(302\) 0 0
\(303\) −193.987 −0.0367798
\(304\) 0 0
\(305\) 465.921 0.0874707
\(306\) 0 0
\(307\) −1944.80 −0.361550 −0.180775 0.983525i \(-0.557861\pi\)
−0.180775 + 0.983525i \(0.557861\pi\)
\(308\) 0 0
\(309\) −194.691 −0.0358432
\(310\) 0 0
\(311\) 1359.73 0.247921 0.123960 0.992287i \(-0.460440\pi\)
0.123960 + 0.992287i \(0.460440\pi\)
\(312\) 0 0
\(313\) −730.171 −0.131858 −0.0659292 0.997824i \(-0.521001\pi\)
−0.0659292 + 0.997824i \(0.521001\pi\)
\(314\) 0 0
\(315\) −305.169 −0.0545852
\(316\) 0 0
\(317\) 2298.93 0.407321 0.203661 0.979042i \(-0.434716\pi\)
0.203661 + 0.979042i \(0.434716\pi\)
\(318\) 0 0
\(319\) 95.6306 0.0167846
\(320\) 0 0
\(321\) 141.272 0.0245640
\(322\) 0 0
\(323\) 7578.22 1.30546
\(324\) 0 0
\(325\) 936.010 0.159755
\(326\) 0 0
\(327\) −224.601 −0.0379831
\(328\) 0 0
\(329\) 496.289 0.0831650
\(330\) 0 0
\(331\) 4043.94 0.671526 0.335763 0.941947i \(-0.391006\pi\)
0.335763 + 0.941947i \(0.391006\pi\)
\(332\) 0 0
\(333\) 3797.15 0.624872
\(334\) 0 0
\(335\) 4701.32 0.766749
\(336\) 0 0
\(337\) −11725.3 −1.89530 −0.947650 0.319311i \(-0.896549\pi\)
−0.947650 + 0.319311i \(0.896549\pi\)
\(338\) 0 0
\(339\) 369.327 0.0591713
\(340\) 0 0
\(341\) −371.569 −0.0590076
\(342\) 0 0
\(343\) 1540.60 0.242521
\(344\) 0 0
\(345\) 18.4376 0.00287724
\(346\) 0 0
\(347\) −1835.72 −0.283997 −0.141998 0.989867i \(-0.545353\pi\)
−0.141998 + 0.989867i \(0.545353\pi\)
\(348\) 0 0
\(349\) 8404.26 1.28902 0.644512 0.764594i \(-0.277060\pi\)
0.644512 + 0.764594i \(0.277060\pi\)
\(350\) 0 0
\(351\) −323.992 −0.0492691
\(352\) 0 0
\(353\) 7903.48 1.19167 0.595835 0.803107i \(-0.296821\pi\)
0.595835 + 0.803107i \(0.296821\pi\)
\(354\) 0 0
\(355\) 891.447 0.133276
\(356\) 0 0
\(357\) −25.7895 −0.00382332
\(358\) 0 0
\(359\) 7864.66 1.15621 0.578107 0.815961i \(-0.303792\pi\)
0.578107 + 0.815961i \(0.303792\pi\)
\(360\) 0 0
\(361\) 4504.25 0.656692
\(362\) 0 0
\(363\) −200.968 −0.0290581
\(364\) 0 0
\(365\) 236.302 0.0338866
\(366\) 0 0
\(367\) −5339.97 −0.759521 −0.379760 0.925085i \(-0.623994\pi\)
−0.379760 + 0.925085i \(0.623994\pi\)
\(368\) 0 0
\(369\) −49.8517 −0.00703299
\(370\) 0 0
\(371\) 134.490 0.0188204
\(372\) 0 0
\(373\) 9071.99 1.25933 0.629665 0.776867i \(-0.283192\pi\)
0.629665 + 0.776867i \(0.283192\pi\)
\(374\) 0 0
\(375\) −20.0409 −0.00275975
\(376\) 0 0
\(377\) −406.672 −0.0555562
\(378\) 0 0
\(379\) 2133.10 0.289103 0.144552 0.989497i \(-0.453826\pi\)
0.144552 + 0.989497i \(0.453826\pi\)
\(380\) 0 0
\(381\) 4.77709 0.000642357 0
\(382\) 0 0
\(383\) 11184.4 1.49216 0.746081 0.665855i \(-0.231933\pi\)
0.746081 + 0.665855i \(0.231933\pi\)
\(384\) 0 0
\(385\) −99.6055 −0.0131854
\(386\) 0 0
\(387\) 13594.2 1.78561
\(388\) 0 0
\(389\) 9802.21 1.27761 0.638807 0.769367i \(-0.279428\pi\)
0.638807 + 0.769367i \(0.279428\pi\)
\(390\) 0 0
\(391\) −1635.10 −0.211485
\(392\) 0 0
\(393\) −151.358 −0.0194275
\(394\) 0 0
\(395\) −5411.13 −0.689274
\(396\) 0 0
\(397\) 9500.17 1.20101 0.600504 0.799622i \(-0.294967\pi\)
0.600504 + 0.799622i \(0.294967\pi\)
\(398\) 0 0
\(399\) −38.6704 −0.00485199
\(400\) 0 0
\(401\) −8889.43 −1.10703 −0.553513 0.832841i \(-0.686713\pi\)
−0.553513 + 0.832841i \(0.686713\pi\)
\(402\) 0 0
\(403\) 1580.11 0.195312
\(404\) 0 0
\(405\) −3634.59 −0.445937
\(406\) 0 0
\(407\) 1239.37 0.150942
\(408\) 0 0
\(409\) −14456.7 −1.74777 −0.873886 0.486131i \(-0.838408\pi\)
−0.873886 + 0.486131i \(0.838408\pi\)
\(410\) 0 0
\(411\) −247.860 −0.0297470
\(412\) 0 0
\(413\) 205.931 0.0245356
\(414\) 0 0
\(415\) −2422.78 −0.286578
\(416\) 0 0
\(417\) −74.4233 −0.00873987
\(418\) 0 0
\(419\) 3558.06 0.414851 0.207426 0.978251i \(-0.433491\pi\)
0.207426 + 0.978251i \(0.433491\pi\)
\(420\) 0 0
\(421\) 10410.1 1.20512 0.602562 0.798072i \(-0.294146\pi\)
0.602562 + 0.798072i \(0.294146\pi\)
\(422\) 0 0
\(423\) 5916.49 0.680070
\(424\) 0 0
\(425\) 1777.28 0.202849
\(426\) 0 0
\(427\) 210.845 0.0238958
\(428\) 0 0
\(429\) −52.8495 −0.00594778
\(430\) 0 0
\(431\) −10212.3 −1.14132 −0.570658 0.821188i \(-0.693312\pi\)
−0.570658 + 0.821188i \(0.693312\pi\)
\(432\) 0 0
\(433\) 13756.0 1.52672 0.763359 0.645975i \(-0.223549\pi\)
0.763359 + 0.645975i \(0.223549\pi\)
\(434\) 0 0
\(435\) 8.70726 0.000959726 0
\(436\) 0 0
\(437\) −2451.77 −0.268384
\(438\) 0 0
\(439\) −3625.86 −0.394198 −0.197099 0.980384i \(-0.563152\pi\)
−0.197099 + 0.980384i \(0.563152\pi\)
\(440\) 0 0
\(441\) 9114.08 0.984136
\(442\) 0 0
\(443\) −2133.43 −0.228809 −0.114405 0.993434i \(-0.536496\pi\)
−0.114405 + 0.993434i \(0.536496\pi\)
\(444\) 0 0
\(445\) 1961.40 0.208942
\(446\) 0 0
\(447\) −385.000 −0.0407379
\(448\) 0 0
\(449\) −1351.97 −0.142101 −0.0710504 0.997473i \(-0.522635\pi\)
−0.0710504 + 0.997473i \(0.522635\pi\)
\(450\) 0 0
\(451\) −16.2713 −0.00169886
\(452\) 0 0
\(453\) 427.944 0.0443853
\(454\) 0 0
\(455\) 423.576 0.0436429
\(456\) 0 0
\(457\) −11704.0 −1.19801 −0.599006 0.800745i \(-0.704437\pi\)
−0.599006 + 0.800745i \(0.704437\pi\)
\(458\) 0 0
\(459\) −615.191 −0.0625592
\(460\) 0 0
\(461\) −15627.8 −1.57887 −0.789434 0.613835i \(-0.789626\pi\)
−0.789434 + 0.613835i \(0.789626\pi\)
\(462\) 0 0
\(463\) −1002.05 −0.100581 −0.0502907 0.998735i \(-0.516015\pi\)
−0.0502907 + 0.998735i \(0.516015\pi\)
\(464\) 0 0
\(465\) −33.8317 −0.00337399
\(466\) 0 0
\(467\) 3247.30 0.321771 0.160886 0.986973i \(-0.448565\pi\)
0.160886 + 0.986973i \(0.448565\pi\)
\(468\) 0 0
\(469\) 2127.50 0.209465
\(470\) 0 0
\(471\) 312.123 0.0305348
\(472\) 0 0
\(473\) 4437.07 0.431325
\(474\) 0 0
\(475\) 2664.96 0.257425
\(476\) 0 0
\(477\) 1603.32 0.153901
\(478\) 0 0
\(479\) 16235.1 1.54865 0.774324 0.632789i \(-0.218090\pi\)
0.774324 + 0.632789i \(0.218090\pi\)
\(480\) 0 0
\(481\) −5270.45 −0.499609
\(482\) 0 0
\(483\) 8.34364 0.000786022 0
\(484\) 0 0
\(485\) 8251.00 0.772492
\(486\) 0 0
\(487\) −4937.48 −0.459422 −0.229711 0.973259i \(-0.573778\pi\)
−0.229711 + 0.973259i \(0.573778\pi\)
\(488\) 0 0
\(489\) 374.598 0.0346419
\(490\) 0 0
\(491\) −4804.96 −0.441640 −0.220820 0.975315i \(-0.570873\pi\)
−0.220820 + 0.975315i \(0.570873\pi\)
\(492\) 0 0
\(493\) −772.182 −0.0705423
\(494\) 0 0
\(495\) −1187.44 −0.107821
\(496\) 0 0
\(497\) 403.409 0.0364092
\(498\) 0 0
\(499\) 1571.95 0.141022 0.0705111 0.997511i \(-0.477537\pi\)
0.0705111 + 0.997511i \(0.477537\pi\)
\(500\) 0 0
\(501\) −286.598 −0.0255574
\(502\) 0 0
\(503\) 10608.7 0.940391 0.470195 0.882562i \(-0.344183\pi\)
0.470195 + 0.882562i \(0.344183\pi\)
\(504\) 0 0
\(505\) 6049.73 0.533088
\(506\) 0 0
\(507\) −127.495 −0.0111681
\(508\) 0 0
\(509\) −7020.51 −0.611353 −0.305677 0.952135i \(-0.598883\pi\)
−0.305677 + 0.952135i \(0.598883\pi\)
\(510\) 0 0
\(511\) 106.934 0.00925734
\(512\) 0 0
\(513\) −922.456 −0.0793907
\(514\) 0 0
\(515\) 6071.66 0.519513
\(516\) 0 0
\(517\) 1931.11 0.164275
\(518\) 0 0
\(519\) −326.054 −0.0275765
\(520\) 0 0
\(521\) −8671.92 −0.729220 −0.364610 0.931160i \(-0.618798\pi\)
−0.364610 + 0.931160i \(0.618798\pi\)
\(522\) 0 0
\(523\) 11590.2 0.969033 0.484516 0.874782i \(-0.338996\pi\)
0.484516 + 0.874782i \(0.338996\pi\)
\(524\) 0 0
\(525\) −9.06917 −0.000753926 0
\(526\) 0 0
\(527\) 3000.28 0.247997
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 2455.00 0.200636
\(532\) 0 0
\(533\) 69.1943 0.00562315
\(534\) 0 0
\(535\) −4405.75 −0.356032
\(536\) 0 0
\(537\) 618.888 0.0497337
\(538\) 0 0
\(539\) 2974.79 0.237724
\(540\) 0 0
\(541\) −1473.20 −0.117076 −0.0585379 0.998285i \(-0.518644\pi\)
−0.0585379 + 0.998285i \(0.518644\pi\)
\(542\) 0 0
\(543\) −438.640 −0.0346664
\(544\) 0 0
\(545\) 7004.46 0.550528
\(546\) 0 0
\(547\) 3796.89 0.296789 0.148394 0.988928i \(-0.452589\pi\)
0.148394 + 0.988928i \(0.452589\pi\)
\(548\) 0 0
\(549\) 2513.58 0.195404
\(550\) 0 0
\(551\) −1157.86 −0.0895216
\(552\) 0 0
\(553\) −2448.71 −0.188300
\(554\) 0 0
\(555\) 112.846 0.00863068
\(556\) 0 0
\(557\) 9329.90 0.709732 0.354866 0.934917i \(-0.384527\pi\)
0.354866 + 0.934917i \(0.384527\pi\)
\(558\) 0 0
\(559\) −18868.8 −1.42767
\(560\) 0 0
\(561\) −100.350 −0.00755217
\(562\) 0 0
\(563\) 2267.79 0.169762 0.0848811 0.996391i \(-0.472949\pi\)
0.0848811 + 0.996391i \(0.472949\pi\)
\(564\) 0 0
\(565\) −11517.9 −0.857632
\(566\) 0 0
\(567\) −1644.77 −0.121824
\(568\) 0 0
\(569\) 16420.4 1.20980 0.604901 0.796301i \(-0.293213\pi\)
0.604901 + 0.796301i \(0.293213\pi\)
\(570\) 0 0
\(571\) −16864.2 −1.23598 −0.617992 0.786185i \(-0.712053\pi\)
−0.617992 + 0.786185i \(0.712053\pi\)
\(572\) 0 0
\(573\) −451.887 −0.0329456
\(574\) 0 0
\(575\) −575.000 −0.0417029
\(576\) 0 0
\(577\) −8766.94 −0.632535 −0.316267 0.948670i \(-0.602430\pi\)
−0.316267 + 0.948670i \(0.602430\pi\)
\(578\) 0 0
\(579\) 239.380 0.0171819
\(580\) 0 0
\(581\) −1096.39 −0.0782890
\(582\) 0 0
\(583\) 523.315 0.0371758
\(584\) 0 0
\(585\) 5049.64 0.356884
\(586\) 0 0
\(587\) −15470.3 −1.08778 −0.543891 0.839156i \(-0.683049\pi\)
−0.543891 + 0.839156i \(0.683049\pi\)
\(588\) 0 0
\(589\) 4498.81 0.314720
\(590\) 0 0
\(591\) 440.664 0.0306709
\(592\) 0 0
\(593\) 2230.18 0.154439 0.0772197 0.997014i \(-0.475396\pi\)
0.0772197 + 0.997014i \(0.475396\pi\)
\(594\) 0 0
\(595\) 804.278 0.0554154
\(596\) 0 0
\(597\) −545.252 −0.0373797
\(598\) 0 0
\(599\) −7297.37 −0.497767 −0.248884 0.968533i \(-0.580064\pi\)
−0.248884 + 0.968533i \(0.580064\pi\)
\(600\) 0 0
\(601\) −8275.74 −0.561688 −0.280844 0.959753i \(-0.590614\pi\)
−0.280844 + 0.959753i \(0.590614\pi\)
\(602\) 0 0
\(603\) 25363.0 1.71287
\(604\) 0 0
\(605\) 6267.42 0.421169
\(606\) 0 0
\(607\) 5278.34 0.352951 0.176475 0.984305i \(-0.443530\pi\)
0.176475 + 0.984305i \(0.443530\pi\)
\(608\) 0 0
\(609\) 3.94032 0.000262184 0
\(610\) 0 0
\(611\) −8212.11 −0.543742
\(612\) 0 0
\(613\) 5420.18 0.357127 0.178564 0.983928i \(-0.442855\pi\)
0.178564 + 0.983928i \(0.442855\pi\)
\(614\) 0 0
\(615\) −1.48152 −9.71391e−5 0
\(616\) 0 0
\(617\) −20142.5 −1.31428 −0.657138 0.753770i \(-0.728233\pi\)
−0.657138 + 0.753770i \(0.728233\pi\)
\(618\) 0 0
\(619\) −9432.84 −0.612500 −0.306250 0.951951i \(-0.599074\pi\)
−0.306250 + 0.951951i \(0.599074\pi\)
\(620\) 0 0
\(621\) 199.032 0.0128613
\(622\) 0 0
\(623\) 887.598 0.0570800
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −150.471 −0.00958408
\(628\) 0 0
\(629\) −10007.4 −0.634377
\(630\) 0 0
\(631\) −28702.6 −1.81083 −0.905414 0.424529i \(-0.860440\pi\)
−0.905414 + 0.424529i \(0.860440\pi\)
\(632\) 0 0
\(633\) −216.213 −0.0135761
\(634\) 0 0
\(635\) −148.979 −0.00931035
\(636\) 0 0
\(637\) −12650.4 −0.786855
\(638\) 0 0
\(639\) 4809.23 0.297731
\(640\) 0 0
\(641\) 25013.7 1.54131 0.770655 0.637252i \(-0.219929\pi\)
0.770655 + 0.637252i \(0.219929\pi\)
\(642\) 0 0
\(643\) 5289.89 0.324437 0.162218 0.986755i \(-0.448135\pi\)
0.162218 + 0.986755i \(0.448135\pi\)
\(644\) 0 0
\(645\) 403.999 0.0246627
\(646\) 0 0
\(647\) 15303.3 0.929883 0.464941 0.885341i \(-0.346075\pi\)
0.464941 + 0.885341i \(0.346075\pi\)
\(648\) 0 0
\(649\) 801.298 0.0484649
\(650\) 0 0
\(651\) −15.3100 −0.000921728 0
\(652\) 0 0
\(653\) 3322.82 0.199130 0.0995651 0.995031i \(-0.468255\pi\)
0.0995651 + 0.995031i \(0.468255\pi\)
\(654\) 0 0
\(655\) 4720.30 0.281584
\(656\) 0 0
\(657\) 1274.82 0.0757006
\(658\) 0 0
\(659\) 5863.46 0.346598 0.173299 0.984869i \(-0.444557\pi\)
0.173299 + 0.984869i \(0.444557\pi\)
\(660\) 0 0
\(661\) −20323.7 −1.19592 −0.597959 0.801527i \(-0.704022\pi\)
−0.597959 + 0.801527i \(0.704022\pi\)
\(662\) 0 0
\(663\) 426.740 0.0249973
\(664\) 0 0
\(665\) 1205.98 0.0703249
\(666\) 0 0
\(667\) 249.823 0.0145025
\(668\) 0 0
\(669\) −31.4525 −0.00181767
\(670\) 0 0
\(671\) 820.419 0.0472011
\(672\) 0 0
\(673\) 5322.74 0.304869 0.152434 0.988314i \(-0.451289\pi\)
0.152434 + 0.988314i \(0.451289\pi\)
\(674\) 0 0
\(675\) −216.339 −0.0123361
\(676\) 0 0
\(677\) −8011.51 −0.454811 −0.227406 0.973800i \(-0.573024\pi\)
−0.227406 + 0.973800i \(0.573024\pi\)
\(678\) 0 0
\(679\) 3733.85 0.211034
\(680\) 0 0
\(681\) 855.686 0.0481497
\(682\) 0 0
\(683\) 2129.90 0.119324 0.0596620 0.998219i \(-0.480998\pi\)
0.0596620 + 0.998219i \(0.480998\pi\)
\(684\) 0 0
\(685\) 7729.81 0.431155
\(686\) 0 0
\(687\) −80.0557 −0.00444588
\(688\) 0 0
\(689\) −2225.41 −0.123050
\(690\) 0 0
\(691\) −1841.52 −0.101382 −0.0506909 0.998714i \(-0.516142\pi\)
−0.0506909 + 0.998714i \(0.516142\pi\)
\(692\) 0 0
\(693\) −537.358 −0.0294553
\(694\) 0 0
\(695\) 2320.98 0.126676
\(696\) 0 0
\(697\) 131.385 0.00713997
\(698\) 0 0
\(699\) −736.140 −0.0398332
\(700\) 0 0
\(701\) 542.452 0.0292270 0.0146135 0.999893i \(-0.495348\pi\)
0.0146135 + 0.999893i \(0.495348\pi\)
\(702\) 0 0
\(703\) −15005.8 −0.805055
\(704\) 0 0
\(705\) 175.829 0.00939308
\(706\) 0 0
\(707\) 2737.70 0.145632
\(708\) 0 0
\(709\) 6345.43 0.336118 0.168059 0.985777i \(-0.446250\pi\)
0.168059 + 0.985777i \(0.446250\pi\)
\(710\) 0 0
\(711\) −29192.3 −1.53980
\(712\) 0 0
\(713\) −970.676 −0.0509847
\(714\) 0 0
\(715\) 1648.18 0.0862074
\(716\) 0 0
\(717\) −128.288 −0.00668204
\(718\) 0 0
\(719\) −13487.5 −0.699581 −0.349790 0.936828i \(-0.613747\pi\)
−0.349790 + 0.936828i \(0.613747\pi\)
\(720\) 0 0
\(721\) 2747.63 0.141924
\(722\) 0 0
\(723\) −691.218 −0.0355556
\(724\) 0 0
\(725\) −271.546 −0.0139103
\(726\) 0 0
\(727\) −16549.3 −0.844262 −0.422131 0.906535i \(-0.638718\pi\)
−0.422131 + 0.906535i \(0.638718\pi\)
\(728\) 0 0
\(729\) −19570.7 −0.994292
\(730\) 0 0
\(731\) −35827.7 −1.81277
\(732\) 0 0
\(733\) 15704.0 0.791325 0.395662 0.918396i \(-0.370515\pi\)
0.395662 + 0.918396i \(0.370515\pi\)
\(734\) 0 0
\(735\) 270.857 0.0135928
\(736\) 0 0
\(737\) 8278.34 0.413754
\(738\) 0 0
\(739\) −11247.7 −0.559882 −0.279941 0.960017i \(-0.590315\pi\)
−0.279941 + 0.960017i \(0.590315\pi\)
\(740\) 0 0
\(741\) 639.881 0.0317228
\(742\) 0 0
\(743\) −6515.65 −0.321718 −0.160859 0.986977i \(-0.551426\pi\)
−0.160859 + 0.986977i \(0.551426\pi\)
\(744\) 0 0
\(745\) 12006.7 0.590458
\(746\) 0 0
\(747\) −13070.6 −0.640198
\(748\) 0 0
\(749\) −1993.75 −0.0972630
\(750\) 0 0
\(751\) 16811.6 0.816864 0.408432 0.912789i \(-0.366076\pi\)
0.408432 + 0.912789i \(0.366076\pi\)
\(752\) 0 0
\(753\) −287.260 −0.0139022
\(754\) 0 0
\(755\) −13345.9 −0.643322
\(756\) 0 0
\(757\) 25841.9 1.24074 0.620369 0.784310i \(-0.286983\pi\)
0.620369 + 0.784310i \(0.286983\pi\)
\(758\) 0 0
\(759\) 32.4660 0.00155262
\(760\) 0 0
\(761\) 25579.6 1.21847 0.609237 0.792988i \(-0.291476\pi\)
0.609237 + 0.792988i \(0.291476\pi\)
\(762\) 0 0
\(763\) 3169.75 0.150397
\(764\) 0 0
\(765\) 9588.18 0.453152
\(766\) 0 0
\(767\) −3407.55 −0.160416
\(768\) 0 0
\(769\) −34832.1 −1.63339 −0.816695 0.577069i \(-0.804196\pi\)
−0.816695 + 0.577069i \(0.804196\pi\)
\(770\) 0 0
\(771\) −1061.48 −0.0495829
\(772\) 0 0
\(773\) 34757.8 1.61727 0.808637 0.588308i \(-0.200206\pi\)
0.808637 + 0.588308i \(0.200206\pi\)
\(774\) 0 0
\(775\) 1055.08 0.0489028
\(776\) 0 0
\(777\) 51.0664 0.00235778
\(778\) 0 0
\(779\) 197.007 0.00906097
\(780\) 0 0
\(781\) 1569.71 0.0719187
\(782\) 0 0
\(783\) 93.9936 0.00428998
\(784\) 0 0
\(785\) −9733.95 −0.442573
\(786\) 0 0
\(787\) −37002.0 −1.67596 −0.837979 0.545702i \(-0.816263\pi\)
−0.837979 + 0.545702i \(0.816263\pi\)
\(788\) 0 0
\(789\) 1316.12 0.0593856
\(790\) 0 0
\(791\) −5212.24 −0.234293
\(792\) 0 0
\(793\) −3488.86 −0.156233
\(794\) 0 0
\(795\) 47.6483 0.00212567
\(796\) 0 0
\(797\) 3833.43 0.170373 0.0851863 0.996365i \(-0.472851\pi\)
0.0851863 + 0.996365i \(0.472851\pi\)
\(798\) 0 0
\(799\) −15593.0 −0.690415
\(800\) 0 0
\(801\) 10581.5 0.466764
\(802\) 0 0
\(803\) 416.093 0.0182859
\(804\) 0 0
\(805\) −260.207 −0.0113926
\(806\) 0 0
\(807\) −316.942 −0.0138251
\(808\) 0 0
\(809\) −27596.4 −1.19930 −0.599652 0.800261i \(-0.704694\pi\)
−0.599652 + 0.800261i \(0.704694\pi\)
\(810\) 0 0
\(811\) −40797.3 −1.76645 −0.883223 0.468953i \(-0.844631\pi\)
−0.883223 + 0.468953i \(0.844631\pi\)
\(812\) 0 0
\(813\) 707.549 0.0305226
\(814\) 0 0
\(815\) −11682.3 −0.502102
\(816\) 0 0
\(817\) −53722.3 −2.30050
\(818\) 0 0
\(819\) 2285.13 0.0974957
\(820\) 0 0
\(821\) 33441.4 1.42158 0.710788 0.703407i \(-0.248339\pi\)
0.710788 + 0.703407i \(0.248339\pi\)
\(822\) 0 0
\(823\) 20576.1 0.871493 0.435747 0.900069i \(-0.356484\pi\)
0.435747 + 0.900069i \(0.356484\pi\)
\(824\) 0 0
\(825\) −35.2891 −0.00148922
\(826\) 0 0
\(827\) −33197.6 −1.39588 −0.697940 0.716156i \(-0.745900\pi\)
−0.697940 + 0.716156i \(0.745900\pi\)
\(828\) 0 0
\(829\) 22359.4 0.936760 0.468380 0.883527i \(-0.344838\pi\)
0.468380 + 0.883527i \(0.344838\pi\)
\(830\) 0 0
\(831\) −730.858 −0.0305092
\(832\) 0 0
\(833\) −24020.3 −0.999105
\(834\) 0 0
\(835\) 8937.91 0.370430
\(836\) 0 0
\(837\) −365.208 −0.0150818
\(838\) 0 0
\(839\) −16868.7 −0.694128 −0.347064 0.937841i \(-0.612821\pi\)
−0.347064 + 0.937841i \(0.612821\pi\)
\(840\) 0 0
\(841\) −24271.0 −0.995163
\(842\) 0 0
\(843\) −516.532 −0.0211035
\(844\) 0 0
\(845\) 3976.08 0.161871
\(846\) 0 0
\(847\) 2836.22 0.115057
\(848\) 0 0
\(849\) −659.243 −0.0266492
\(850\) 0 0
\(851\) 3237.69 0.130419
\(852\) 0 0
\(853\) 5686.61 0.228260 0.114130 0.993466i \(-0.463592\pi\)
0.114130 + 0.993466i \(0.463592\pi\)
\(854\) 0 0
\(855\) 14377.1 0.575072
\(856\) 0 0
\(857\) 14995.0 0.597691 0.298845 0.954302i \(-0.403399\pi\)
0.298845 + 0.954302i \(0.403399\pi\)
\(858\) 0 0
\(859\) −16013.5 −0.636059 −0.318030 0.948081i \(-0.603021\pi\)
−0.318030 + 0.948081i \(0.603021\pi\)
\(860\) 0 0
\(861\) −0.670436 −2.65370e−5 0
\(862\) 0 0
\(863\) −9988.20 −0.393977 −0.196989 0.980406i \(-0.563116\pi\)
−0.196989 + 0.980406i \(0.563116\pi\)
\(864\) 0 0
\(865\) 10168.4 0.399695
\(866\) 0 0
\(867\) 22.5996 0.000885261 0
\(868\) 0 0
\(869\) −9528.20 −0.371947
\(870\) 0 0
\(871\) −35203.9 −1.36951
\(872\) 0 0
\(873\) 44513.0 1.72570
\(874\) 0 0
\(875\) 282.833 0.0109274
\(876\) 0 0
\(877\) −24810.0 −0.955271 −0.477636 0.878558i \(-0.658506\pi\)
−0.477636 + 0.878558i \(0.658506\pi\)
\(878\) 0 0
\(879\) −249.876 −0.00958831
\(880\) 0 0
\(881\) 397.093 0.0151855 0.00759274 0.999971i \(-0.497583\pi\)
0.00759274 + 0.999971i \(0.497583\pi\)
\(882\) 0 0
\(883\) −10747.7 −0.409613 −0.204807 0.978802i \(-0.565657\pi\)
−0.204807 + 0.978802i \(0.565657\pi\)
\(884\) 0 0
\(885\) 72.9589 0.00277117
\(886\) 0 0
\(887\) 51977.0 1.96755 0.983776 0.179403i \(-0.0574168\pi\)
0.983776 + 0.179403i \(0.0574168\pi\)
\(888\) 0 0
\(889\) −67.4181 −0.00254346
\(890\) 0 0
\(891\) −6399.98 −0.240637
\(892\) 0 0
\(893\) −23381.1 −0.876170
\(894\) 0 0
\(895\) −19300.8 −0.720842
\(896\) 0 0
\(897\) −138.063 −0.00513910
\(898\) 0 0
\(899\) −458.406 −0.0170063
\(900\) 0 0
\(901\) −4225.57 −0.156242
\(902\) 0 0
\(903\) 182.823 0.00673751
\(904\) 0 0
\(905\) 13679.5 0.502456
\(906\) 0 0
\(907\) 17101.8 0.626080 0.313040 0.949740i \(-0.398653\pi\)
0.313040 + 0.949740i \(0.398653\pi\)
\(908\) 0 0
\(909\) 32637.4 1.19089
\(910\) 0 0
\(911\) −39489.1 −1.43615 −0.718075 0.695966i \(-0.754976\pi\)
−0.718075 + 0.695966i \(0.754976\pi\)
\(912\) 0 0
\(913\) −4266.17 −0.154644
\(914\) 0 0
\(915\) 74.6999 0.00269891
\(916\) 0 0
\(917\) 2136.09 0.0769247
\(918\) 0 0
\(919\) 25801.8 0.926140 0.463070 0.886322i \(-0.346748\pi\)
0.463070 + 0.886322i \(0.346748\pi\)
\(920\) 0 0
\(921\) −311.805 −0.0111556
\(922\) 0 0
\(923\) −6675.23 −0.238047
\(924\) 0 0
\(925\) −3519.23 −0.125094
\(926\) 0 0
\(927\) 32755.8 1.16056
\(928\) 0 0
\(929\) −42120.6 −1.48755 −0.743775 0.668430i \(-0.766967\pi\)
−0.743775 + 0.668430i \(0.766967\pi\)
\(930\) 0 0
\(931\) −36017.6 −1.26791
\(932\) 0 0
\(933\) 218.002 0.00764960
\(934\) 0 0
\(935\) 3129.53 0.109462
\(936\) 0 0
\(937\) 34261.8 1.19454 0.597270 0.802040i \(-0.296252\pi\)
0.597270 + 0.802040i \(0.296252\pi\)
\(938\) 0 0
\(939\) −117.066 −0.00406849
\(940\) 0 0
\(941\) −26424.6 −0.915426 −0.457713 0.889100i \(-0.651331\pi\)
−0.457713 + 0.889100i \(0.651331\pi\)
\(942\) 0 0
\(943\) −42.5067 −0.00146788
\(944\) 0 0
\(945\) −97.9004 −0.00337005
\(946\) 0 0
\(947\) −4770.21 −0.163686 −0.0818432 0.996645i \(-0.526081\pi\)
−0.0818432 + 0.996645i \(0.526081\pi\)
\(948\) 0 0
\(949\) −1769.45 −0.0605256
\(950\) 0 0
\(951\) 368.581 0.0125679
\(952\) 0 0
\(953\) 5571.94 0.189394 0.0946972 0.995506i \(-0.469812\pi\)
0.0946972 + 0.995506i \(0.469812\pi\)
\(954\) 0 0
\(955\) 14092.6 0.477515
\(956\) 0 0
\(957\) 15.3322 0.000517889 0
\(958\) 0 0
\(959\) 3498.00 0.117785
\(960\) 0 0
\(961\) −28009.9 −0.940213
\(962\) 0 0
\(963\) −23768.4 −0.795354
\(964\) 0 0
\(965\) −7465.36 −0.249035
\(966\) 0 0
\(967\) −27920.0 −0.928488 −0.464244 0.885707i \(-0.653674\pi\)
−0.464244 + 0.885707i \(0.653674\pi\)
\(968\) 0 0
\(969\) 1214.99 0.0402799
\(970\) 0 0
\(971\) 55720.9 1.84157 0.920787 0.390065i \(-0.127547\pi\)
0.920787 + 0.390065i \(0.127547\pi\)
\(972\) 0 0
\(973\) 1050.32 0.0346061
\(974\) 0 0
\(975\) 150.068 0.00492925
\(976\) 0 0
\(977\) −17645.1 −0.577806 −0.288903 0.957358i \(-0.593290\pi\)
−0.288903 + 0.957358i \(0.593290\pi\)
\(978\) 0 0
\(979\) 3453.74 0.112750
\(980\) 0 0
\(981\) 37788.0 1.22985
\(982\) 0 0
\(983\) 35318.6 1.14597 0.572985 0.819566i \(-0.305785\pi\)
0.572985 + 0.819566i \(0.305785\pi\)
\(984\) 0 0
\(985\) −13742.6 −0.444545
\(986\) 0 0
\(987\) 79.5686 0.00256606
\(988\) 0 0
\(989\) 11591.3 0.372681
\(990\) 0 0
\(991\) −50463.6 −1.61759 −0.808793 0.588093i \(-0.799879\pi\)
−0.808793 + 0.588093i \(0.799879\pi\)
\(992\) 0 0
\(993\) 648.354 0.0207199
\(994\) 0 0
\(995\) 17004.4 0.541783
\(996\) 0 0
\(997\) −12815.8 −0.407103 −0.203552 0.979064i \(-0.565248\pi\)
−0.203552 + 0.979064i \(0.565248\pi\)
\(998\) 0 0
\(999\) 1218.15 0.0385792
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.4.a.b.1.3 6
4.3 odd 2 1840.4.a.s.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.4.a.b.1.3 6 1.1 even 1 trivial
1840.4.a.s.1.4 6 4.3 odd 2