Properties

Label 920.4.a.b.1.2
Level $920$
Weight $4$
Character 920.1
Self dual yes
Analytic conductor $54.282$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [920,4,Mod(1,920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("920.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(920, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 920.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2817572053\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 81x^{4} + 161x^{3} + 1520x^{2} - 3915x + 588 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-6.38774\) of defining polynomial
Character \(\chi\) \(=\) 920.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.38774 q^{3} -5.00000 q^{5} -5.78952 q^{7} +13.8032 q^{9} -3.04007 q^{11} -41.8142 q^{13} +31.9387 q^{15} +89.8459 q^{17} +102.477 q^{19} +36.9819 q^{21} -23.0000 q^{23} +25.0000 q^{25} +84.2976 q^{27} -77.9931 q^{29} -17.8575 q^{31} +19.4192 q^{33} +28.9476 q^{35} +236.953 q^{37} +267.098 q^{39} -318.152 q^{41} -31.9573 q^{43} -69.0161 q^{45} +239.636 q^{47} -309.482 q^{49} -573.913 q^{51} +498.695 q^{53} +15.2004 q^{55} -654.596 q^{57} +276.837 q^{59} -86.9389 q^{61} -79.9140 q^{63} +209.071 q^{65} +1019.33 q^{67} +146.918 q^{69} +1020.60 q^{71} -104.709 q^{73} -159.694 q^{75} +17.6006 q^{77} -1052.52 q^{79} -911.158 q^{81} -1006.59 q^{83} -449.230 q^{85} +498.200 q^{87} -1098.26 q^{89} +242.084 q^{91} +114.069 q^{93} -512.384 q^{95} -489.424 q^{97} -41.9628 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 30 q^{5} + 28 q^{7} + 4 q^{9} - 3 q^{11} - 28 q^{13} - 10 q^{15} + 24 q^{17} - 3 q^{19} + 60 q^{21} - 138 q^{23} + 150 q^{25} - 97 q^{27} + 76 q^{29} - 381 q^{31} - 3 q^{33} - 140 q^{35}+ \cdots - 525 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −6.38774 −1.22932 −0.614661 0.788792i \(-0.710707\pi\)
−0.614661 + 0.788792i \(0.710707\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −5.78952 −0.312604 −0.156302 0.987709i \(-0.549957\pi\)
−0.156302 + 0.987709i \(0.549957\pi\)
\(8\) 0 0
\(9\) 13.8032 0.511231
\(10\) 0 0
\(11\) −3.04007 −0.0833288 −0.0416644 0.999132i \(-0.513266\pi\)
−0.0416644 + 0.999132i \(0.513266\pi\)
\(12\) 0 0
\(13\) −41.8142 −0.892090 −0.446045 0.895011i \(-0.647168\pi\)
−0.446045 + 0.895011i \(0.647168\pi\)
\(14\) 0 0
\(15\) 31.9387 0.549769
\(16\) 0 0
\(17\) 89.8459 1.28181 0.640907 0.767618i \(-0.278558\pi\)
0.640907 + 0.767618i \(0.278558\pi\)
\(18\) 0 0
\(19\) 102.477 1.23736 0.618679 0.785644i \(-0.287668\pi\)
0.618679 + 0.785644i \(0.287668\pi\)
\(20\) 0 0
\(21\) 36.9819 0.384291
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 84.2976 0.600855
\(28\) 0 0
\(29\) −77.9931 −0.499412 −0.249706 0.968322i \(-0.580334\pi\)
−0.249706 + 0.968322i \(0.580334\pi\)
\(30\) 0 0
\(31\) −17.8575 −0.103461 −0.0517307 0.998661i \(-0.516474\pi\)
−0.0517307 + 0.998661i \(0.516474\pi\)
\(32\) 0 0
\(33\) 19.4192 0.102438
\(34\) 0 0
\(35\) 28.9476 0.139801
\(36\) 0 0
\(37\) 236.953 1.05283 0.526417 0.850226i \(-0.323535\pi\)
0.526417 + 0.850226i \(0.323535\pi\)
\(38\) 0 0
\(39\) 267.098 1.09667
\(40\) 0 0
\(41\) −318.152 −1.21188 −0.605939 0.795511i \(-0.707202\pi\)
−0.605939 + 0.795511i \(0.707202\pi\)
\(42\) 0 0
\(43\) −31.9573 −0.113336 −0.0566679 0.998393i \(-0.518048\pi\)
−0.0566679 + 0.998393i \(0.518048\pi\)
\(44\) 0 0
\(45\) −69.0161 −0.228629
\(46\) 0 0
\(47\) 239.636 0.743713 0.371856 0.928290i \(-0.378721\pi\)
0.371856 + 0.928290i \(0.378721\pi\)
\(48\) 0 0
\(49\) −309.482 −0.902278
\(50\) 0 0
\(51\) −573.913 −1.57576
\(52\) 0 0
\(53\) 498.695 1.29247 0.646236 0.763137i \(-0.276342\pi\)
0.646236 + 0.763137i \(0.276342\pi\)
\(54\) 0 0
\(55\) 15.2004 0.0372658
\(56\) 0 0
\(57\) −654.596 −1.52111
\(58\) 0 0
\(59\) 276.837 0.610867 0.305434 0.952213i \(-0.401199\pi\)
0.305434 + 0.952213i \(0.401199\pi\)
\(60\) 0 0
\(61\) −86.9389 −0.182482 −0.0912409 0.995829i \(-0.529083\pi\)
−0.0912409 + 0.995829i \(0.529083\pi\)
\(62\) 0 0
\(63\) −79.9140 −0.159813
\(64\) 0 0
\(65\) 209.071 0.398955
\(66\) 0 0
\(67\) 1019.33 1.85866 0.929332 0.369246i \(-0.120384\pi\)
0.929332 + 0.369246i \(0.120384\pi\)
\(68\) 0 0
\(69\) 146.918 0.256331
\(70\) 0 0
\(71\) 1020.60 1.70596 0.852978 0.521947i \(-0.174794\pi\)
0.852978 + 0.521947i \(0.174794\pi\)
\(72\) 0 0
\(73\) −104.709 −0.167880 −0.0839398 0.996471i \(-0.526750\pi\)
−0.0839398 + 0.996471i \(0.526750\pi\)
\(74\) 0 0
\(75\) −159.694 −0.245864
\(76\) 0 0
\(77\) 17.6006 0.0260490
\(78\) 0 0
\(79\) −1052.52 −1.49896 −0.749482 0.662025i \(-0.769697\pi\)
−0.749482 + 0.662025i \(0.769697\pi\)
\(80\) 0 0
\(81\) −911.158 −1.24987
\(82\) 0 0
\(83\) −1006.59 −1.33118 −0.665589 0.746318i \(-0.731820\pi\)
−0.665589 + 0.746318i \(0.731820\pi\)
\(84\) 0 0
\(85\) −449.230 −0.573245
\(86\) 0 0
\(87\) 498.200 0.613938
\(88\) 0 0
\(89\) −1098.26 −1.30804 −0.654022 0.756476i \(-0.726919\pi\)
−0.654022 + 0.756476i \(0.726919\pi\)
\(90\) 0 0
\(91\) 242.084 0.278871
\(92\) 0 0
\(93\) 114.069 0.127187
\(94\) 0 0
\(95\) −512.384 −0.553364
\(96\) 0 0
\(97\) −489.424 −0.512304 −0.256152 0.966637i \(-0.582455\pi\)
−0.256152 + 0.966637i \(0.582455\pi\)
\(98\) 0 0
\(99\) −41.9628 −0.0426002
\(100\) 0 0
\(101\) −434.531 −0.428094 −0.214047 0.976823i \(-0.568665\pi\)
−0.214047 + 0.976823i \(0.568665\pi\)
\(102\) 0 0
\(103\) 409.330 0.391577 0.195789 0.980646i \(-0.437273\pi\)
0.195789 + 0.980646i \(0.437273\pi\)
\(104\) 0 0
\(105\) −184.910 −0.171860
\(106\) 0 0
\(107\) −1944.48 −1.75683 −0.878413 0.477902i \(-0.841397\pi\)
−0.878413 + 0.477902i \(0.841397\pi\)
\(108\) 0 0
\(109\) 322.594 0.283476 0.141738 0.989904i \(-0.454731\pi\)
0.141738 + 0.989904i \(0.454731\pi\)
\(110\) 0 0
\(111\) −1513.60 −1.29427
\(112\) 0 0
\(113\) −2353.00 −1.95886 −0.979432 0.201777i \(-0.935328\pi\)
−0.979432 + 0.201777i \(0.935328\pi\)
\(114\) 0 0
\(115\) 115.000 0.0932505
\(116\) 0 0
\(117\) −577.171 −0.456064
\(118\) 0 0
\(119\) −520.164 −0.400701
\(120\) 0 0
\(121\) −1321.76 −0.993056
\(122\) 0 0
\(123\) 2032.27 1.48979
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −133.612 −0.0933557 −0.0466779 0.998910i \(-0.514863\pi\)
−0.0466779 + 0.998910i \(0.514863\pi\)
\(128\) 0 0
\(129\) 204.135 0.139326
\(130\) 0 0
\(131\) −775.474 −0.517202 −0.258601 0.965984i \(-0.583261\pi\)
−0.258601 + 0.965984i \(0.583261\pi\)
\(132\) 0 0
\(133\) −593.292 −0.386804
\(134\) 0 0
\(135\) −421.488 −0.268710
\(136\) 0 0
\(137\) 987.824 0.616026 0.308013 0.951382i \(-0.400336\pi\)
0.308013 + 0.951382i \(0.400336\pi\)
\(138\) 0 0
\(139\) 2051.26 1.25170 0.625848 0.779945i \(-0.284753\pi\)
0.625848 + 0.779945i \(0.284753\pi\)
\(140\) 0 0
\(141\) −1530.73 −0.914262
\(142\) 0 0
\(143\) 127.118 0.0743368
\(144\) 0 0
\(145\) 389.966 0.223344
\(146\) 0 0
\(147\) 1976.89 1.10919
\(148\) 0 0
\(149\) −2554.07 −1.40428 −0.702141 0.712038i \(-0.747772\pi\)
−0.702141 + 0.712038i \(0.747772\pi\)
\(150\) 0 0
\(151\) −1312.77 −0.707495 −0.353748 0.935341i \(-0.615093\pi\)
−0.353748 + 0.935341i \(0.615093\pi\)
\(152\) 0 0
\(153\) 1240.16 0.655303
\(154\) 0 0
\(155\) 89.2875 0.0462693
\(156\) 0 0
\(157\) −3430.46 −1.74382 −0.871912 0.489662i \(-0.837120\pi\)
−0.871912 + 0.489662i \(0.837120\pi\)
\(158\) 0 0
\(159\) −3185.54 −1.58886
\(160\) 0 0
\(161\) 133.159 0.0651825
\(162\) 0 0
\(163\) 190.995 0.0917785 0.0458892 0.998947i \(-0.485388\pi\)
0.0458892 + 0.998947i \(0.485388\pi\)
\(164\) 0 0
\(165\) −97.0960 −0.0458116
\(166\) 0 0
\(167\) 621.559 0.288010 0.144005 0.989577i \(-0.454002\pi\)
0.144005 + 0.989577i \(0.454002\pi\)
\(168\) 0 0
\(169\) −448.574 −0.204176
\(170\) 0 0
\(171\) 1414.51 0.632576
\(172\) 0 0
\(173\) 3722.24 1.63582 0.817910 0.575346i \(-0.195133\pi\)
0.817910 + 0.575346i \(0.195133\pi\)
\(174\) 0 0
\(175\) −144.738 −0.0625209
\(176\) 0 0
\(177\) −1768.37 −0.750952
\(178\) 0 0
\(179\) 170.146 0.0710464 0.0355232 0.999369i \(-0.488690\pi\)
0.0355232 + 0.999369i \(0.488690\pi\)
\(180\) 0 0
\(181\) −80.7800 −0.0331731 −0.0165865 0.999862i \(-0.505280\pi\)
−0.0165865 + 0.999862i \(0.505280\pi\)
\(182\) 0 0
\(183\) 555.343 0.224329
\(184\) 0 0
\(185\) −1184.77 −0.470842
\(186\) 0 0
\(187\) −273.138 −0.106812
\(188\) 0 0
\(189\) −488.042 −0.187830
\(190\) 0 0
\(191\) −1105.26 −0.418712 −0.209356 0.977839i \(-0.567137\pi\)
−0.209356 + 0.977839i \(0.567137\pi\)
\(192\) 0 0
\(193\) −5280.24 −1.96933 −0.984663 0.174464i \(-0.944181\pi\)
−0.984663 + 0.174464i \(0.944181\pi\)
\(194\) 0 0
\(195\) −1335.49 −0.490444
\(196\) 0 0
\(197\) 1592.44 0.575922 0.287961 0.957642i \(-0.407023\pi\)
0.287961 + 0.957642i \(0.407023\pi\)
\(198\) 0 0
\(199\) 3585.69 1.27730 0.638651 0.769497i \(-0.279493\pi\)
0.638651 + 0.769497i \(0.279493\pi\)
\(200\) 0 0
\(201\) −6511.19 −2.28489
\(202\) 0 0
\(203\) 451.542 0.156119
\(204\) 0 0
\(205\) 1590.76 0.541968
\(206\) 0 0
\(207\) −317.474 −0.106599
\(208\) 0 0
\(209\) −311.537 −0.103108
\(210\) 0 0
\(211\) 140.259 0.0457623 0.0228812 0.999738i \(-0.492716\pi\)
0.0228812 + 0.999738i \(0.492716\pi\)
\(212\) 0 0
\(213\) −6519.33 −2.09717
\(214\) 0 0
\(215\) 159.786 0.0506853
\(216\) 0 0
\(217\) 103.386 0.0323425
\(218\) 0 0
\(219\) 668.851 0.206378
\(220\) 0 0
\(221\) −3756.83 −1.14349
\(222\) 0 0
\(223\) −457.275 −0.137316 −0.0686579 0.997640i \(-0.521872\pi\)
−0.0686579 + 0.997640i \(0.521872\pi\)
\(224\) 0 0
\(225\) 345.081 0.102246
\(226\) 0 0
\(227\) −207.632 −0.0607093 −0.0303546 0.999539i \(-0.509664\pi\)
−0.0303546 + 0.999539i \(0.509664\pi\)
\(228\) 0 0
\(229\) −2372.26 −0.684555 −0.342278 0.939599i \(-0.611198\pi\)
−0.342278 + 0.939599i \(0.611198\pi\)
\(230\) 0 0
\(231\) −112.428 −0.0320225
\(232\) 0 0
\(233\) 6027.61 1.69477 0.847385 0.530978i \(-0.178175\pi\)
0.847385 + 0.530978i \(0.178175\pi\)
\(234\) 0 0
\(235\) −1198.18 −0.332599
\(236\) 0 0
\(237\) 6723.25 1.84271
\(238\) 0 0
\(239\) 4764.03 1.28937 0.644686 0.764448i \(-0.276988\pi\)
0.644686 + 0.764448i \(0.276988\pi\)
\(240\) 0 0
\(241\) −195.211 −0.0521771 −0.0260885 0.999660i \(-0.508305\pi\)
−0.0260885 + 0.999660i \(0.508305\pi\)
\(242\) 0 0
\(243\) 3544.21 0.935642
\(244\) 0 0
\(245\) 1547.41 0.403511
\(246\) 0 0
\(247\) −4284.99 −1.10384
\(248\) 0 0
\(249\) 6429.85 1.63645
\(250\) 0 0
\(251\) −5890.81 −1.48137 −0.740686 0.671851i \(-0.765499\pi\)
−0.740686 + 0.671851i \(0.765499\pi\)
\(252\) 0 0
\(253\) 69.9217 0.0173753
\(254\) 0 0
\(255\) 2869.56 0.704702
\(256\) 0 0
\(257\) 4390.17 1.06557 0.532784 0.846251i \(-0.321146\pi\)
0.532784 + 0.846251i \(0.321146\pi\)
\(258\) 0 0
\(259\) −1371.84 −0.329121
\(260\) 0 0
\(261\) −1076.56 −0.255315
\(262\) 0 0
\(263\) 1403.84 0.329142 0.164571 0.986365i \(-0.447376\pi\)
0.164571 + 0.986365i \(0.447376\pi\)
\(264\) 0 0
\(265\) −2493.48 −0.578011
\(266\) 0 0
\(267\) 7015.43 1.60801
\(268\) 0 0
\(269\) 2725.26 0.617704 0.308852 0.951110i \(-0.400055\pi\)
0.308852 + 0.951110i \(0.400055\pi\)
\(270\) 0 0
\(271\) 230.366 0.0516375 0.0258188 0.999667i \(-0.491781\pi\)
0.0258188 + 0.999667i \(0.491781\pi\)
\(272\) 0 0
\(273\) −1546.37 −0.342822
\(274\) 0 0
\(275\) −76.0019 −0.0166658
\(276\) 0 0
\(277\) 5516.86 1.19666 0.598332 0.801248i \(-0.295830\pi\)
0.598332 + 0.801248i \(0.295830\pi\)
\(278\) 0 0
\(279\) −246.491 −0.0528926
\(280\) 0 0
\(281\) −5384.04 −1.14301 −0.571504 0.820600i \(-0.693640\pi\)
−0.571504 + 0.820600i \(0.693640\pi\)
\(282\) 0 0
\(283\) 2449.05 0.514420 0.257210 0.966355i \(-0.417197\pi\)
0.257210 + 0.966355i \(0.417197\pi\)
\(284\) 0 0
\(285\) 3272.98 0.680262
\(286\) 0 0
\(287\) 1841.94 0.378838
\(288\) 0 0
\(289\) 3159.29 0.643047
\(290\) 0 0
\(291\) 3126.31 0.629786
\(292\) 0 0
\(293\) 5257.98 1.04838 0.524189 0.851602i \(-0.324369\pi\)
0.524189 + 0.851602i \(0.324369\pi\)
\(294\) 0 0
\(295\) −1384.19 −0.273188
\(296\) 0 0
\(297\) −256.271 −0.0500685
\(298\) 0 0
\(299\) 961.726 0.186014
\(300\) 0 0
\(301\) 185.017 0.0354293
\(302\) 0 0
\(303\) 2775.67 0.526265
\(304\) 0 0
\(305\) 434.695 0.0816083
\(306\) 0 0
\(307\) −5730.30 −1.06530 −0.532648 0.846337i \(-0.678803\pi\)
−0.532648 + 0.846337i \(0.678803\pi\)
\(308\) 0 0
\(309\) −2614.69 −0.481374
\(310\) 0 0
\(311\) −6887.88 −1.25587 −0.627936 0.778265i \(-0.716100\pi\)
−0.627936 + 0.778265i \(0.716100\pi\)
\(312\) 0 0
\(313\) −4574.19 −0.826033 −0.413017 0.910723i \(-0.635525\pi\)
−0.413017 + 0.910723i \(0.635525\pi\)
\(314\) 0 0
\(315\) 399.570 0.0714705
\(316\) 0 0
\(317\) −6481.61 −1.14840 −0.574201 0.818714i \(-0.694687\pi\)
−0.574201 + 0.818714i \(0.694687\pi\)
\(318\) 0 0
\(319\) 237.105 0.0416154
\(320\) 0 0
\(321\) 12420.9 2.15970
\(322\) 0 0
\(323\) 9207.13 1.58606
\(324\) 0 0
\(325\) −1045.35 −0.178418
\(326\) 0 0
\(327\) −2060.65 −0.348483
\(328\) 0 0
\(329\) −1387.38 −0.232488
\(330\) 0 0
\(331\) −5626.40 −0.934305 −0.467153 0.884177i \(-0.654720\pi\)
−0.467153 + 0.884177i \(0.654720\pi\)
\(332\) 0 0
\(333\) 3270.72 0.538241
\(334\) 0 0
\(335\) −5096.63 −0.831220
\(336\) 0 0
\(337\) 1655.51 0.267601 0.133800 0.991008i \(-0.457282\pi\)
0.133800 + 0.991008i \(0.457282\pi\)
\(338\) 0 0
\(339\) 15030.3 2.40807
\(340\) 0 0
\(341\) 54.2881 0.00862131
\(342\) 0 0
\(343\) 3777.55 0.594661
\(344\) 0 0
\(345\) −734.590 −0.114635
\(346\) 0 0
\(347\) 3969.00 0.614026 0.307013 0.951705i \(-0.400670\pi\)
0.307013 + 0.951705i \(0.400670\pi\)
\(348\) 0 0
\(349\) −2786.18 −0.427337 −0.213669 0.976906i \(-0.568541\pi\)
−0.213669 + 0.976906i \(0.568541\pi\)
\(350\) 0 0
\(351\) −3524.83 −0.536016
\(352\) 0 0
\(353\) −635.463 −0.0958138 −0.0479069 0.998852i \(-0.515255\pi\)
−0.0479069 + 0.998852i \(0.515255\pi\)
\(354\) 0 0
\(355\) −5103.00 −0.762927
\(356\) 0 0
\(357\) 3322.68 0.492590
\(358\) 0 0
\(359\) 10070.3 1.48047 0.740237 0.672346i \(-0.234713\pi\)
0.740237 + 0.672346i \(0.234713\pi\)
\(360\) 0 0
\(361\) 3642.51 0.531056
\(362\) 0 0
\(363\) 8443.05 1.22079
\(364\) 0 0
\(365\) 523.543 0.0750780
\(366\) 0 0
\(367\) −10473.3 −1.48964 −0.744822 0.667263i \(-0.767466\pi\)
−0.744822 + 0.667263i \(0.767466\pi\)
\(368\) 0 0
\(369\) −4391.52 −0.619549
\(370\) 0 0
\(371\) −2887.20 −0.404033
\(372\) 0 0
\(373\) 5752.25 0.798499 0.399250 0.916842i \(-0.369271\pi\)
0.399250 + 0.916842i \(0.369271\pi\)
\(374\) 0 0
\(375\) 798.468 0.109954
\(376\) 0 0
\(377\) 3261.22 0.445521
\(378\) 0 0
\(379\) −105.211 −0.0142595 −0.00712974 0.999975i \(-0.502269\pi\)
−0.00712974 + 0.999975i \(0.502269\pi\)
\(380\) 0 0
\(381\) 853.481 0.114764
\(382\) 0 0
\(383\) −7728.47 −1.03109 −0.515544 0.856863i \(-0.672410\pi\)
−0.515544 + 0.856863i \(0.672410\pi\)
\(384\) 0 0
\(385\) −88.0028 −0.0116494
\(386\) 0 0
\(387\) −441.113 −0.0579407
\(388\) 0 0
\(389\) −10791.3 −1.40653 −0.703266 0.710927i \(-0.748276\pi\)
−0.703266 + 0.710927i \(0.748276\pi\)
\(390\) 0 0
\(391\) −2066.46 −0.267277
\(392\) 0 0
\(393\) 4953.52 0.635807
\(394\) 0 0
\(395\) 5262.62 0.670357
\(396\) 0 0
\(397\) 12131.5 1.53366 0.766831 0.641849i \(-0.221832\pi\)
0.766831 + 0.641849i \(0.221832\pi\)
\(398\) 0 0
\(399\) 3789.79 0.475506
\(400\) 0 0
\(401\) −11439.2 −1.42455 −0.712275 0.701901i \(-0.752335\pi\)
−0.712275 + 0.701901i \(0.752335\pi\)
\(402\) 0 0
\(403\) 746.697 0.0922968
\(404\) 0 0
\(405\) 4555.79 0.558961
\(406\) 0 0
\(407\) −720.356 −0.0877315
\(408\) 0 0
\(409\) −6923.37 −0.837013 −0.418507 0.908214i \(-0.637446\pi\)
−0.418507 + 0.908214i \(0.637446\pi\)
\(410\) 0 0
\(411\) −6309.96 −0.757293
\(412\) 0 0
\(413\) −1602.75 −0.190960
\(414\) 0 0
\(415\) 5032.96 0.595321
\(416\) 0 0
\(417\) −13102.9 −1.53874
\(418\) 0 0
\(419\) 11554.9 1.34724 0.673622 0.739076i \(-0.264738\pi\)
0.673622 + 0.739076i \(0.264738\pi\)
\(420\) 0 0
\(421\) −3922.75 −0.454117 −0.227058 0.973881i \(-0.572911\pi\)
−0.227058 + 0.973881i \(0.572911\pi\)
\(422\) 0 0
\(423\) 3307.75 0.380209
\(424\) 0 0
\(425\) 2246.15 0.256363
\(426\) 0 0
\(427\) 503.334 0.0570446
\(428\) 0 0
\(429\) −811.998 −0.0913838
\(430\) 0 0
\(431\) 7190.68 0.803626 0.401813 0.915722i \(-0.368380\pi\)
0.401813 + 0.915722i \(0.368380\pi\)
\(432\) 0 0
\(433\) 2292.30 0.254413 0.127206 0.991876i \(-0.459399\pi\)
0.127206 + 0.991876i \(0.459399\pi\)
\(434\) 0 0
\(435\) −2491.00 −0.274562
\(436\) 0 0
\(437\) −2356.97 −0.258007
\(438\) 0 0
\(439\) −11453.9 −1.24525 −0.622627 0.782519i \(-0.713935\pi\)
−0.622627 + 0.782519i \(0.713935\pi\)
\(440\) 0 0
\(441\) −4271.84 −0.461272
\(442\) 0 0
\(443\) 15928.7 1.70835 0.854173 0.519990i \(-0.174064\pi\)
0.854173 + 0.519990i \(0.174064\pi\)
\(444\) 0 0
\(445\) 5491.32 0.584975
\(446\) 0 0
\(447\) 16314.8 1.72631
\(448\) 0 0
\(449\) −13852.4 −1.45598 −0.727988 0.685590i \(-0.759544\pi\)
−0.727988 + 0.685590i \(0.759544\pi\)
\(450\) 0 0
\(451\) 967.205 0.100984
\(452\) 0 0
\(453\) 8385.64 0.869739
\(454\) 0 0
\(455\) −1210.42 −0.124715
\(456\) 0 0
\(457\) 1993.34 0.204036 0.102018 0.994783i \(-0.467470\pi\)
0.102018 + 0.994783i \(0.467470\pi\)
\(458\) 0 0
\(459\) 7573.79 0.770184
\(460\) 0 0
\(461\) −2772.98 −0.280153 −0.140076 0.990141i \(-0.544735\pi\)
−0.140076 + 0.990141i \(0.544735\pi\)
\(462\) 0 0
\(463\) −13282.8 −1.33327 −0.666635 0.745385i \(-0.732266\pi\)
−0.666635 + 0.745385i \(0.732266\pi\)
\(464\) 0 0
\(465\) −570.345 −0.0568799
\(466\) 0 0
\(467\) 7196.43 0.713086 0.356543 0.934279i \(-0.383955\pi\)
0.356543 + 0.934279i \(0.383955\pi\)
\(468\) 0 0
\(469\) −5901.40 −0.581027
\(470\) 0 0
\(471\) 21912.9 2.14372
\(472\) 0 0
\(473\) 97.1524 0.00944413
\(474\) 0 0
\(475\) 2561.92 0.247472
\(476\) 0 0
\(477\) 6883.60 0.660752
\(478\) 0 0
\(479\) −6023.00 −0.574525 −0.287263 0.957852i \(-0.592745\pi\)
−0.287263 + 0.957852i \(0.592745\pi\)
\(480\) 0 0
\(481\) −9908.01 −0.939223
\(482\) 0 0
\(483\) −850.584 −0.0801303
\(484\) 0 0
\(485\) 2447.12 0.229109
\(486\) 0 0
\(487\) −16386.8 −1.52476 −0.762380 0.647130i \(-0.775969\pi\)
−0.762380 + 0.647130i \(0.775969\pi\)
\(488\) 0 0
\(489\) −1220.03 −0.112825
\(490\) 0 0
\(491\) −1991.00 −0.182999 −0.0914993 0.995805i \(-0.529166\pi\)
−0.0914993 + 0.995805i \(0.529166\pi\)
\(492\) 0 0
\(493\) −7007.37 −0.640154
\(494\) 0 0
\(495\) 209.814 0.0190514
\(496\) 0 0
\(497\) −5908.78 −0.533290
\(498\) 0 0
\(499\) 3012.35 0.270244 0.135122 0.990829i \(-0.456857\pi\)
0.135122 + 0.990829i \(0.456857\pi\)
\(500\) 0 0
\(501\) −3970.35 −0.354057
\(502\) 0 0
\(503\) 13147.4 1.16543 0.582716 0.812676i \(-0.301990\pi\)
0.582716 + 0.812676i \(0.301990\pi\)
\(504\) 0 0
\(505\) 2172.66 0.191449
\(506\) 0 0
\(507\) 2865.37 0.250997
\(508\) 0 0
\(509\) −1885.12 −0.164158 −0.0820790 0.996626i \(-0.526156\pi\)
−0.0820790 + 0.996626i \(0.526156\pi\)
\(510\) 0 0
\(511\) 606.212 0.0524799
\(512\) 0 0
\(513\) 8638.55 0.743472
\(514\) 0 0
\(515\) −2046.65 −0.175119
\(516\) 0 0
\(517\) −728.511 −0.0619727
\(518\) 0 0
\(519\) −23776.7 −2.01095
\(520\) 0 0
\(521\) 8179.75 0.687833 0.343917 0.939000i \(-0.388246\pi\)
0.343917 + 0.939000i \(0.388246\pi\)
\(522\) 0 0
\(523\) −2525.47 −0.211149 −0.105575 0.994411i \(-0.533668\pi\)
−0.105575 + 0.994411i \(0.533668\pi\)
\(524\) 0 0
\(525\) 924.548 0.0768583
\(526\) 0 0
\(527\) −1604.42 −0.132618
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 3821.25 0.312294
\(532\) 0 0
\(533\) 13303.3 1.08110
\(534\) 0 0
\(535\) 9722.42 0.785677
\(536\) 0 0
\(537\) −1086.85 −0.0873389
\(538\) 0 0
\(539\) 940.847 0.0751858
\(540\) 0 0
\(541\) 10062.6 0.799680 0.399840 0.916585i \(-0.369066\pi\)
0.399840 + 0.916585i \(0.369066\pi\)
\(542\) 0 0
\(543\) 516.002 0.0407804
\(544\) 0 0
\(545\) −1612.97 −0.126774
\(546\) 0 0
\(547\) −4559.71 −0.356415 −0.178208 0.983993i \(-0.557030\pi\)
−0.178208 + 0.983993i \(0.557030\pi\)
\(548\) 0 0
\(549\) −1200.04 −0.0932903
\(550\) 0 0
\(551\) −7992.49 −0.617952
\(552\) 0 0
\(553\) 6093.60 0.468583
\(554\) 0 0
\(555\) 7567.98 0.578816
\(556\) 0 0
\(557\) −17074.5 −1.29887 −0.649433 0.760419i \(-0.724994\pi\)
−0.649433 + 0.760419i \(0.724994\pi\)
\(558\) 0 0
\(559\) 1336.27 0.101106
\(560\) 0 0
\(561\) 1744.74 0.131306
\(562\) 0 0
\(563\) −2166.16 −0.162154 −0.0810772 0.996708i \(-0.525836\pi\)
−0.0810772 + 0.996708i \(0.525836\pi\)
\(564\) 0 0
\(565\) 11765.0 0.876030
\(566\) 0 0
\(567\) 5275.16 0.390716
\(568\) 0 0
\(569\) −8376.91 −0.617185 −0.308593 0.951194i \(-0.599858\pi\)
−0.308593 + 0.951194i \(0.599858\pi\)
\(570\) 0 0
\(571\) 5555.57 0.407169 0.203585 0.979057i \(-0.434741\pi\)
0.203585 + 0.979057i \(0.434741\pi\)
\(572\) 0 0
\(573\) 7060.13 0.514732
\(574\) 0 0
\(575\) −575.000 −0.0417029
\(576\) 0 0
\(577\) −16122.8 −1.16326 −0.581630 0.813454i \(-0.697585\pi\)
−0.581630 + 0.813454i \(0.697585\pi\)
\(578\) 0 0
\(579\) 33728.8 2.42094
\(580\) 0 0
\(581\) 5827.68 0.416132
\(582\) 0 0
\(583\) −1516.07 −0.107700
\(584\) 0 0
\(585\) 2885.85 0.203958
\(586\) 0 0
\(587\) −26083.7 −1.83405 −0.917027 0.398826i \(-0.869418\pi\)
−0.917027 + 0.398826i \(0.869418\pi\)
\(588\) 0 0
\(589\) −1829.98 −0.128019
\(590\) 0 0
\(591\) −10172.1 −0.707993
\(592\) 0 0
\(593\) −12843.5 −0.889410 −0.444705 0.895677i \(-0.646691\pi\)
−0.444705 + 0.895677i \(0.646691\pi\)
\(594\) 0 0
\(595\) 2600.82 0.179199
\(596\) 0 0
\(597\) −22904.5 −1.57021
\(598\) 0 0
\(599\) 3857.91 0.263155 0.131578 0.991306i \(-0.457996\pi\)
0.131578 + 0.991306i \(0.457996\pi\)
\(600\) 0 0
\(601\) −1568.28 −0.106442 −0.0532210 0.998583i \(-0.516949\pi\)
−0.0532210 + 0.998583i \(0.516949\pi\)
\(602\) 0 0
\(603\) 14070.0 0.950206
\(604\) 0 0
\(605\) 6608.79 0.444108
\(606\) 0 0
\(607\) −13332.7 −0.891528 −0.445764 0.895150i \(-0.647068\pi\)
−0.445764 + 0.895150i \(0.647068\pi\)
\(608\) 0 0
\(609\) −2884.34 −0.191920
\(610\) 0 0
\(611\) −10020.2 −0.663459
\(612\) 0 0
\(613\) 17285.0 1.13889 0.569443 0.822031i \(-0.307159\pi\)
0.569443 + 0.822031i \(0.307159\pi\)
\(614\) 0 0
\(615\) −10161.4 −0.666253
\(616\) 0 0
\(617\) 17342.5 1.13157 0.565787 0.824551i \(-0.308572\pi\)
0.565787 + 0.824551i \(0.308572\pi\)
\(618\) 0 0
\(619\) 10636.7 0.690670 0.345335 0.938479i \(-0.387765\pi\)
0.345335 + 0.938479i \(0.387765\pi\)
\(620\) 0 0
\(621\) −1938.84 −0.125287
\(622\) 0 0
\(623\) 6358.42 0.408900
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 1990.02 0.126752
\(628\) 0 0
\(629\) 21289.3 1.34954
\(630\) 0 0
\(631\) −19106.3 −1.20540 −0.602702 0.797966i \(-0.705909\pi\)
−0.602702 + 0.797966i \(0.705909\pi\)
\(632\) 0 0
\(633\) −895.940 −0.0562566
\(634\) 0 0
\(635\) 668.062 0.0417500
\(636\) 0 0
\(637\) 12940.7 0.804914
\(638\) 0 0
\(639\) 14087.6 0.872137
\(640\) 0 0
\(641\) 12081.8 0.744466 0.372233 0.928139i \(-0.378592\pi\)
0.372233 + 0.928139i \(0.378592\pi\)
\(642\) 0 0
\(643\) −1075.78 −0.0659794 −0.0329897 0.999456i \(-0.510503\pi\)
−0.0329897 + 0.999456i \(0.510503\pi\)
\(644\) 0 0
\(645\) −1020.67 −0.0623085
\(646\) 0 0
\(647\) 1762.84 0.107117 0.0535584 0.998565i \(-0.482944\pi\)
0.0535584 + 0.998565i \(0.482944\pi\)
\(648\) 0 0
\(649\) −841.607 −0.0509028
\(650\) 0 0
\(651\) −660.405 −0.0397593
\(652\) 0 0
\(653\) −22927.7 −1.37401 −0.687007 0.726651i \(-0.741076\pi\)
−0.687007 + 0.726651i \(0.741076\pi\)
\(654\) 0 0
\(655\) 3877.37 0.231300
\(656\) 0 0
\(657\) −1445.32 −0.0858252
\(658\) 0 0
\(659\) −21744.5 −1.28535 −0.642674 0.766140i \(-0.722175\pi\)
−0.642674 + 0.766140i \(0.722175\pi\)
\(660\) 0 0
\(661\) 12575.4 0.739982 0.369991 0.929035i \(-0.379361\pi\)
0.369991 + 0.929035i \(0.379361\pi\)
\(662\) 0 0
\(663\) 23997.7 1.40572
\(664\) 0 0
\(665\) 2966.46 0.172984
\(666\) 0 0
\(667\) 1793.84 0.104135
\(668\) 0 0
\(669\) 2920.96 0.168805
\(670\) 0 0
\(671\) 264.301 0.0152060
\(672\) 0 0
\(673\) −8350.98 −0.478316 −0.239158 0.970981i \(-0.576871\pi\)
−0.239158 + 0.970981i \(0.576871\pi\)
\(674\) 0 0
\(675\) 2107.44 0.120171
\(676\) 0 0
\(677\) 12815.0 0.727507 0.363754 0.931495i \(-0.381495\pi\)
0.363754 + 0.931495i \(0.381495\pi\)
\(678\) 0 0
\(679\) 2833.53 0.160149
\(680\) 0 0
\(681\) 1326.30 0.0746312
\(682\) 0 0
\(683\) 20368.0 1.14108 0.570542 0.821268i \(-0.306733\pi\)
0.570542 + 0.821268i \(0.306733\pi\)
\(684\) 0 0
\(685\) −4939.12 −0.275495
\(686\) 0 0
\(687\) 15153.4 0.841538
\(688\) 0 0
\(689\) −20852.5 −1.15300
\(690\) 0 0
\(691\) −1766.94 −0.0972759 −0.0486379 0.998816i \(-0.515488\pi\)
−0.0486379 + 0.998816i \(0.515488\pi\)
\(692\) 0 0
\(693\) 242.945 0.0133170
\(694\) 0 0
\(695\) −10256.3 −0.559775
\(696\) 0 0
\(697\) −28584.6 −1.55340
\(698\) 0 0
\(699\) −38502.8 −2.08342
\(700\) 0 0
\(701\) 7068.17 0.380829 0.190414 0.981704i \(-0.439017\pi\)
0.190414 + 0.981704i \(0.439017\pi\)
\(702\) 0 0
\(703\) 24282.2 1.30273
\(704\) 0 0
\(705\) 7653.66 0.408870
\(706\) 0 0
\(707\) 2515.73 0.133824
\(708\) 0 0
\(709\) −5015.87 −0.265691 −0.132845 0.991137i \(-0.542411\pi\)
−0.132845 + 0.991137i \(0.542411\pi\)
\(710\) 0 0
\(711\) −14528.2 −0.766316
\(712\) 0 0
\(713\) 410.723 0.0215732
\(714\) 0 0
\(715\) −635.591 −0.0332444
\(716\) 0 0
\(717\) −30431.4 −1.58505
\(718\) 0 0
\(719\) 15104.0 0.783426 0.391713 0.920088i \(-0.371883\pi\)
0.391713 + 0.920088i \(0.371883\pi\)
\(720\) 0 0
\(721\) −2369.82 −0.122409
\(722\) 0 0
\(723\) 1246.96 0.0641424
\(724\) 0 0
\(725\) −1949.83 −0.0998825
\(726\) 0 0
\(727\) −22043.5 −1.12455 −0.562275 0.826950i \(-0.690074\pi\)
−0.562275 + 0.826950i \(0.690074\pi\)
\(728\) 0 0
\(729\) 1961.79 0.0996694
\(730\) 0 0
\(731\) −2871.23 −0.145275
\(732\) 0 0
\(733\) −17431.2 −0.878355 −0.439178 0.898400i \(-0.644730\pi\)
−0.439178 + 0.898400i \(0.644730\pi\)
\(734\) 0 0
\(735\) −9884.44 −0.496045
\(736\) 0 0
\(737\) −3098.83 −0.154880
\(738\) 0 0
\(739\) −39019.7 −1.94230 −0.971152 0.238463i \(-0.923356\pi\)
−0.971152 + 0.238463i \(0.923356\pi\)
\(740\) 0 0
\(741\) 27371.4 1.35697
\(742\) 0 0
\(743\) 2408.03 0.118899 0.0594495 0.998231i \(-0.481065\pi\)
0.0594495 + 0.998231i \(0.481065\pi\)
\(744\) 0 0
\(745\) 12770.4 0.628014
\(746\) 0 0
\(747\) −13894.2 −0.680539
\(748\) 0 0
\(749\) 11257.6 0.549192
\(750\) 0 0
\(751\) −13056.5 −0.634406 −0.317203 0.948358i \(-0.602744\pi\)
−0.317203 + 0.948358i \(0.602744\pi\)
\(752\) 0 0
\(753\) 37628.9 1.82108
\(754\) 0 0
\(755\) 6563.85 0.316401
\(756\) 0 0
\(757\) −16457.2 −0.790156 −0.395078 0.918648i \(-0.629282\pi\)
−0.395078 + 0.918648i \(0.629282\pi\)
\(758\) 0 0
\(759\) −446.642 −0.0213598
\(760\) 0 0
\(761\) 20147.2 0.959705 0.479853 0.877349i \(-0.340690\pi\)
0.479853 + 0.877349i \(0.340690\pi\)
\(762\) 0 0
\(763\) −1867.66 −0.0886160
\(764\) 0 0
\(765\) −6200.82 −0.293060
\(766\) 0 0
\(767\) −11575.7 −0.544949
\(768\) 0 0
\(769\) 17051.3 0.799591 0.399795 0.916604i \(-0.369081\pi\)
0.399795 + 0.916604i \(0.369081\pi\)
\(770\) 0 0
\(771\) −28043.2 −1.30993
\(772\) 0 0
\(773\) 36283.3 1.68825 0.844125 0.536146i \(-0.180120\pi\)
0.844125 + 0.536146i \(0.180120\pi\)
\(774\) 0 0
\(775\) −446.438 −0.0206923
\(776\) 0 0
\(777\) 8762.99 0.404595
\(778\) 0 0
\(779\) −32603.2 −1.49953
\(780\) 0 0
\(781\) −3102.70 −0.142155
\(782\) 0 0
\(783\) −6574.63 −0.300074
\(784\) 0 0
\(785\) 17152.3 0.779862
\(786\) 0 0
\(787\) −17235.7 −0.780670 −0.390335 0.920673i \(-0.627641\pi\)
−0.390335 + 0.920673i \(0.627641\pi\)
\(788\) 0 0
\(789\) −8967.35 −0.404621
\(790\) 0 0
\(791\) 13622.7 0.612349
\(792\) 0 0
\(793\) 3635.28 0.162790
\(794\) 0 0
\(795\) 15927.7 0.710562
\(796\) 0 0
\(797\) 26857.3 1.19365 0.596823 0.802373i \(-0.296430\pi\)
0.596823 + 0.802373i \(0.296430\pi\)
\(798\) 0 0
\(799\) 21530.3 0.953302
\(800\) 0 0
\(801\) −15159.6 −0.668712
\(802\) 0 0
\(803\) 318.322 0.0139892
\(804\) 0 0
\(805\) −665.794 −0.0291505
\(806\) 0 0
\(807\) −17408.3 −0.759356
\(808\) 0 0
\(809\) −3922.75 −0.170478 −0.0852389 0.996361i \(-0.527165\pi\)
−0.0852389 + 0.996361i \(0.527165\pi\)
\(810\) 0 0
\(811\) −32637.4 −1.41314 −0.706568 0.707645i \(-0.749758\pi\)
−0.706568 + 0.707645i \(0.749758\pi\)
\(812\) 0 0
\(813\) −1471.52 −0.0634791
\(814\) 0 0
\(815\) −954.976 −0.0410446
\(816\) 0 0
\(817\) −3274.88 −0.140237
\(818\) 0 0
\(819\) 3341.54 0.142568
\(820\) 0 0
\(821\) 6375.47 0.271017 0.135509 0.990776i \(-0.456733\pi\)
0.135509 + 0.990776i \(0.456733\pi\)
\(822\) 0 0
\(823\) −43501.6 −1.84249 −0.921246 0.388981i \(-0.872827\pi\)
−0.921246 + 0.388981i \(0.872827\pi\)
\(824\) 0 0
\(825\) 485.480 0.0204876
\(826\) 0 0
\(827\) −40508.7 −1.70330 −0.851648 0.524114i \(-0.824397\pi\)
−0.851648 + 0.524114i \(0.824397\pi\)
\(828\) 0 0
\(829\) 26594.0 1.11417 0.557085 0.830456i \(-0.311920\pi\)
0.557085 + 0.830456i \(0.311920\pi\)
\(830\) 0 0
\(831\) −35240.3 −1.47108
\(832\) 0 0
\(833\) −27805.7 −1.15655
\(834\) 0 0
\(835\) −3107.79 −0.128802
\(836\) 0 0
\(837\) −1505.34 −0.0621652
\(838\) 0 0
\(839\) 8885.84 0.365642 0.182821 0.983146i \(-0.441477\pi\)
0.182821 + 0.983146i \(0.441477\pi\)
\(840\) 0 0
\(841\) −18306.1 −0.750587
\(842\) 0 0
\(843\) 34391.9 1.40512
\(844\) 0 0
\(845\) 2242.87 0.0913101
\(846\) 0 0
\(847\) 7652.34 0.310434
\(848\) 0 0
\(849\) −15643.9 −0.632388
\(850\) 0 0
\(851\) −5449.93 −0.219531
\(852\) 0 0
\(853\) −812.221 −0.0326025 −0.0163012 0.999867i \(-0.505189\pi\)
−0.0163012 + 0.999867i \(0.505189\pi\)
\(854\) 0 0
\(855\) −7072.56 −0.282896
\(856\) 0 0
\(857\) 8502.24 0.338893 0.169446 0.985539i \(-0.445802\pi\)
0.169446 + 0.985539i \(0.445802\pi\)
\(858\) 0 0
\(859\) −37323.1 −1.48248 −0.741239 0.671241i \(-0.765761\pi\)
−0.741239 + 0.671241i \(0.765761\pi\)
\(860\) 0 0
\(861\) −11765.9 −0.465714
\(862\) 0 0
\(863\) −12734.0 −0.502282 −0.251141 0.967951i \(-0.580806\pi\)
−0.251141 + 0.967951i \(0.580806\pi\)
\(864\) 0 0
\(865\) −18611.2 −0.731561
\(866\) 0 0
\(867\) −20180.7 −0.790512
\(868\) 0 0
\(869\) 3199.75 0.124907
\(870\) 0 0
\(871\) −42622.3 −1.65810
\(872\) 0 0
\(873\) −6755.63 −0.261906
\(874\) 0 0
\(875\) 723.689 0.0279602
\(876\) 0 0
\(877\) −41366.0 −1.59274 −0.796368 0.604812i \(-0.793248\pi\)
−0.796368 + 0.604812i \(0.793248\pi\)
\(878\) 0 0
\(879\) −33586.6 −1.28879
\(880\) 0 0
\(881\) −7609.60 −0.291003 −0.145502 0.989358i \(-0.546480\pi\)
−0.145502 + 0.989358i \(0.546480\pi\)
\(882\) 0 0
\(883\) 15972.5 0.608739 0.304369 0.952554i \(-0.401554\pi\)
0.304369 + 0.952554i \(0.401554\pi\)
\(884\) 0 0
\(885\) 8841.83 0.335836
\(886\) 0 0
\(887\) 39795.1 1.50641 0.753207 0.657784i \(-0.228506\pi\)
0.753207 + 0.657784i \(0.228506\pi\)
\(888\) 0 0
\(889\) 773.551 0.0291834
\(890\) 0 0
\(891\) 2769.99 0.104151
\(892\) 0 0
\(893\) 24557.2 0.920239
\(894\) 0 0
\(895\) −850.730 −0.0317729
\(896\) 0 0
\(897\) −6143.26 −0.228670
\(898\) 0 0
\(899\) 1392.76 0.0516699
\(900\) 0 0
\(901\) 44805.7 1.65671
\(902\) 0 0
\(903\) −1181.84 −0.0435539
\(904\) 0 0
\(905\) 403.900 0.0148355
\(906\) 0 0
\(907\) −37348.3 −1.36729 −0.683644 0.729815i \(-0.739606\pi\)
−0.683644 + 0.729815i \(0.739606\pi\)
\(908\) 0 0
\(909\) −5997.93 −0.218855
\(910\) 0 0
\(911\) 13218.4 0.480729 0.240365 0.970683i \(-0.422733\pi\)
0.240365 + 0.970683i \(0.422733\pi\)
\(912\) 0 0
\(913\) 3060.11 0.110926
\(914\) 0 0
\(915\) −2776.72 −0.100323
\(916\) 0 0
\(917\) 4489.62 0.161680
\(918\) 0 0
\(919\) −40709.0 −1.46122 −0.730612 0.682792i \(-0.760765\pi\)
−0.730612 + 0.682792i \(0.760765\pi\)
\(920\) 0 0
\(921\) 36603.7 1.30959
\(922\) 0 0
\(923\) −42675.5 −1.52187
\(924\) 0 0
\(925\) 5923.83 0.210567
\(926\) 0 0
\(927\) 5650.07 0.200186
\(928\) 0 0
\(929\) −34275.6 −1.21049 −0.605246 0.796039i \(-0.706925\pi\)
−0.605246 + 0.796039i \(0.706925\pi\)
\(930\) 0 0
\(931\) −31714.7 −1.11644
\(932\) 0 0
\(933\) 43998.0 1.54387
\(934\) 0 0
\(935\) 1365.69 0.0477678
\(936\) 0 0
\(937\) −9681.42 −0.337544 −0.168772 0.985655i \(-0.553980\pi\)
−0.168772 + 0.985655i \(0.553980\pi\)
\(938\) 0 0
\(939\) 29218.7 1.01546
\(940\) 0 0
\(941\) −29631.7 −1.02653 −0.513266 0.858230i \(-0.671564\pi\)
−0.513266 + 0.858230i \(0.671564\pi\)
\(942\) 0 0
\(943\) 7317.49 0.252694
\(944\) 0 0
\(945\) 2440.21 0.0840000
\(946\) 0 0
\(947\) −13770.7 −0.472531 −0.236265 0.971689i \(-0.575923\pi\)
−0.236265 + 0.971689i \(0.575923\pi\)
\(948\) 0 0
\(949\) 4378.30 0.149764
\(950\) 0 0
\(951\) 41402.9 1.41176
\(952\) 0 0
\(953\) −42244.4 −1.43592 −0.717959 0.696085i \(-0.754924\pi\)
−0.717959 + 0.696085i \(0.754924\pi\)
\(954\) 0 0
\(955\) 5526.31 0.187254
\(956\) 0 0
\(957\) −1514.56 −0.0511587
\(958\) 0 0
\(959\) −5719.02 −0.192572
\(960\) 0 0
\(961\) −29472.1 −0.989296
\(962\) 0 0
\(963\) −26840.2 −0.898144
\(964\) 0 0
\(965\) 26401.2 0.880710
\(966\) 0 0
\(967\) −8247.06 −0.274258 −0.137129 0.990553i \(-0.543788\pi\)
−0.137129 + 0.990553i \(0.543788\pi\)
\(968\) 0 0
\(969\) −58812.8 −1.94978
\(970\) 0 0
\(971\) −58514.6 −1.93390 −0.966952 0.254957i \(-0.917939\pi\)
−0.966952 + 0.254957i \(0.917939\pi\)
\(972\) 0 0
\(973\) −11875.8 −0.391286
\(974\) 0 0
\(975\) 6677.45 0.219333
\(976\) 0 0
\(977\) −16995.2 −0.556526 −0.278263 0.960505i \(-0.589759\pi\)
−0.278263 + 0.960505i \(0.589759\pi\)
\(978\) 0 0
\(979\) 3338.81 0.108998
\(980\) 0 0
\(981\) 4452.84 0.144922
\(982\) 0 0
\(983\) −34851.6 −1.13082 −0.565409 0.824811i \(-0.691282\pi\)
−0.565409 + 0.824811i \(0.691282\pi\)
\(984\) 0 0
\(985\) −7962.20 −0.257560
\(986\) 0 0
\(987\) 8862.20 0.285802
\(988\) 0 0
\(989\) 735.017 0.0236321
\(990\) 0 0
\(991\) −6949.64 −0.222768 −0.111384 0.993777i \(-0.535528\pi\)
−0.111384 + 0.993777i \(0.535528\pi\)
\(992\) 0 0
\(993\) 35940.0 1.14856
\(994\) 0 0
\(995\) −17928.5 −0.571227
\(996\) 0 0
\(997\) 20280.1 0.644210 0.322105 0.946704i \(-0.395610\pi\)
0.322105 + 0.946704i \(0.395610\pi\)
\(998\) 0 0
\(999\) 19974.6 0.632600
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.4.a.b.1.2 6
4.3 odd 2 1840.4.a.s.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.4.a.b.1.2 6 1.1 even 1 trivial
1840.4.a.s.1.5 6 4.3 odd 2