Defining parameters
Level: | \( N \) | \(=\) | \( 920 = 2^{3} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 920.y (of order \(11\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q(\zeta_{11})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(920, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1520 | 240 | 1280 |
Cusp forms | 1360 | 240 | 1120 |
Eisenstein series | 160 | 0 | 160 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(920, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
920.2.y.a | $50$ | $7.346$ | None | \(0\) | \(1\) | \(5\) | \(9\) | ||
920.2.y.b | $60$ | $7.346$ | None | \(0\) | \(-1\) | \(-6\) | \(18\) | ||
920.2.y.c | $60$ | $7.346$ | None | \(0\) | \(-1\) | \(6\) | \(-7\) | ||
920.2.y.d | $70$ | $7.346$ | None | \(0\) | \(1\) | \(-7\) | \(-20\) |
Decomposition of \(S_{2}^{\mathrm{old}}(920, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(920, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 2}\)