Properties

Label 920.2.y
Level $920$
Weight $2$
Character orbit 920.y
Rep. character $\chi_{920}(41,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $240$
Newform subspaces $4$
Sturm bound $288$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.y (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 4 \)
Sturm bound: \(288\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(920, [\chi])\).

Total New Old
Modular forms 1520 240 1280
Cusp forms 1360 240 1120
Eisenstein series 160 0 160

Trace form

\( 240 q - 2 q^{5} - 28 q^{9} - 4 q^{11} - 8 q^{17} - 4 q^{19} - 8 q^{21} - 4 q^{23} - 24 q^{25} + 12 q^{29} - 16 q^{31} - 24 q^{33} + 18 q^{35} - 20 q^{37} + 12 q^{39} + 44 q^{41} + 84 q^{43} + 72 q^{45}+ \cdots - 344 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(920, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
920.2.y.a 920.y 23.c $50$ $7.346$ None 920.2.y.a \(0\) \(1\) \(5\) \(9\) $\mathrm{SU}(2)[C_{11}]$
920.2.y.b 920.y 23.c $60$ $7.346$ None 920.2.y.b \(0\) \(-1\) \(-6\) \(18\) $\mathrm{SU}(2)[C_{11}]$
920.2.y.c 920.y 23.c $60$ $7.346$ None 920.2.y.c \(0\) \(-1\) \(6\) \(-7\) $\mathrm{SU}(2)[C_{11}]$
920.2.y.d 920.y 23.c $70$ $7.346$ None 920.2.y.d \(0\) \(1\) \(-7\) \(-20\) $\mathrm{SU}(2)[C_{11}]$

Decomposition of \(S_{2}^{\mathrm{old}}(920, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(920, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 2}\)