Properties

Label 920.2.v
Level $920$
Weight $2$
Character orbit 920.v
Rep. character $\chi_{920}(323,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $264$
Newform subspaces $1$
Sturm bound $288$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.v (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(288\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(920, [\chi])\).

Total New Old
Modular forms 296 264 32
Cusp forms 280 264 16
Eisenstein series 16 0 16

Trace form

\( 264 q - 12 q^{8} + 16 q^{10} - 16 q^{12} - 16 q^{16} + 8 q^{17} - 28 q^{18} - 16 q^{22} - 8 q^{25} - 48 q^{26} - 12 q^{28} - 24 q^{30} + 40 q^{32} - 48 q^{35} + 32 q^{36} + 12 q^{38} + 16 q^{40} + 40 q^{42}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(920, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
920.2.v.a 920.v 40.k $264$ $7.346$ None 920.2.v.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(920, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(920, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)