Properties

Label 920.2.n
Level $920$
Weight $2$
Character orbit 920.n
Rep. character $\chi_{920}(91,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $2$
Sturm bound $288$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.n (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 184 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(288\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(920, [\chi])\).

Total New Old
Modular forms 148 96 52
Cusp forms 140 96 44
Eisenstein series 8 0 8

Trace form

\( 96 q - 4 q^{2} + 8 q^{4} - 10 q^{6} + 2 q^{8} + 96 q^{9} - 6 q^{12} + 24 q^{16} - 14 q^{18} - 4 q^{24} + 96 q^{25} - 14 q^{26} - 24 q^{27} + 16 q^{32} + 2 q^{36} - 24 q^{46} + 66 q^{48} + 96 q^{49} - 4 q^{50}+ \cdots + 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(920, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
920.2.n.a 920.n 184.h $48$ $7.346$ None 920.2.n.a \(-2\) \(0\) \(-48\) \(0\) $\mathrm{SU}(2)[C_{2}]$
920.2.n.b 920.n 184.h $48$ $7.346$ None 920.2.n.a \(-2\) \(0\) \(48\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(920, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(920, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 2}\)