Properties

Label 920.2.e.c.369.16
Level $920$
Weight $2$
Character 920.369
Analytic conductor $7.346$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} + 6 x^{13} + 100 x^{12} - 196 x^{11} + 210 x^{10} + 702 x^{9} + 1572 x^{8} - 1594 x^{7} + 2464 x^{6} + 9568 x^{5} + 15457 x^{4} + 4336 x^{3} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 369.16
Root \(-0.945903 - 0.945903i\) of defining polynomial
Character \(\chi\) \(=\) 920.369
Dual form 920.2.e.c.369.1

$q$-expansion

\(f(q)\) \(=\) \(q+3.20935i q^{3} +(2.02615 - 0.945903i) q^{5} -4.54713i q^{7} -7.29996 q^{9} +O(q^{10})\) \(q+3.20935i q^{3} +(2.02615 - 0.945903i) q^{5} -4.54713i q^{7} -7.29996 q^{9} +4.59577 q^{11} -5.17990i q^{13} +(3.03574 + 6.50262i) q^{15} +3.33965i q^{17} +4.43893 q^{19} +14.5934 q^{21} -1.00000i q^{23} +(3.21054 - 3.83307i) q^{25} -13.8001i q^{27} -4.13029 q^{29} +7.82535 q^{31} +14.7494i q^{33} +(-4.30114 - 9.21315i) q^{35} -1.03174i q^{37} +16.6241 q^{39} -5.75780 q^{41} -1.67719i q^{43} +(-14.7908 + 6.90505i) q^{45} +6.20177i q^{47} -13.6764 q^{49} -10.7181 q^{51} +7.35094i q^{53} +(9.31170 - 4.34715i) q^{55} +14.2461i q^{57} -1.83951 q^{59} +0.524294 q^{61} +33.1939i q^{63} +(-4.89968 - 10.4952i) q^{65} -2.55477i q^{67} +3.20935 q^{69} -6.58764 q^{71} +2.41579i q^{73} +(12.3017 + 10.3038i) q^{75} -20.8975i q^{77} +9.85496 q^{79} +22.3895 q^{81} +10.7875i q^{83} +(3.15898 + 6.76662i) q^{85} -13.2556i q^{87} -5.13994 q^{89} -23.5537 q^{91} +25.1143i q^{93} +(8.99393 - 4.19880i) q^{95} -3.36751i q^{97} -33.5489 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{5} - 22 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 2 q^{5} - 22 q^{9} + 14 q^{11} + 6 q^{15} - 22 q^{19} + 12 q^{25} - 44 q^{29} + 18 q^{31} + 20 q^{35} + 14 q^{41} + 14 q^{45} - 78 q^{49} - 38 q^{51} + 30 q^{55} - 64 q^{59} + 34 q^{61} + 6 q^{65} + 6 q^{69} + 30 q^{71} + 56 q^{75} + 4 q^{79} + 48 q^{81} + 52 q^{85} - 92 q^{89} - 70 q^{91} + 38 q^{95} - 122 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.20935i 1.85292i 0.376391 + 0.926461i \(0.377165\pi\)
−0.376391 + 0.926461i \(0.622835\pi\)
\(4\) 0 0
\(5\) 2.02615 0.945903i 0.906120 0.423020i
\(6\) 0 0
\(7\) 4.54713i 1.71865i −0.511427 0.859327i \(-0.670883\pi\)
0.511427 0.859327i \(-0.329117\pi\)
\(8\) 0 0
\(9\) −7.29996 −2.43332
\(10\) 0 0
\(11\) 4.59577 1.38568 0.692838 0.721093i \(-0.256360\pi\)
0.692838 + 0.721093i \(0.256360\pi\)
\(12\) 0 0
\(13\) 5.17990i 1.43665i −0.695710 0.718323i \(-0.744910\pi\)
0.695710 0.718323i \(-0.255090\pi\)
\(14\) 0 0
\(15\) 3.03574 + 6.50262i 0.783824 + 1.67897i
\(16\) 0 0
\(17\) 3.33965i 0.809984i 0.914320 + 0.404992i \(0.132726\pi\)
−0.914320 + 0.404992i \(0.867274\pi\)
\(18\) 0 0
\(19\) 4.43893 1.01836 0.509181 0.860660i \(-0.329949\pi\)
0.509181 + 0.860660i \(0.329949\pi\)
\(20\) 0 0
\(21\) 14.5934 3.18453
\(22\) 0 0
\(23\) 1.00000i 0.208514i
\(24\) 0 0
\(25\) 3.21054 3.83307i 0.642107 0.766615i
\(26\) 0 0
\(27\) 13.8001i 2.65583i
\(28\) 0 0
\(29\) −4.13029 −0.766976 −0.383488 0.923546i \(-0.625277\pi\)
−0.383488 + 0.923546i \(0.625277\pi\)
\(30\) 0 0
\(31\) 7.82535 1.40547 0.702737 0.711450i \(-0.251961\pi\)
0.702737 + 0.711450i \(0.251961\pi\)
\(32\) 0 0
\(33\) 14.7494i 2.56755i
\(34\) 0 0
\(35\) −4.30114 9.21315i −0.727025 1.55731i
\(36\) 0 0
\(37\) 1.03174i 0.169618i −0.996397 0.0848089i \(-0.972972\pi\)
0.996397 0.0848089i \(-0.0270280\pi\)
\(38\) 0 0
\(39\) 16.6241 2.66199
\(40\) 0 0
\(41\) −5.75780 −0.899218 −0.449609 0.893225i \(-0.648437\pi\)
−0.449609 + 0.893225i \(0.648437\pi\)
\(42\) 0 0
\(43\) 1.67719i 0.255770i −0.991789 0.127885i \(-0.959181\pi\)
0.991789 0.127885i \(-0.0408188\pi\)
\(44\) 0 0
\(45\) −14.7908 + 6.90505i −2.20488 + 1.02934i
\(46\) 0 0
\(47\) 6.20177i 0.904621i 0.891861 + 0.452310i \(0.149400\pi\)
−0.891861 + 0.452310i \(0.850600\pi\)
\(48\) 0 0
\(49\) −13.6764 −1.95377
\(50\) 0 0
\(51\) −10.7181 −1.50084
\(52\) 0 0
\(53\) 7.35094i 1.00973i 0.863198 + 0.504865i \(0.168458\pi\)
−0.863198 + 0.504865i \(0.831542\pi\)
\(54\) 0 0
\(55\) 9.31170 4.34715i 1.25559 0.586169i
\(56\) 0 0
\(57\) 14.2461i 1.88694i
\(58\) 0 0
\(59\) −1.83951 −0.239484 −0.119742 0.992805i \(-0.538207\pi\)
−0.119742 + 0.992805i \(0.538207\pi\)
\(60\) 0 0
\(61\) 0.524294 0.0671289 0.0335645 0.999437i \(-0.489314\pi\)
0.0335645 + 0.999437i \(0.489314\pi\)
\(62\) 0 0
\(63\) 33.1939i 4.18203i
\(64\) 0 0
\(65\) −4.89968 10.4952i −0.607730 1.30177i
\(66\) 0 0
\(67\) 2.55477i 0.312115i −0.987748 0.156057i \(-0.950122\pi\)
0.987748 0.156057i \(-0.0498785\pi\)
\(68\) 0 0
\(69\) 3.20935 0.386361
\(70\) 0 0
\(71\) −6.58764 −0.781809 −0.390904 0.920431i \(-0.627838\pi\)
−0.390904 + 0.920431i \(0.627838\pi\)
\(72\) 0 0
\(73\) 2.41579i 0.282747i 0.989956 + 0.141374i \(0.0451519\pi\)
−0.989956 + 0.141374i \(0.954848\pi\)
\(74\) 0 0
\(75\) 12.3017 + 10.3038i 1.42048 + 1.18977i
\(76\) 0 0
\(77\) 20.8975i 2.38150i
\(78\) 0 0
\(79\) 9.85496 1.10877 0.554385 0.832261i \(-0.312954\pi\)
0.554385 + 0.832261i \(0.312954\pi\)
\(80\) 0 0
\(81\) 22.3895 2.48772
\(82\) 0 0
\(83\) 10.7875i 1.18408i 0.805908 + 0.592040i \(0.201677\pi\)
−0.805908 + 0.592040i \(0.798323\pi\)
\(84\) 0 0
\(85\) 3.15898 + 6.76662i 0.342640 + 0.733942i
\(86\) 0 0
\(87\) 13.2556i 1.42115i
\(88\) 0 0
\(89\) −5.13994 −0.544832 −0.272416 0.962180i \(-0.587823\pi\)
−0.272416 + 0.962180i \(0.587823\pi\)
\(90\) 0 0
\(91\) −23.5537 −2.46909
\(92\) 0 0
\(93\) 25.1143i 2.60423i
\(94\) 0 0
\(95\) 8.99393 4.19880i 0.922758 0.430788i
\(96\) 0 0
\(97\) 3.36751i 0.341919i −0.985278 0.170959i \(-0.945313\pi\)
0.985278 0.170959i \(-0.0546867\pi\)
\(98\) 0 0
\(99\) −33.5489 −3.37179
\(100\) 0 0
\(101\) −4.18121 −0.416046 −0.208023 0.978124i \(-0.566703\pi\)
−0.208023 + 0.978124i \(0.566703\pi\)
\(102\) 0 0
\(103\) 9.92121i 0.977566i −0.872405 0.488783i \(-0.837441\pi\)
0.872405 0.488783i \(-0.162559\pi\)
\(104\) 0 0
\(105\) 29.5683 13.8039i 2.88557 1.34712i
\(106\) 0 0
\(107\) 11.6829i 1.12943i 0.825287 + 0.564713i \(0.191013\pi\)
−0.825287 + 0.564713i \(0.808987\pi\)
\(108\) 0 0
\(109\) 5.58937 0.535365 0.267682 0.963507i \(-0.413742\pi\)
0.267682 + 0.963507i \(0.413742\pi\)
\(110\) 0 0
\(111\) 3.31123 0.314288
\(112\) 0 0
\(113\) 4.02597i 0.378731i 0.981907 + 0.189366i \(0.0606431\pi\)
−0.981907 + 0.189366i \(0.939357\pi\)
\(114\) 0 0
\(115\) −0.945903 2.02615i −0.0882059 0.188939i
\(116\) 0 0
\(117\) 37.8130i 3.49582i
\(118\) 0 0
\(119\) 15.1858 1.39208
\(120\) 0 0
\(121\) 10.1211 0.920098
\(122\) 0 0
\(123\) 18.4788i 1.66618i
\(124\) 0 0
\(125\) 2.87930 10.8032i 0.257533 0.966270i
\(126\) 0 0
\(127\) 15.8137i 1.40324i 0.712553 + 0.701618i \(0.247539\pi\)
−0.712553 + 0.701618i \(0.752461\pi\)
\(128\) 0 0
\(129\) 5.38271 0.473921
\(130\) 0 0
\(131\) 15.5004 1.35428 0.677139 0.735855i \(-0.263220\pi\)
0.677139 + 0.735855i \(0.263220\pi\)
\(132\) 0 0
\(133\) 20.1844i 1.75021i
\(134\) 0 0
\(135\) −13.0535 27.9610i −1.12347 2.40650i
\(136\) 0 0
\(137\) 4.94249i 0.422265i −0.977457 0.211133i \(-0.932285\pi\)
0.977457 0.211133i \(-0.0677152\pi\)
\(138\) 0 0
\(139\) −23.0723 −1.95697 −0.978483 0.206326i \(-0.933849\pi\)
−0.978483 + 0.206326i \(0.933849\pi\)
\(140\) 0 0
\(141\) −19.9037 −1.67619
\(142\) 0 0
\(143\) 23.8056i 1.99072i
\(144\) 0 0
\(145\) −8.36858 + 3.90685i −0.694973 + 0.324447i
\(146\) 0 0
\(147\) 43.8924i 3.62018i
\(148\) 0 0
\(149\) 14.7115 1.20521 0.602606 0.798039i \(-0.294129\pi\)
0.602606 + 0.798039i \(0.294129\pi\)
\(150\) 0 0
\(151\) −11.5461 −0.939606 −0.469803 0.882771i \(-0.655675\pi\)
−0.469803 + 0.882771i \(0.655675\pi\)
\(152\) 0 0
\(153\) 24.3793i 1.97095i
\(154\) 0 0
\(155\) 15.8553 7.40202i 1.27353 0.594544i
\(156\) 0 0
\(157\) 7.02677i 0.560797i 0.959884 + 0.280399i \(0.0904667\pi\)
−0.959884 + 0.280399i \(0.909533\pi\)
\(158\) 0 0
\(159\) −23.5918 −1.87095
\(160\) 0 0
\(161\) −4.54713 −0.358364
\(162\) 0 0
\(163\) 13.4203i 1.05116i −0.850744 0.525580i \(-0.823848\pi\)
0.850744 0.525580i \(-0.176152\pi\)
\(164\) 0 0
\(165\) 13.9515 + 29.8845i 1.08613 + 2.32651i
\(166\) 0 0
\(167\) 8.77046i 0.678679i 0.940664 + 0.339339i \(0.110203\pi\)
−0.940664 + 0.339339i \(0.889797\pi\)
\(168\) 0 0
\(169\) −13.8313 −1.06395
\(170\) 0 0
\(171\) −32.4040 −2.47800
\(172\) 0 0
\(173\) 20.5416i 1.56175i −0.624690 0.780873i \(-0.714775\pi\)
0.624690 0.780873i \(-0.285225\pi\)
\(174\) 0 0
\(175\) −17.4295 14.5987i −1.31754 1.10356i
\(176\) 0 0
\(177\) 5.90365i 0.443745i
\(178\) 0 0
\(179\) 15.4880 1.15763 0.578814 0.815460i \(-0.303516\pi\)
0.578814 + 0.815460i \(0.303516\pi\)
\(180\) 0 0
\(181\) −3.31887 −0.246690 −0.123345 0.992364i \(-0.539362\pi\)
−0.123345 + 0.992364i \(0.539362\pi\)
\(182\) 0 0
\(183\) 1.68264i 0.124385i
\(184\) 0 0
\(185\) −0.975930 2.09046i −0.0717518 0.153694i
\(186\) 0 0
\(187\) 15.3482i 1.12237i
\(188\) 0 0
\(189\) −62.7508 −4.56445
\(190\) 0 0
\(191\) −5.46525 −0.395451 −0.197726 0.980257i \(-0.563356\pi\)
−0.197726 + 0.980257i \(0.563356\pi\)
\(192\) 0 0
\(193\) 1.88244i 0.135501i 0.997702 + 0.0677506i \(0.0215822\pi\)
−0.997702 + 0.0677506i \(0.978418\pi\)
\(194\) 0 0
\(195\) 33.6829 15.7248i 2.41208 1.12608i
\(196\) 0 0
\(197\) 7.27284i 0.518169i 0.965855 + 0.259084i \(0.0834208\pi\)
−0.965855 + 0.259084i \(0.916579\pi\)
\(198\) 0 0
\(199\) 7.84296 0.555972 0.277986 0.960585i \(-0.410333\pi\)
0.277986 + 0.960585i \(0.410333\pi\)
\(200\) 0 0
\(201\) 8.19916 0.578324
\(202\) 0 0
\(203\) 18.7810i 1.31817i
\(204\) 0 0
\(205\) −11.6662 + 5.44632i −0.814800 + 0.380388i
\(206\) 0 0
\(207\) 7.29996i 0.507382i
\(208\) 0 0
\(209\) 20.4003 1.41112
\(210\) 0 0
\(211\) 6.03882 0.415730 0.207865 0.978158i \(-0.433349\pi\)
0.207865 + 0.978158i \(0.433349\pi\)
\(212\) 0 0
\(213\) 21.1421i 1.44863i
\(214\) 0 0
\(215\) −1.58646 3.39824i −0.108196 0.231758i
\(216\) 0 0
\(217\) 35.5829i 2.41552i
\(218\) 0 0
\(219\) −7.75314 −0.523908
\(220\) 0 0
\(221\) 17.2990 1.16366
\(222\) 0 0
\(223\) 13.7931i 0.923654i 0.886970 + 0.461827i \(0.152806\pi\)
−0.886970 + 0.461827i \(0.847194\pi\)
\(224\) 0 0
\(225\) −23.4368 + 27.9813i −1.56245 + 1.86542i
\(226\) 0 0
\(227\) 18.2668i 1.21241i 0.795309 + 0.606204i \(0.207308\pi\)
−0.795309 + 0.606204i \(0.792692\pi\)
\(228\) 0 0
\(229\) −15.5985 −1.03078 −0.515390 0.856956i \(-0.672353\pi\)
−0.515390 + 0.856956i \(0.672353\pi\)
\(230\) 0 0
\(231\) 67.0676 4.41273
\(232\) 0 0
\(233\) 26.9422i 1.76504i 0.470275 + 0.882520i \(0.344155\pi\)
−0.470275 + 0.882520i \(0.655845\pi\)
\(234\) 0 0
\(235\) 5.86627 + 12.5657i 0.382673 + 0.819695i
\(236\) 0 0
\(237\) 31.6281i 2.05446i
\(238\) 0 0
\(239\) 4.91116 0.317677 0.158838 0.987305i \(-0.449225\pi\)
0.158838 + 0.987305i \(0.449225\pi\)
\(240\) 0 0
\(241\) 20.3100 1.30828 0.654140 0.756373i \(-0.273031\pi\)
0.654140 + 0.756373i \(0.273031\pi\)
\(242\) 0 0
\(243\) 30.4556i 1.95373i
\(244\) 0 0
\(245\) −27.7103 + 12.9365i −1.77035 + 0.826484i
\(246\) 0 0
\(247\) 22.9932i 1.46302i
\(248\) 0 0
\(249\) −34.6209 −2.19401
\(250\) 0 0
\(251\) −15.1382 −0.955514 −0.477757 0.878492i \(-0.658550\pi\)
−0.477757 + 0.878492i \(0.658550\pi\)
\(252\) 0 0
\(253\) 4.59577i 0.288933i
\(254\) 0 0
\(255\) −21.7165 + 10.1383i −1.35994 + 0.634885i
\(256\) 0 0
\(257\) 21.7394i 1.35607i −0.735031 0.678033i \(-0.762832\pi\)
0.735031 0.678033i \(-0.237168\pi\)
\(258\) 0 0
\(259\) −4.69147 −0.291514
\(260\) 0 0
\(261\) 30.1510 1.86630
\(262\) 0 0
\(263\) 20.5960i 1.27000i 0.772511 + 0.635002i \(0.219001\pi\)
−0.772511 + 0.635002i \(0.780999\pi\)
\(264\) 0 0
\(265\) 6.95327 + 14.8941i 0.427136 + 0.914936i
\(266\) 0 0
\(267\) 16.4959i 1.00953i
\(268\) 0 0
\(269\) −15.8810 −0.968284 −0.484142 0.874989i \(-0.660868\pi\)
−0.484142 + 0.874989i \(0.660868\pi\)
\(270\) 0 0
\(271\) −3.55030 −0.215666 −0.107833 0.994169i \(-0.534391\pi\)
−0.107833 + 0.994169i \(0.534391\pi\)
\(272\) 0 0
\(273\) 75.5921i 4.57504i
\(274\) 0 0
\(275\) 14.7549 17.6159i 0.889753 1.06228i
\(276\) 0 0
\(277\) 23.3134i 1.40077i 0.713767 + 0.700383i \(0.246987\pi\)
−0.713767 + 0.700383i \(0.753013\pi\)
\(278\) 0 0
\(279\) −57.1247 −3.41997
\(280\) 0 0
\(281\) −8.93301 −0.532899 −0.266449 0.963849i \(-0.585850\pi\)
−0.266449 + 0.963849i \(0.585850\pi\)
\(282\) 0 0
\(283\) 14.6498i 0.870843i −0.900227 0.435421i \(-0.856599\pi\)
0.900227 0.435421i \(-0.143401\pi\)
\(284\) 0 0
\(285\) 13.4754 + 28.8647i 0.798216 + 1.70980i
\(286\) 0 0
\(287\) 26.1815i 1.54544i
\(288\) 0 0
\(289\) 5.84675 0.343927
\(290\) 0 0
\(291\) 10.8075 0.633549
\(292\) 0 0
\(293\) 27.4766i 1.60520i −0.596516 0.802601i \(-0.703449\pi\)
0.596516 0.802601i \(-0.296551\pi\)
\(294\) 0 0
\(295\) −3.72712 + 1.74000i −0.217001 + 0.101307i
\(296\) 0 0
\(297\) 63.4220i 3.68012i
\(298\) 0 0
\(299\) −5.17990 −0.299561
\(300\) 0 0
\(301\) −7.62641 −0.439579
\(302\) 0 0
\(303\) 13.4190i 0.770900i
\(304\) 0 0
\(305\) 1.06230 0.495931i 0.0608269 0.0283969i
\(306\) 0 0
\(307\) 19.1369i 1.09220i 0.837719 + 0.546101i \(0.183888\pi\)
−0.837719 + 0.546101i \(0.816112\pi\)
\(308\) 0 0
\(309\) 31.8407 1.81135
\(310\) 0 0
\(311\) 15.3439 0.870074 0.435037 0.900413i \(-0.356735\pi\)
0.435037 + 0.900413i \(0.356735\pi\)
\(312\) 0 0
\(313\) 8.41254i 0.475505i −0.971326 0.237753i \(-0.923589\pi\)
0.971326 0.237753i \(-0.0764107\pi\)
\(314\) 0 0
\(315\) 31.3982 + 67.2556i 1.76909 + 3.78942i
\(316\) 0 0
\(317\) 16.5135i 0.927493i −0.885968 0.463747i \(-0.846505\pi\)
0.885968 0.463747i \(-0.153495\pi\)
\(318\) 0 0
\(319\) −18.9819 −1.06278
\(320\) 0 0
\(321\) −37.4945 −2.09274
\(322\) 0 0
\(323\) 14.8245i 0.824856i
\(324\) 0 0
\(325\) −19.8549 16.6303i −1.10135 0.922480i
\(326\) 0 0
\(327\) 17.9383i 0.991989i
\(328\) 0 0
\(329\) 28.2002 1.55473
\(330\) 0 0
\(331\) −2.78794 −0.153239 −0.0766196 0.997060i \(-0.524413\pi\)
−0.0766196 + 0.997060i \(0.524413\pi\)
\(332\) 0 0
\(333\) 7.53169i 0.412734i
\(334\) 0 0
\(335\) −2.41656 5.17633i −0.132031 0.282813i
\(336\) 0 0
\(337\) 8.70062i 0.473953i 0.971515 + 0.236977i \(0.0761565\pi\)
−0.971515 + 0.236977i \(0.923844\pi\)
\(338\) 0 0
\(339\) −12.9208 −0.701759
\(340\) 0 0
\(341\) 35.9635 1.94753
\(342\) 0 0
\(343\) 30.3584i 1.63920i
\(344\) 0 0
\(345\) 6.50262 3.03574i 0.350089 0.163439i
\(346\) 0 0
\(347\) 1.77786i 0.0954405i −0.998861 0.0477203i \(-0.984804\pi\)
0.998861 0.0477203i \(-0.0151956\pi\)
\(348\) 0 0
\(349\) −23.9187 −1.28034 −0.640170 0.768233i \(-0.721136\pi\)
−0.640170 + 0.768233i \(0.721136\pi\)
\(350\) 0 0
\(351\) −71.4831 −3.81548
\(352\) 0 0
\(353\) 8.55855i 0.455526i 0.973717 + 0.227763i \(0.0731411\pi\)
−0.973717 + 0.227763i \(0.926859\pi\)
\(354\) 0 0
\(355\) −13.3475 + 6.23126i −0.708413 + 0.330721i
\(356\) 0 0
\(357\) 48.7367i 2.57942i
\(358\) 0 0
\(359\) −28.6262 −1.51083 −0.755417 0.655245i \(-0.772565\pi\)
−0.755417 + 0.655245i \(0.772565\pi\)
\(360\) 0 0
\(361\) 0.704135 0.0370597
\(362\) 0 0
\(363\) 32.4821i 1.70487i
\(364\) 0 0
\(365\) 2.28510 + 4.89475i 0.119608 + 0.256203i
\(366\) 0 0
\(367\) 25.3094i 1.32114i −0.750764 0.660570i \(-0.770315\pi\)
0.750764 0.660570i \(-0.229685\pi\)
\(368\) 0 0
\(369\) 42.0317 2.18808
\(370\) 0 0
\(371\) 33.4257 1.73537
\(372\) 0 0
\(373\) 24.0094i 1.24316i −0.783351 0.621579i \(-0.786491\pi\)
0.783351 0.621579i \(-0.213509\pi\)
\(374\) 0 0
\(375\) 34.6714 + 9.24070i 1.79042 + 0.477188i
\(376\) 0 0
\(377\) 21.3945i 1.10187i
\(378\) 0 0
\(379\) 25.6358 1.31682 0.658411 0.752659i \(-0.271229\pi\)
0.658411 + 0.752659i \(0.271229\pi\)
\(380\) 0 0
\(381\) −50.7517 −2.60009
\(382\) 0 0
\(383\) 17.7477i 0.906865i −0.891291 0.453433i \(-0.850199\pi\)
0.891291 0.453433i \(-0.149801\pi\)
\(384\) 0 0
\(385\) −19.7670 42.3415i −1.00742 2.15792i
\(386\) 0 0
\(387\) 12.2434i 0.622369i
\(388\) 0 0
\(389\) −20.4043 −1.03454 −0.517269 0.855823i \(-0.673051\pi\)
−0.517269 + 0.855823i \(0.673051\pi\)
\(390\) 0 0
\(391\) 3.33965 0.168893
\(392\) 0 0
\(393\) 49.7463i 2.50937i
\(394\) 0 0
\(395\) 19.9676 9.32183i 1.00468 0.469032i
\(396\) 0 0
\(397\) 22.2458i 1.11648i 0.829678 + 0.558242i \(0.188524\pi\)
−0.829678 + 0.558242i \(0.811476\pi\)
\(398\) 0 0
\(399\) 64.7789 3.24300
\(400\) 0 0
\(401\) −8.44952 −0.421949 −0.210975 0.977492i \(-0.567664\pi\)
−0.210975 + 0.977492i \(0.567664\pi\)
\(402\) 0 0
\(403\) 40.5345i 2.01917i
\(404\) 0 0
\(405\) 45.3644 21.1783i 2.25418 1.05236i
\(406\) 0 0
\(407\) 4.74166i 0.235035i
\(408\) 0 0
\(409\) −3.18182 −0.157331 −0.0786654 0.996901i \(-0.525066\pi\)
−0.0786654 + 0.996901i \(0.525066\pi\)
\(410\) 0 0
\(411\) 15.8622 0.782425
\(412\) 0 0
\(413\) 8.36450i 0.411590i
\(414\) 0 0
\(415\) 10.2039 + 21.8570i 0.500890 + 1.07292i
\(416\) 0 0
\(417\) 74.0472i 3.62611i
\(418\) 0 0
\(419\) −33.7228 −1.64747 −0.823733 0.566977i \(-0.808113\pi\)
−0.823733 + 0.566977i \(0.808113\pi\)
\(420\) 0 0
\(421\) −23.6641 −1.15332 −0.576659 0.816985i \(-0.695644\pi\)
−0.576659 + 0.816985i \(0.695644\pi\)
\(422\) 0 0
\(423\) 45.2726i 2.20123i
\(424\) 0 0
\(425\) 12.8011 + 10.7221i 0.620945 + 0.520096i
\(426\) 0 0
\(427\) 2.38403i 0.115371i
\(428\) 0 0
\(429\) 76.4006 3.68866
\(430\) 0 0
\(431\) 36.4849 1.75742 0.878708 0.477359i \(-0.158406\pi\)
0.878708 + 0.477359i \(0.158406\pi\)
\(432\) 0 0
\(433\) 28.1736i 1.35393i 0.736013 + 0.676967i \(0.236706\pi\)
−0.736013 + 0.676967i \(0.763294\pi\)
\(434\) 0 0
\(435\) −12.5385 26.8577i −0.601174 1.28773i
\(436\) 0 0
\(437\) 4.43893i 0.212343i
\(438\) 0 0
\(439\) 26.6445 1.27167 0.635837 0.771824i \(-0.280655\pi\)
0.635837 + 0.771824i \(0.280655\pi\)
\(440\) 0 0
\(441\) 99.8370 4.75414
\(442\) 0 0
\(443\) 5.98936i 0.284563i −0.989826 0.142281i \(-0.954556\pi\)
0.989826 0.142281i \(-0.0454438\pi\)
\(444\) 0 0
\(445\) −10.4143 + 4.86188i −0.493684 + 0.230475i
\(446\) 0 0
\(447\) 47.2144i 2.23316i
\(448\) 0 0
\(449\) −35.0989 −1.65642 −0.828209 0.560420i \(-0.810640\pi\)
−0.828209 + 0.560420i \(0.810640\pi\)
\(450\) 0 0
\(451\) −26.4615 −1.24602
\(452\) 0 0
\(453\) 37.0555i 1.74102i
\(454\) 0 0
\(455\) −47.7232 + 22.2795i −2.23730 + 1.04448i
\(456\) 0 0
\(457\) 5.90460i 0.276205i 0.990418 + 0.138103i \(0.0441004\pi\)
−0.990418 + 0.138103i \(0.955900\pi\)
\(458\) 0 0
\(459\) 46.0875 2.15118
\(460\) 0 0
\(461\) −6.25369 −0.291263 −0.145632 0.989339i \(-0.546521\pi\)
−0.145632 + 0.989339i \(0.546521\pi\)
\(462\) 0 0
\(463\) 31.7798i 1.47693i −0.674291 0.738466i \(-0.735550\pi\)
0.674291 0.738466i \(-0.264450\pi\)
\(464\) 0 0
\(465\) 23.7557 + 50.8853i 1.10164 + 2.35975i
\(466\) 0 0
\(467\) 9.63128i 0.445682i −0.974855 0.222841i \(-0.928467\pi\)
0.974855 0.222841i \(-0.0715331\pi\)
\(468\) 0 0
\(469\) −11.6169 −0.536417
\(470\) 0 0
\(471\) −22.5514 −1.03911
\(472\) 0 0
\(473\) 7.70799i 0.354414i
\(474\) 0 0
\(475\) 14.2514 17.0148i 0.653897 0.780691i
\(476\) 0 0
\(477\) 53.6616i 2.45699i
\(478\) 0 0
\(479\) −0.656246 −0.0299846 −0.0149923 0.999888i \(-0.504772\pi\)
−0.0149923 + 0.999888i \(0.504772\pi\)
\(480\) 0 0
\(481\) −5.34433 −0.243680
\(482\) 0 0
\(483\) 14.5934i 0.664020i
\(484\) 0 0
\(485\) −3.18534 6.82307i −0.144639 0.309820i
\(486\) 0 0
\(487\) 33.5157i 1.51874i −0.650658 0.759371i \(-0.725507\pi\)
0.650658 0.759371i \(-0.274493\pi\)
\(488\) 0 0
\(489\) 43.0705 1.94772
\(490\) 0 0
\(491\) 14.7081 0.663768 0.331884 0.943320i \(-0.392316\pi\)
0.331884 + 0.943320i \(0.392316\pi\)
\(492\) 0 0
\(493\) 13.7937i 0.621238i
\(494\) 0 0
\(495\) −67.9750 + 31.7340i −3.05525 + 1.42634i
\(496\) 0 0
\(497\) 29.9548i 1.34366i
\(498\) 0 0
\(499\) −11.8889 −0.532221 −0.266110 0.963943i \(-0.585739\pi\)
−0.266110 + 0.963943i \(0.585739\pi\)
\(500\) 0 0
\(501\) −28.1475 −1.25754
\(502\) 0 0
\(503\) 27.2549i 1.21524i 0.794230 + 0.607618i \(0.207875\pi\)
−0.794230 + 0.607618i \(0.792125\pi\)
\(504\) 0 0
\(505\) −8.47174 + 3.95502i −0.376987 + 0.175996i
\(506\) 0 0
\(507\) 44.3897i 1.97142i
\(508\) 0 0
\(509\) 9.46671 0.419605 0.209802 0.977744i \(-0.432718\pi\)
0.209802 + 0.977744i \(0.432718\pi\)
\(510\) 0 0
\(511\) 10.9849 0.485944
\(512\) 0 0
\(513\) 61.2577i 2.70459i
\(514\) 0 0
\(515\) −9.38450 20.1018i −0.413530 0.885792i
\(516\) 0 0
\(517\) 28.5019i 1.25351i
\(518\) 0 0
\(519\) 65.9251 2.89379
\(520\) 0 0
\(521\) 4.85164 0.212554 0.106277 0.994337i \(-0.466107\pi\)
0.106277 + 0.994337i \(0.466107\pi\)
\(522\) 0 0
\(523\) 39.1914i 1.71372i 0.515549 + 0.856860i \(0.327588\pi\)
−0.515549 + 0.856860i \(0.672412\pi\)
\(524\) 0 0
\(525\) 46.8525 55.9374i 2.04481 2.44131i
\(526\) 0 0
\(527\) 26.1339i 1.13841i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) 13.4284 0.582741
\(532\) 0 0
\(533\) 29.8248i 1.29186i
\(534\) 0 0
\(535\) 11.0509 + 23.6712i 0.477770 + 1.02340i
\(536\) 0 0
\(537\) 49.7065i 2.14499i
\(538\) 0 0
\(539\) −62.8535 −2.70729
\(540\) 0 0
\(541\) −35.9793 −1.54687 −0.773436 0.633875i \(-0.781464\pi\)
−0.773436 + 0.633875i \(0.781464\pi\)
\(542\) 0 0
\(543\) 10.6514i 0.457097i
\(544\) 0 0
\(545\) 11.3249 5.28700i 0.485105 0.226470i
\(546\) 0 0
\(547\) 11.0470i 0.472335i 0.971712 + 0.236167i \(0.0758914\pi\)
−0.971712 + 0.236167i \(0.924109\pi\)
\(548\) 0 0
\(549\) −3.82732 −0.163346
\(550\) 0 0
\(551\) −18.3341 −0.781059
\(552\) 0 0
\(553\) 44.8118i 1.90559i
\(554\) 0 0
\(555\) 6.70904 3.13210i 0.284783 0.132950i
\(556\) 0 0
\(557\) 2.20298i 0.0933433i 0.998910 + 0.0466716i \(0.0148614\pi\)
−0.998910 + 0.0466716i \(0.985139\pi\)
\(558\) 0 0
\(559\) −8.68769 −0.367450
\(560\) 0 0
\(561\) −49.2580 −2.07967
\(562\) 0 0
\(563\) 44.9181i 1.89307i 0.322601 + 0.946535i \(0.395443\pi\)
−0.322601 + 0.946535i \(0.604557\pi\)
\(564\) 0 0
\(565\) 3.80817 + 8.15720i 0.160211 + 0.343176i
\(566\) 0 0
\(567\) 101.808i 4.27554i
\(568\) 0 0
\(569\) 37.4663 1.57067 0.785336 0.619070i \(-0.212490\pi\)
0.785336 + 0.619070i \(0.212490\pi\)
\(570\) 0 0
\(571\) −23.8787 −0.999291 −0.499645 0.866230i \(-0.666536\pi\)
−0.499645 + 0.866230i \(0.666536\pi\)
\(572\) 0 0
\(573\) 17.5399i 0.732741i
\(574\) 0 0
\(575\) −3.83307 3.21054i −0.159850 0.133889i
\(576\) 0 0
\(577\) 32.6048i 1.35735i 0.734437 + 0.678677i \(0.237447\pi\)
−0.734437 + 0.678677i \(0.762553\pi\)
\(578\) 0 0
\(579\) −6.04143 −0.251073
\(580\) 0 0
\(581\) 49.0521 2.03502
\(582\) 0 0
\(583\) 33.7832i 1.39916i
\(584\) 0 0
\(585\) 35.7675 + 76.6148i 1.47880 + 3.16763i
\(586\) 0 0
\(587\) 40.1563i 1.65743i 0.559673 + 0.828714i \(0.310927\pi\)
−0.559673 + 0.828714i \(0.689073\pi\)
\(588\) 0 0
\(589\) 34.7362 1.43128
\(590\) 0 0
\(591\) −23.3411 −0.960126
\(592\) 0 0
\(593\) 4.08558i 0.167775i 0.996475 + 0.0838873i \(0.0267336\pi\)
−0.996475 + 0.0838873i \(0.973266\pi\)
\(594\) 0 0
\(595\) 30.7687 14.3643i 1.26139 0.588879i
\(596\) 0 0
\(597\) 25.1708i 1.03017i
\(598\) 0 0
\(599\) 2.18194 0.0891516 0.0445758 0.999006i \(-0.485806\pi\)
0.0445758 + 0.999006i \(0.485806\pi\)
\(600\) 0 0
\(601\) −17.9240 −0.731136 −0.365568 0.930785i \(-0.619125\pi\)
−0.365568 + 0.930785i \(0.619125\pi\)
\(602\) 0 0
\(603\) 18.6497i 0.759475i
\(604\) 0 0
\(605\) 20.5068 9.57355i 0.833719 0.389220i
\(606\) 0 0
\(607\) 17.4158i 0.706886i 0.935456 + 0.353443i \(0.114989\pi\)
−0.935456 + 0.353443i \(0.885011\pi\)
\(608\) 0 0
\(609\) −60.2748 −2.44246
\(610\) 0 0
\(611\) 32.1245 1.29962
\(612\) 0 0
\(613\) 5.74163i 0.231902i −0.993255 0.115951i \(-0.963008\pi\)
0.993255 0.115951i \(-0.0369916\pi\)
\(614\) 0 0
\(615\) −17.4792 37.4408i −0.704829 1.50976i
\(616\) 0 0
\(617\) 5.74232i 0.231177i 0.993297 + 0.115589i \(0.0368754\pi\)
−0.993297 + 0.115589i \(0.963125\pi\)
\(618\) 0 0
\(619\) −9.23964 −0.371373 −0.185686 0.982609i \(-0.559451\pi\)
−0.185686 + 0.982609i \(0.559451\pi\)
\(620\) 0 0
\(621\) −13.8001 −0.553779
\(622\) 0 0
\(623\) 23.3720i 0.936378i
\(624\) 0 0
\(625\) −4.38491 24.6124i −0.175396 0.984498i
\(626\) 0 0
\(627\) 65.4718i 2.61469i
\(628\) 0 0
\(629\) 3.44566 0.137388
\(630\) 0 0
\(631\) 40.0251 1.59338 0.796688 0.604391i \(-0.206584\pi\)
0.796688 + 0.604391i \(0.206584\pi\)
\(632\) 0 0
\(633\) 19.3807i 0.770314i
\(634\) 0 0
\(635\) 14.9582 + 32.0408i 0.593597 + 1.27150i
\(636\) 0 0
\(637\) 70.8423i 2.80687i
\(638\) 0 0
\(639\) 48.0895 1.90239
\(640\) 0 0
\(641\) 32.5523 1.28574 0.642869 0.765977i \(-0.277744\pi\)
0.642869 + 0.765977i \(0.277744\pi\)
\(642\) 0 0
\(643\) 20.0972i 0.792555i 0.918131 + 0.396277i \(0.129698\pi\)
−0.918131 + 0.396277i \(0.870302\pi\)
\(644\) 0 0
\(645\) 10.9062 5.09152i 0.429429 0.200478i
\(646\) 0 0
\(647\) 0.167428i 0.00658228i −0.999995 0.00329114i \(-0.998952\pi\)
0.999995 0.00329114i \(-0.00104760\pi\)
\(648\) 0 0
\(649\) −8.45397 −0.331847
\(650\) 0 0
\(651\) 114.198 4.47577
\(652\) 0 0
\(653\) 37.2262i 1.45677i −0.685166 0.728387i \(-0.740270\pi\)
0.685166 0.728387i \(-0.259730\pi\)
\(654\) 0 0
\(655\) 31.4061 14.6619i 1.22714 0.572887i
\(656\) 0 0
\(657\) 17.6352i 0.688014i
\(658\) 0 0
\(659\) −5.23004 −0.203734 −0.101867 0.994798i \(-0.532482\pi\)
−0.101867 + 0.994798i \(0.532482\pi\)
\(660\) 0 0
\(661\) 31.8801 1.23999 0.619996 0.784605i \(-0.287134\pi\)
0.619996 + 0.784605i \(0.287134\pi\)
\(662\) 0 0
\(663\) 55.5187i 2.15617i
\(664\) 0 0
\(665\) −19.0925 40.8966i −0.740375 1.58590i
\(666\) 0 0
\(667\) 4.13029i 0.159926i
\(668\) 0 0
\(669\) −44.2670 −1.71146
\(670\) 0 0
\(671\) 2.40953 0.0930189
\(672\) 0 0
\(673\) 22.5996i 0.871151i −0.900152 0.435576i \(-0.856545\pi\)
0.900152 0.435576i \(-0.143455\pi\)
\(674\) 0 0
\(675\) −52.8968 44.3057i −2.03600 1.70533i
\(676\) 0 0
\(677\) 11.6369i 0.447242i 0.974676 + 0.223621i \(0.0717878\pi\)
−0.974676 + 0.223621i \(0.928212\pi\)
\(678\) 0 0
\(679\) −15.3125 −0.587640
\(680\) 0 0
\(681\) −58.6245 −2.24650
\(682\) 0 0
\(683\) 24.6575i 0.943492i −0.881735 0.471746i \(-0.843624\pi\)
0.881735 0.471746i \(-0.156376\pi\)
\(684\) 0 0
\(685\) −4.67511 10.0142i −0.178627 0.382623i
\(686\) 0 0
\(687\) 50.0612i 1.90995i
\(688\) 0 0
\(689\) 38.0771 1.45062
\(690\) 0 0
\(691\) −49.7207 −1.89146 −0.945732 0.324949i \(-0.894653\pi\)
−0.945732 + 0.324949i \(0.894653\pi\)
\(692\) 0 0
\(693\) 152.551i 5.79494i
\(694\) 0 0
\(695\) −46.7478 + 21.8241i −1.77325 + 0.827837i
\(696\) 0 0
\(697\) 19.2290i 0.728352i
\(698\) 0 0
\(699\) −86.4670 −3.27048
\(700\) 0 0
\(701\) −36.2499 −1.36914 −0.684570 0.728947i \(-0.740010\pi\)
−0.684570 + 0.728947i \(0.740010\pi\)
\(702\) 0 0
\(703\) 4.57984i 0.172732i
\(704\) 0 0
\(705\) −40.3277 + 18.8269i −1.51883 + 0.709063i
\(706\) 0 0
\(707\) 19.0125i 0.715038i
\(708\) 0 0
\(709\) −42.1097 −1.58146 −0.790732 0.612162i \(-0.790300\pi\)
−0.790732 + 0.612162i \(0.790300\pi\)
\(710\) 0 0
\(711\) −71.9408 −2.69799
\(712\) 0 0
\(713\) 7.82535i 0.293062i
\(714\) 0 0
\(715\) −22.5178 48.2336i −0.842117 1.80384i
\(716\) 0 0
\(717\) 15.7617i 0.588630i
\(718\) 0 0
\(719\) −27.9125 −1.04096 −0.520481 0.853873i \(-0.674247\pi\)
−0.520481 + 0.853873i \(0.674247\pi\)
\(720\) 0 0
\(721\) −45.1130 −1.68010
\(722\) 0 0
\(723\) 65.1819i 2.42414i
\(724\) 0 0
\(725\) −13.2605 + 15.8317i −0.492481 + 0.587975i
\(726\) 0 0
\(727\) 3.14225i 0.116539i −0.998301 0.0582697i \(-0.981442\pi\)
0.998301 0.0582697i \(-0.0185583\pi\)
\(728\) 0 0
\(729\) −30.5744 −1.13239
\(730\) 0 0
\(731\) 5.60123 0.207169
\(732\) 0 0
\(733\) 43.2304i 1.59675i 0.602161 + 0.798375i \(0.294307\pi\)
−0.602161 + 0.798375i \(0.705693\pi\)
\(734\) 0 0
\(735\) −41.5179 88.9323i −1.53141 3.28032i
\(736\) 0 0
\(737\) 11.7411i 0.432490i
\(738\) 0 0
\(739\) −21.2903 −0.783177 −0.391589 0.920140i \(-0.628074\pi\)
−0.391589 + 0.920140i \(0.628074\pi\)
\(740\) 0 0
\(741\) 73.7934 2.71087
\(742\) 0 0
\(743\) 23.6168i 0.866417i −0.901294 0.433208i \(-0.857381\pi\)
0.901294 0.433208i \(-0.142619\pi\)
\(744\) 0 0
\(745\) 29.8076 13.9156i 1.09207 0.509830i
\(746\) 0 0
\(747\) 78.7482i 2.88125i
\(748\) 0 0
\(749\) 53.1235 1.94109
\(750\) 0 0
\(751\) −24.1779 −0.882263 −0.441131 0.897443i \(-0.645423\pi\)
−0.441131 + 0.897443i \(0.645423\pi\)
\(752\) 0 0
\(753\) 48.5838i 1.77049i
\(754\) 0 0
\(755\) −23.3940 + 10.9215i −0.851396 + 0.397473i
\(756\) 0 0
\(757\) 17.9076i 0.650864i 0.945565 + 0.325432i \(0.105510\pi\)
−0.945565 + 0.325432i \(0.894490\pi\)
\(758\) 0 0
\(759\) 14.7494 0.535371
\(760\) 0 0
\(761\) 13.7932 0.500002 0.250001 0.968246i \(-0.419569\pi\)
0.250001 + 0.968246i \(0.419569\pi\)
\(762\) 0 0
\(763\) 25.4156i 0.920106i
\(764\) 0 0
\(765\) −23.0604 49.3960i −0.833752 1.78592i
\(766\) 0 0
\(767\) 9.52849i 0.344054i
\(768\) 0 0
\(769\) −8.37214 −0.301907 −0.150954 0.988541i \(-0.548234\pi\)
−0.150954 + 0.988541i \(0.548234\pi\)
\(770\) 0 0
\(771\) 69.7695 2.51269
\(772\) 0 0
\(773\) 3.64496i 0.131100i 0.997849 + 0.0655501i \(0.0208802\pi\)
−0.997849 + 0.0655501i \(0.979120\pi\)
\(774\) 0 0
\(775\) 25.1236 29.9951i 0.902465 1.07746i
\(776\) 0 0
\(777\) 15.0566i 0.540153i
\(778\) 0 0
\(779\) −25.5585 −0.915729
\(780\) 0 0
\(781\) −30.2753 −1.08333
\(782\) 0 0
\(783\) 56.9984i 2.03696i
\(784\) 0 0
\(785\) 6.64664 + 14.2373i 0.237229 + 0.508150i
\(786\) 0 0
\(787\) 3.54385i 0.126325i −0.998003 0.0631624i \(-0.979881\pi\)
0.998003 0.0631624i \(-0.0201186\pi\)
\(788\) 0 0
\(789\) −66.0999 −2.35322
\(790\) 0 0
\(791\) 18.3066 0.650908
\(792\) 0 0
\(793\) 2.71579i 0.0964404i
\(794\) 0 0
\(795\) −47.8004 + 22.3155i −1.69531 + 0.791450i
\(796\) 0 0
\(797\) 9.76387i 0.345854i −0.984935 0.172927i \(-0.944677\pi\)
0.984935 0.172927i \(-0.0553225\pi\)
\(798\) 0 0
\(799\) −20.7117 −0.732728
\(