Properties

Label 920.2.bv.a.753.4
Level $920$
Weight $2$
Character 920.753
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 753.4
Character \(\chi\) \(=\) 920.753
Dual form 920.2.bv.a.617.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34923 - 2.47093i) q^{3} +(2.23473 - 0.0773038i) q^{5} +(0.255357 - 0.191158i) q^{7} +(-2.66315 + 4.14394i) q^{9} +(-4.15304 + 1.89663i) q^{11} +(3.09352 - 4.13246i) q^{13} +(-3.20618 - 5.41756i) q^{15} +(-3.17579 + 0.227137i) q^{17} +(-3.00031 - 3.46254i) q^{19} +(-0.816873 - 0.373054i) q^{21} +(-3.37622 - 3.40605i) q^{23} +(4.98805 - 0.345507i) q^{25} +(5.40822 + 0.386803i) q^{27} +(-5.27704 - 4.57258i) q^{29} +(1.08214 - 0.317745i) q^{31} +(10.2898 + 7.70288i) q^{33} +(0.555877 - 0.446927i) q^{35} +(-1.03304 - 4.74880i) q^{37} +(-14.3849 - 2.06824i) q^{39} +(-0.580499 + 0.373064i) q^{41} +(3.49571 - 1.90880i) q^{43} +(-5.63109 + 9.46647i) q^{45} +(-3.43722 + 3.43722i) q^{47} +(-1.94346 + 6.61882i) q^{49} +(4.84612 + 7.54070i) q^{51} +(3.03658 + 4.05640i) q^{53} +(-9.13431 + 4.55950i) q^{55} +(-4.50759 + 12.0853i) q^{57} +(-2.01165 + 0.289231i) q^{59} +(-1.29502 - 4.41043i) q^{61} +(0.112093 + 1.56727i) q^{63} +(6.59374 - 9.47409i) q^{65} +(-0.705066 + 0.262976i) q^{67} +(-3.86081 + 12.9379i) q^{69} +(3.29427 - 7.21344i) q^{71} +(-0.509081 + 7.11789i) q^{73} +(-7.58375 - 11.8590i) q^{75} +(-0.697952 + 1.27820i) q^{77} +(-0.450734 - 3.13492i) q^{79} +(-0.202267 - 0.442902i) q^{81} +(1.44328 - 0.313966i) q^{83} +(-7.07949 + 0.753092i) q^{85} +(-4.17859 + 19.2087i) q^{87} +(-11.8297 - 3.47350i) q^{89} -1.64661i q^{91} +(-2.24518 - 2.24518i) q^{93} +(-6.97256 - 7.50592i) q^{95} +(-17.7506 - 3.86140i) q^{97} +(3.20064 - 22.2610i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.34923 2.47093i −0.778978 1.42659i −0.900888 0.434051i \(-0.857084\pi\)
0.121910 0.992541i \(-0.461098\pi\)
\(4\) 0 0
\(5\) 2.23473 0.0773038i 0.999402 0.0345713i
\(6\) 0 0
\(7\) 0.255357 0.191158i 0.0965159 0.0722509i −0.549930 0.835211i \(-0.685346\pi\)
0.646446 + 0.762960i \(0.276255\pi\)
\(8\) 0 0
\(9\) −2.66315 + 4.14394i −0.887717 + 1.38131i
\(10\) 0 0
\(11\) −4.15304 + 1.89663i −1.25219 + 0.571855i −0.927449 0.373949i \(-0.878004\pi\)
−0.324739 + 0.945804i \(0.605276\pi\)
\(12\) 0 0
\(13\) 3.09352 4.13246i 0.857989 1.14614i −0.129984 0.991516i \(-0.541493\pi\)
0.987974 0.154623i \(-0.0494163\pi\)
\(14\) 0 0
\(15\) −3.20618 5.41756i −0.827832 1.39881i
\(16\) 0 0
\(17\) −3.17579 + 0.227137i −0.770243 + 0.0550889i −0.450929 0.892560i \(-0.648907\pi\)
−0.319314 + 0.947649i \(0.603453\pi\)
\(18\) 0 0
\(19\) −3.00031 3.46254i −0.688319 0.794362i 0.298806 0.954314i \(-0.403412\pi\)
−0.987125 + 0.159952i \(0.948866\pi\)
\(20\) 0 0
\(21\) −0.816873 0.373054i −0.178256 0.0814070i
\(22\) 0 0
\(23\) −3.37622 3.40605i −0.703990 0.710210i
\(24\) 0 0
\(25\) 4.98805 0.345507i 0.997610 0.0691013i
\(26\) 0 0
\(27\) 5.40822 + 0.386803i 1.04081 + 0.0744404i
\(28\) 0 0
\(29\) −5.27704 4.57258i −0.979921 0.849107i 0.00863436 0.999963i \(-0.497252\pi\)
−0.988556 + 0.150856i \(0.951797\pi\)
\(30\) 0 0
\(31\) 1.08214 0.317745i 0.194358 0.0570687i −0.183105 0.983093i \(-0.558615\pi\)
0.377463 + 0.926025i \(0.376797\pi\)
\(32\) 0 0
\(33\) 10.2898 + 7.70288i 1.79123 + 1.34090i
\(34\) 0 0
\(35\) 0.555877 0.446927i 0.0939604 0.0755444i
\(36\) 0 0
\(37\) −1.03304 4.74880i −0.169830 0.780698i −0.980707 0.195481i \(-0.937373\pi\)
0.810877 0.585217i \(-0.198990\pi\)
\(38\) 0 0
\(39\) −14.3849 2.06824i −2.30343 0.331183i
\(40\) 0 0
\(41\) −0.580499 + 0.373064i −0.0906587 + 0.0582628i −0.585185 0.810900i \(-0.698978\pi\)
0.494526 + 0.869163i \(0.335342\pi\)
\(42\) 0 0
\(43\) 3.49571 1.90880i 0.533091 0.291090i −0.190068 0.981771i \(-0.560871\pi\)
0.723160 + 0.690681i \(0.242689\pi\)
\(44\) 0 0
\(45\) −5.63109 + 9.46647i −0.839433 + 1.41118i
\(46\) 0 0
\(47\) −3.43722 + 3.43722i −0.501370 + 0.501370i −0.911864 0.410493i \(-0.865357\pi\)
0.410493 + 0.911864i \(0.365357\pi\)
\(48\) 0 0
\(49\) −1.94346 + 6.61882i −0.277637 + 0.945546i
\(50\) 0 0
\(51\) 4.84612 + 7.54070i 0.678592 + 1.05591i
\(52\) 0 0
\(53\) 3.03658 + 4.05640i 0.417107 + 0.557189i 0.959054 0.283223i \(-0.0914037\pi\)
−0.541947 + 0.840412i \(0.682313\pi\)
\(54\) 0 0
\(55\) −9.13431 + 4.55950i −1.23167 + 0.614803i
\(56\) 0 0
\(57\) −4.50759 + 12.0853i −0.597045 + 1.60074i
\(58\) 0 0
\(59\) −2.01165 + 0.289231i −0.261894 + 0.0376547i −0.272011 0.962294i \(-0.587689\pi\)
0.0101170 + 0.999949i \(0.496780\pi\)
\(60\) 0 0
\(61\) −1.29502 4.41043i −0.165810 0.564698i −0.999914 0.0130906i \(-0.995833\pi\)
0.834104 0.551607i \(-0.185985\pi\)
\(62\) 0 0
\(63\) 0.112093 + 1.56727i 0.0141224 + 0.197457i
\(64\) 0 0
\(65\) 6.59374 9.47409i 0.817853 1.17512i
\(66\) 0 0
\(67\) −0.705066 + 0.262976i −0.0861375 + 0.0321276i −0.392164 0.919896i \(-0.628273\pi\)
0.306026 + 0.952023i \(0.401001\pi\)
\(68\) 0 0
\(69\) −3.86081 + 12.9379i −0.464787 + 1.55754i
\(70\) 0 0
\(71\) 3.29427 7.21344i 0.390958 0.856078i −0.607150 0.794587i \(-0.707687\pi\)
0.998108 0.0614909i \(-0.0195855\pi\)
\(72\) 0 0
\(73\) −0.509081 + 7.11789i −0.0595835 + 0.833086i 0.876521 + 0.481364i \(0.159858\pi\)
−0.936104 + 0.351722i \(0.885596\pi\)
\(74\) 0 0
\(75\) −7.58375 11.8590i −0.875696 1.36935i
\(76\) 0 0
\(77\) −0.697952 + 1.27820i −0.0795390 + 0.145665i
\(78\) 0 0
\(79\) −0.450734 3.13492i −0.0507115 0.352706i −0.999340 0.0363153i \(-0.988438\pi\)
0.948629 0.316391i \(-0.102471\pi\)
\(80\) 0 0
\(81\) −0.202267 0.442902i −0.0224741 0.0492114i
\(82\) 0 0
\(83\) 1.44328 0.313966i 0.158420 0.0344622i −0.132656 0.991162i \(-0.542350\pi\)
0.291076 + 0.956700i \(0.405987\pi\)
\(84\) 0 0
\(85\) −7.07949 + 0.753092i −0.767878 + 0.0816843i
\(86\) 0 0
\(87\) −4.17859 + 19.2087i −0.447992 + 2.05938i
\(88\) 0 0
\(89\) −11.8297 3.47350i −1.25394 0.368191i −0.413706 0.910411i \(-0.635766\pi\)
−0.840236 + 0.542220i \(0.817584\pi\)
\(90\) 0 0
\(91\) 1.64661i 0.172611i
\(92\) 0 0
\(93\) −2.24518 2.24518i −0.232814 0.232814i
\(94\) 0 0
\(95\) −6.97256 7.50592i −0.715369 0.770091i
\(96\) 0 0
\(97\) −17.7506 3.86140i −1.80230 0.392066i −0.818960 0.573850i \(-0.805449\pi\)
−0.983338 + 0.181784i \(0.941813\pi\)
\(98\) 0 0
\(99\) 3.20064 22.2610i 0.321677 2.23731i
\(100\) 0 0
\(101\) −2.78246 1.78818i −0.276865 0.177930i 0.394838 0.918751i \(-0.370801\pi\)
−0.671703 + 0.740820i \(0.734437\pi\)
\(102\) 0 0
\(103\) 10.4128 + 3.88377i 1.02600 + 0.382679i 0.805429 0.592692i \(-0.201935\pi\)
0.220572 + 0.975371i \(0.429208\pi\)
\(104\) 0 0
\(105\) −1.85433 0.770527i −0.180964 0.0751957i
\(106\) 0 0
\(107\) 16.8354 + 9.19283i 1.62754 + 0.888704i 0.993299 + 0.115569i \(0.0368690\pi\)
0.634241 + 0.773136i \(0.281313\pi\)
\(108\) 0 0
\(109\) 12.4592 14.3786i 1.19337 1.37722i 0.285283 0.958443i \(-0.407912\pi\)
0.908088 0.418780i \(-0.137542\pi\)
\(110\) 0 0
\(111\) −10.3401 + 8.95979i −0.981443 + 0.850425i
\(112\) 0 0
\(113\) −6.11631 16.3985i −0.575374 1.54264i −0.819610 0.572922i \(-0.805810\pi\)
0.244236 0.969716i \(-0.421463\pi\)
\(114\) 0 0
\(115\) −7.80824 7.35061i −0.728122 0.685448i
\(116\) 0 0
\(117\) 8.88618 + 23.8248i 0.821527 + 2.20260i
\(118\) 0 0
\(119\) −0.767542 + 0.665079i −0.0703605 + 0.0609677i
\(120\) 0 0
\(121\) 6.44706 7.44030i 0.586096 0.676391i
\(122\) 0 0
\(123\) 1.70504 + 0.931023i 0.153738 + 0.0839476i
\(124\) 0 0
\(125\) 11.1202 1.15771i 0.994624 0.103549i
\(126\) 0 0
\(127\) 11.4613 + 4.27483i 1.01702 + 0.379330i 0.802029 0.597285i \(-0.203754\pi\)
0.214994 + 0.976615i \(0.431027\pi\)
\(128\) 0 0
\(129\) −9.43304 6.06225i −0.830533 0.533751i
\(130\) 0 0
\(131\) 1.56280 10.8695i 0.136542 0.949673i −0.800220 0.599707i \(-0.795284\pi\)
0.936762 0.349967i \(-0.113807\pi\)
\(132\) 0 0
\(133\) −1.42804 0.310652i −0.123827 0.0269369i
\(134\) 0 0
\(135\) 12.1158 + 0.446326i 1.04276 + 0.0384136i
\(136\) 0 0
\(137\) 16.3201 + 16.3201i 1.39432 + 1.39432i 0.815354 + 0.578963i \(0.196542\pi\)
0.578963 + 0.815354i \(0.303458\pi\)
\(138\) 0 0
\(139\) 13.8056i 1.17098i 0.810681 + 0.585488i \(0.199097\pi\)
−0.810681 + 0.585488i \(0.800903\pi\)
\(140\) 0 0
\(141\) 13.1307 + 3.85553i 1.10581 + 0.324694i
\(142\) 0 0
\(143\) −5.00977 + 23.0295i −0.418938 + 1.92583i
\(144\) 0 0
\(145\) −12.1462 9.81055i −1.00869 0.814722i
\(146\) 0 0
\(147\) 18.9768 4.12816i 1.56518 0.340485i
\(148\) 0 0
\(149\) 8.02048 + 17.5624i 0.657064 + 1.43877i 0.885233 + 0.465147i \(0.153999\pi\)
−0.228170 + 0.973621i \(0.573274\pi\)
\(150\) 0 0
\(151\) −1.62791 11.3223i −0.132477 0.921399i −0.942311 0.334740i \(-0.891352\pi\)
0.809833 0.586660i \(-0.199557\pi\)
\(152\) 0 0
\(153\) 7.51638 13.7652i 0.607663 1.11285i
\(154\) 0 0
\(155\) 2.39373 0.793728i 0.192269 0.0637538i
\(156\) 0 0
\(157\) −0.217839 + 3.04579i −0.0173855 + 0.243081i 0.981327 + 0.192348i \(0.0616102\pi\)
−0.998712 + 0.0507328i \(0.983844\pi\)
\(158\) 0 0
\(159\) 5.92603 12.9762i 0.469965 1.02908i
\(160\) 0 0
\(161\) −1.51323 0.224368i −0.119260 0.0176826i
\(162\) 0 0
\(163\) 16.2696 6.06826i 1.27434 0.475302i 0.380951 0.924595i \(-0.375597\pi\)
0.893385 + 0.449293i \(0.148324\pi\)
\(164\) 0 0
\(165\) 23.5905 + 16.4184i 1.83652 + 1.27817i
\(166\) 0 0
\(167\) −1.17521 16.4315i −0.0909402 1.27151i −0.814057 0.580785i \(-0.802746\pi\)
0.723117 0.690726i \(-0.242709\pi\)
\(168\) 0 0
\(169\) −3.84484 13.0943i −0.295757 1.00726i
\(170\) 0 0
\(171\) 22.3389 3.21184i 1.70830 0.245616i
\(172\) 0 0
\(173\) 6.79263 18.2117i 0.516434 1.38461i −0.373120 0.927783i \(-0.621712\pi\)
0.889554 0.456830i \(-0.151015\pi\)
\(174\) 0 0
\(175\) 1.20769 1.04173i 0.0912926 0.0787476i
\(176\) 0 0
\(177\) 3.42884 + 4.58040i 0.257728 + 0.344284i
\(178\) 0 0
\(179\) 3.70390 + 5.76338i 0.276843 + 0.430775i 0.951634 0.307233i \(-0.0994030\pi\)
−0.674792 + 0.738008i \(0.735767\pi\)
\(180\) 0 0
\(181\) −3.70057 + 12.6030i −0.275061 + 0.936772i 0.699871 + 0.714269i \(0.253241\pi\)
−0.974932 + 0.222503i \(0.928577\pi\)
\(182\) 0 0
\(183\) −9.15058 + 9.15058i −0.676431 + 0.676431i
\(184\) 0 0
\(185\) −2.67566 10.5324i −0.196719 0.774360i
\(186\) 0 0
\(187\) 12.7584 6.96661i 0.932987 0.509449i
\(188\) 0 0
\(189\) 1.45497 0.935051i 0.105833 0.0680149i
\(190\) 0 0
\(191\) 7.90289 + 1.13626i 0.571833 + 0.0822172i 0.422165 0.906519i \(-0.361270\pi\)
0.149668 + 0.988736i \(0.452179\pi\)
\(192\) 0 0
\(193\) −3.22428 14.8218i −0.232089 1.06689i −0.934732 0.355352i \(-0.884361\pi\)
0.702644 0.711542i \(-0.252003\pi\)
\(194\) 0 0
\(195\) −32.3063 3.50995i −2.31350 0.251352i
\(196\) 0 0
\(197\) −15.0913 11.2972i −1.07521 0.804893i −0.0935664 0.995613i \(-0.529827\pi\)
−0.981644 + 0.190720i \(0.938918\pi\)
\(198\) 0 0
\(199\) −8.94437 + 2.62631i −0.634050 + 0.186174i −0.582935 0.812519i \(-0.698096\pi\)
−0.0511151 + 0.998693i \(0.516278\pi\)
\(200\) 0 0
\(201\) 1.60109 + 1.38735i 0.112932 + 0.0978564i
\(202\) 0 0
\(203\) −2.22161 0.158893i −0.155927 0.0111521i
\(204\) 0 0
\(205\) −1.26842 + 0.878573i −0.0885903 + 0.0613622i
\(206\) 0 0
\(207\) 23.1058 4.92004i 1.60597 0.341966i
\(208\) 0 0
\(209\) 19.0276 + 8.68960i 1.31616 + 0.601072i
\(210\) 0 0
\(211\) −15.1346 17.4663i −1.04191 1.20243i −0.978884 0.204416i \(-0.934471\pi\)
−0.0630253 0.998012i \(-0.520075\pi\)
\(212\) 0 0
\(213\) −22.2686 + 1.59268i −1.52582 + 0.109129i
\(214\) 0 0
\(215\) 7.66442 4.53590i 0.522709 0.309346i
\(216\) 0 0
\(217\) 0.215593 0.287998i 0.0146354 0.0195506i
\(218\) 0 0
\(219\) 18.2747 8.34576i 1.23489 0.563954i
\(220\) 0 0
\(221\) −8.88576 + 13.8265i −0.597721 + 0.930072i
\(222\) 0 0
\(223\) 20.1169 15.0593i 1.34712 1.00844i 0.349689 0.936866i \(-0.386287\pi\)
0.997435 0.0715786i \(-0.0228037\pi\)
\(224\) 0 0
\(225\) −11.8522 + 21.5903i −0.790145 + 1.43936i
\(226\) 0 0
\(227\) −1.09907 2.01279i −0.0729478 0.133594i 0.838660 0.544656i \(-0.183340\pi\)
−0.911607 + 0.411062i \(0.865158\pi\)
\(228\) 0 0
\(229\) 19.5250 1.29025 0.645125 0.764077i \(-0.276805\pi\)
0.645125 + 0.764077i \(0.276805\pi\)
\(230\) 0 0
\(231\) 4.10005 0.269763
\(232\) 0 0
\(233\) 4.19696 + 7.68616i 0.274952 + 0.503537i 0.978269 0.207339i \(-0.0664804\pi\)
−0.703317 + 0.710876i \(0.748299\pi\)
\(234\) 0 0
\(235\) −7.41556 + 7.94698i −0.483738 + 0.518404i
\(236\) 0 0
\(237\) −7.13803 + 5.34346i −0.463665 + 0.347095i
\(238\) 0 0
\(239\) −5.19130 + 8.07783i −0.335798 + 0.522511i −0.967557 0.252653i \(-0.918697\pi\)
0.631759 + 0.775165i \(0.282333\pi\)
\(240\) 0 0
\(241\) 10.0367 4.58359i 0.646519 0.295255i −0.0650392 0.997883i \(-0.520717\pi\)
0.711558 + 0.702628i \(0.247990\pi\)
\(242\) 0 0
\(243\) 8.92643 11.9243i 0.572631 0.764945i
\(244\) 0 0
\(245\) −3.83146 + 14.9415i −0.244783 + 0.954579i
\(246\) 0 0
\(247\) −23.5904 + 1.68722i −1.50102 + 0.107355i
\(248\) 0 0
\(249\) −2.72310 3.14262i −0.172569 0.199156i
\(250\) 0 0
\(251\) −16.1155 7.35971i −1.01720 0.464540i −0.164188 0.986429i \(-0.552500\pi\)
−0.853014 + 0.521889i \(0.825228\pi\)
\(252\) 0 0
\(253\) 20.4816 + 7.74201i 1.28767 + 0.486736i
\(254\) 0 0
\(255\) 11.4127 + 16.4768i 0.714691 + 1.03182i
\(256\) 0 0
\(257\) −8.93150 0.638793i −0.557131 0.0398468i −0.210065 0.977687i \(-0.567368\pi\)
−0.347066 + 0.937841i \(0.612822\pi\)
\(258\) 0 0
\(259\) −1.17156 1.01517i −0.0727975 0.0630793i
\(260\) 0 0
\(261\) 33.0021 9.69028i 2.04278 0.599813i
\(262\) 0 0
\(263\) −17.6425 13.2070i −1.08788 0.814378i −0.104247 0.994551i \(-0.533243\pi\)
−0.983635 + 0.180173i \(0.942334\pi\)
\(264\) 0 0
\(265\) 7.09952 + 8.83022i 0.436120 + 0.542436i
\(266\) 0 0
\(267\) 7.37815 + 33.9168i 0.451536 + 2.07568i
\(268\) 0 0
\(269\) −9.10920 1.30971i −0.555398 0.0798541i −0.141100 0.989995i \(-0.545064\pi\)
−0.414298 + 0.910141i \(0.635973\pi\)
\(270\) 0 0
\(271\) −14.0938 + 9.05752i −0.856136 + 0.550205i −0.893483 0.449097i \(-0.851746\pi\)
0.0373468 + 0.999302i \(0.488109\pi\)
\(272\) 0 0
\(273\) −4.06865 + 2.22165i −0.246246 + 0.134460i
\(274\) 0 0
\(275\) −20.0603 + 10.8954i −1.20968 + 0.657016i
\(276\) 0 0
\(277\) 17.1195 17.1195i 1.02861 1.02861i 0.0290345 0.999578i \(-0.490757\pi\)
0.999578 0.0290345i \(-0.00924325\pi\)
\(278\) 0 0
\(279\) −1.56519 + 5.33053i −0.0937052 + 0.319131i
\(280\) 0 0
\(281\) −6.80305 10.5858i −0.405836 0.631493i 0.576833 0.816862i \(-0.304288\pi\)
−0.982669 + 0.185369i \(0.940652\pi\)
\(282\) 0 0
\(283\) 8.66593 + 11.5763i 0.515136 + 0.688141i 0.980397 0.197032i \(-0.0631304\pi\)
−0.465261 + 0.885174i \(0.654039\pi\)
\(284\) 0 0
\(285\) −9.13902 + 27.3559i −0.541349 + 1.62042i
\(286\) 0 0
\(287\) −0.0769204 + 0.206232i −0.00454047 + 0.0121735i
\(288\) 0 0
\(289\) −6.79289 + 0.976670i −0.399582 + 0.0574512i
\(290\) 0 0
\(291\) 14.4084 + 49.0704i 0.844633 + 2.87656i
\(292\) 0 0
\(293\) 1.27881 + 17.8800i 0.0747086 + 1.04456i 0.887138 + 0.461504i \(0.152690\pi\)
−0.812430 + 0.583059i \(0.801856\pi\)
\(294\) 0 0
\(295\) −4.47313 + 0.801861i −0.260436 + 0.0466862i
\(296\) 0 0
\(297\) −23.1942 + 8.65097i −1.34586 + 0.501980i
\(298\) 0 0
\(299\) −24.5198 + 3.41541i −1.41802 + 0.197518i
\(300\) 0 0
\(301\) 0.527772 1.15566i 0.0304203 0.0666111i
\(302\) 0 0
\(303\) −0.664285 + 9.28792i −0.0381622 + 0.533577i
\(304\) 0 0
\(305\) −3.23496 9.75601i −0.185233 0.558628i
\(306\) 0 0
\(307\) 4.39818 8.05467i 0.251018 0.459704i −0.721538 0.692375i \(-0.756565\pi\)
0.972556 + 0.232670i \(0.0747463\pi\)
\(308\) 0 0
\(309\) −4.45272 30.9693i −0.253306 1.76178i
\(310\) 0 0
\(311\) 9.77141 + 21.3964i 0.554086 + 1.21328i 0.954847 + 0.297097i \(0.0960184\pi\)
−0.400761 + 0.916183i \(0.631254\pi\)
\(312\) 0 0
\(313\) 11.0992 2.41447i 0.627361 0.136474i 0.112366 0.993667i \(-0.464157\pi\)
0.514996 + 0.857193i \(0.327794\pi\)
\(314\) 0 0
\(315\) 0.371654 + 3.49376i 0.0209403 + 0.196851i
\(316\) 0 0
\(317\) 5.29462 24.3390i 0.297375 1.36701i −0.549621 0.835414i \(-0.685228\pi\)
0.846997 0.531598i \(-0.178408\pi\)
\(318\) 0 0
\(319\) 30.5882 + 8.98151i 1.71261 + 0.502868i
\(320\) 0 0
\(321\) 54.0024i 3.01412i
\(322\) 0 0
\(323\) 10.3148 + 10.3148i 0.573933 + 0.573933i
\(324\) 0 0
\(325\) 14.0029 21.6818i 0.776738 1.20269i
\(326\) 0 0
\(327\) −52.3389 11.3856i −2.89435 0.629626i
\(328\) 0 0
\(329\) −0.220667 + 1.53477i −0.0121658 + 0.0846147i
\(330\) 0 0
\(331\) −28.1933 18.1187i −1.54964 0.995895i −0.985394 0.170291i \(-0.945529\pi\)
−0.564250 0.825604i \(-0.690834\pi\)
\(332\) 0 0
\(333\) 22.4299 + 8.36592i 1.22915 + 0.458450i
\(334\) 0 0
\(335\) −1.55530 + 0.642185i −0.0849754 + 0.0350863i
\(336\) 0 0
\(337\) −2.45036 1.33800i −0.133480 0.0728855i 0.411122 0.911581i \(-0.365137\pi\)
−0.544601 + 0.838695i \(0.683319\pi\)
\(338\) 0 0
\(339\) −32.2671 + 37.2383i −1.75251 + 2.02251i
\(340\) 0 0
\(341\) −3.89152 + 3.37203i −0.210738 + 0.182605i
\(342\) 0 0
\(343\) 1.54927 + 4.15375i 0.0836527 + 0.224282i
\(344\) 0 0
\(345\) −7.62772 + 29.2113i −0.410663 + 1.57268i
\(346\) 0 0
\(347\) 11.2953 + 30.2838i 0.606361 + 1.62572i 0.769159 + 0.639058i \(0.220675\pi\)
−0.162798 + 0.986659i \(0.552052\pi\)
\(348\) 0 0
\(349\) 24.6327 21.3444i 1.31856 1.14254i 0.339132 0.940739i \(-0.389867\pi\)
0.979427 0.201799i \(-0.0646787\pi\)
\(350\) 0 0
\(351\) 18.3289 21.1527i 0.978324 1.12905i
\(352\) 0 0
\(353\) −21.8390 11.9250i −1.16237 0.634702i −0.222064 0.975032i \(-0.571279\pi\)
−0.940306 + 0.340330i \(0.889461\pi\)
\(354\) 0 0
\(355\) 6.80418 16.3748i 0.361128 0.869083i
\(356\) 0 0
\(357\) 2.67896 + 0.999199i 0.141785 + 0.0528832i
\(358\) 0 0
\(359\) 3.41487 + 2.19460i 0.180230 + 0.115827i 0.627645 0.778500i \(-0.284019\pi\)
−0.447415 + 0.894326i \(0.647655\pi\)
\(360\) 0 0
\(361\) −0.283360 + 1.97081i −0.0149137 + 0.103727i
\(362\) 0 0
\(363\) −27.0830 5.89155i −1.42149 0.309226i
\(364\) 0 0
\(365\) −0.587420 + 15.9459i −0.0307470 + 0.834648i
\(366\) 0 0
\(367\) −9.76278 9.76278i −0.509613 0.509613i 0.404795 0.914408i \(-0.367343\pi\)
−0.914408 + 0.404795i \(0.867343\pi\)
\(368\) 0 0
\(369\) 3.39908i 0.176949i
\(370\) 0 0
\(371\) 1.55083 + 0.455363i 0.0805148 + 0.0236413i
\(372\) 0 0
\(373\) −1.77597 + 8.16402i −0.0919564 + 0.422717i 0.908036 + 0.418892i \(0.137581\pi\)
−0.999993 + 0.00382530i \(0.998782\pi\)
\(374\) 0 0
\(375\) −17.8644 25.9153i −0.922512 1.33826i
\(376\) 0 0
\(377\) −35.2207 + 7.66179i −1.81396 + 0.394602i
\(378\) 0 0
\(379\) 4.67661 + 10.2403i 0.240221 + 0.526011i 0.990891 0.134666i \(-0.0429963\pi\)
−0.750670 + 0.660678i \(0.770269\pi\)
\(380\) 0 0
\(381\) −4.90107 34.0877i −0.251090 1.74637i
\(382\) 0 0
\(383\) −4.45838 + 8.16491i −0.227812 + 0.417207i −0.966435 0.256912i \(-0.917295\pi\)
0.738622 + 0.674119i \(0.235477\pi\)
\(384\) 0 0
\(385\) −1.46093 + 2.91040i −0.0744557 + 0.148328i
\(386\) 0 0
\(387\) −1.39964 + 19.5695i −0.0711475 + 0.994772i
\(388\) 0 0
\(389\) 0.628717 1.37670i 0.0318772 0.0698013i −0.893024 0.450010i \(-0.851420\pi\)
0.924901 + 0.380208i \(0.124148\pi\)
\(390\) 0 0
\(391\) 11.4958 + 10.0500i 0.581368 + 0.508252i
\(392\) 0 0
\(393\) −28.9664 + 10.8039i −1.46116 + 0.544985i
\(394\) 0 0
\(395\) −1.24961 6.97087i −0.0628747 0.350742i
\(396\) 0 0
\(397\) −0.784061 10.9626i −0.0393509 0.550197i −0.978441 0.206526i \(-0.933784\pi\)
0.939090 0.343671i \(-0.111670\pi\)
\(398\) 0 0
\(399\) 1.15916 + 3.94774i 0.0580306 + 0.197634i
\(400\) 0 0
\(401\) −6.84218 + 0.983757i −0.341682 + 0.0491265i −0.311020 0.950403i \(-0.600671\pi\)
−0.0306620 + 0.999530i \(0.509762\pi\)
\(402\) 0 0
\(403\) 2.03456 5.45486i 0.101348 0.271726i
\(404\) 0 0
\(405\) −0.486250 0.974132i −0.0241619 0.0484050i
\(406\) 0 0
\(407\) 13.2970 + 17.7627i 0.659106 + 0.880462i
\(408\) 0 0
\(409\) 6.24459 + 9.71677i 0.308775 + 0.480464i 0.960611 0.277897i \(-0.0896373\pi\)
−0.651836 + 0.758360i \(0.726001\pi\)
\(410\) 0 0
\(411\) 18.3062 62.3452i 0.902979 3.07526i
\(412\) 0 0
\(413\) −0.458399 + 0.458399i −0.0225563 + 0.0225563i
\(414\) 0 0
\(415\) 3.20106 0.813200i 0.157134 0.0399184i
\(416\) 0 0
\(417\) 34.1127 18.6269i 1.67050 0.912165i
\(418\) 0 0
\(419\) 5.72563 3.67964i 0.279715 0.179762i −0.393260 0.919427i \(-0.628653\pi\)
0.672975 + 0.739666i \(0.265016\pi\)
\(420\) 0 0
\(421\) 24.1849 + 3.47726i 1.17870 + 0.169471i 0.703688 0.710509i \(-0.251535\pi\)
0.475011 + 0.879980i \(0.342444\pi\)
\(422\) 0 0
\(423\) −5.08981 23.3975i −0.247475 1.13763i
\(424\) 0 0
\(425\) −15.7625 + 2.23023i −0.764595 + 0.108182i
\(426\) 0 0
\(427\) −1.17378 0.878681i −0.0568032 0.0425224i
\(428\) 0 0
\(429\) 63.6637 18.6934i 3.07371 0.902524i
\(430\) 0 0
\(431\) 13.4728 + 11.6743i 0.648962 + 0.562329i 0.915911 0.401382i \(-0.131470\pi\)
−0.266949 + 0.963711i \(0.586015\pi\)
\(432\) 0 0
\(433\) 33.4986 + 2.39587i 1.60984 + 0.115138i 0.847053 0.531509i \(-0.178375\pi\)
0.762789 + 0.646647i \(0.223829\pi\)
\(434\) 0 0
\(435\) −7.85312 + 43.2492i −0.376528 + 2.07364i
\(436\) 0 0
\(437\) −1.66388 + 21.9095i −0.0795944 + 1.04807i
\(438\) 0 0
\(439\) 3.19723 + 1.46013i 0.152596 + 0.0696881i 0.490249 0.871582i \(-0.336906\pi\)
−0.337653 + 0.941271i \(0.609633\pi\)
\(440\) 0 0
\(441\) −22.2523 25.6805i −1.05963 1.22288i
\(442\) 0 0
\(443\) 25.9285 1.85444i 1.23190 0.0881072i 0.559838 0.828602i \(-0.310863\pi\)
0.672062 + 0.740495i \(0.265409\pi\)
\(444\) 0 0
\(445\) −26.7046 6.84787i −1.26592 0.324620i
\(446\) 0 0
\(447\) 32.5740 43.5138i 1.54070 2.05813i
\(448\) 0 0
\(449\) 12.6424 5.77358i 0.596631 0.272472i −0.0941247 0.995560i \(-0.530005\pi\)
0.690756 + 0.723088i \(0.257278\pi\)
\(450\) 0 0
\(451\) 1.70327 2.65034i 0.0802039 0.124800i
\(452\) 0 0
\(453\) −25.7803 + 19.2989i −1.21126 + 0.906741i
\(454\) 0 0
\(455\) −0.127289 3.67972i −0.00596739 0.172508i
\(456\) 0 0
\(457\) −7.40886 13.5683i −0.346572 0.634699i 0.645011 0.764173i \(-0.276853\pi\)
−0.991583 + 0.129474i \(0.958671\pi\)
\(458\) 0 0
\(459\) −17.2632 −0.805779
\(460\) 0 0
\(461\) −19.1442 −0.891635 −0.445818 0.895124i \(-0.647087\pi\)
−0.445818 + 0.895124i \(0.647087\pi\)
\(462\) 0 0
\(463\) −6.53256 11.9635i −0.303594 0.555991i 0.680693 0.732569i \(-0.261679\pi\)
−0.984287 + 0.176578i \(0.943497\pi\)
\(464\) 0 0
\(465\) −5.19094 4.84382i −0.240724 0.224627i
\(466\) 0 0
\(467\) −13.5855 + 10.1700i −0.628664 + 0.470612i −0.865481 0.500942i \(-0.832987\pi\)
0.236817 + 0.971554i \(0.423896\pi\)
\(468\) 0 0
\(469\) −0.129774 + 0.201932i −0.00599239 + 0.00932434i
\(470\) 0 0
\(471\) 7.81986 3.57121i 0.360320 0.164553i
\(472\) 0 0
\(473\) −10.8975 + 14.5574i −0.501069 + 0.669350i
\(474\) 0 0
\(475\) −16.1620 16.2347i −0.741565 0.744899i
\(476\) 0 0
\(477\) −24.8964 + 1.78062i −1.13993 + 0.0815291i
\(478\) 0 0
\(479\) 28.5207 + 32.9146i 1.30314 + 1.50391i 0.727219 + 0.686406i \(0.240813\pi\)
0.575925 + 0.817502i \(0.304642\pi\)
\(480\) 0 0
\(481\) −22.8200 10.4215i −1.04050 0.475181i
\(482\) 0 0
\(483\) 1.48730 + 4.04182i 0.0676747 + 0.183909i
\(484\) 0 0
\(485\) −39.9663 7.25701i −1.81478 0.329524i
\(486\) 0 0
\(487\) 21.2661 + 1.52098i 0.963657 + 0.0689221i 0.544292 0.838896i \(-0.316798\pi\)
0.419365 + 0.907818i \(0.362253\pi\)
\(488\) 0 0
\(489\) −36.9457 32.0136i −1.67074 1.44771i
\(490\) 0 0
\(491\) 36.4623 10.7063i 1.64552 0.483168i 0.677810 0.735237i \(-0.262929\pi\)
0.967709 + 0.252069i \(0.0811112\pi\)
\(492\) 0 0
\(493\) 17.7974 + 13.3230i 0.801554 + 0.600036i
\(494\) 0 0
\(495\) 5.43172 49.9947i 0.244138 2.24710i
\(496\) 0 0
\(497\) −0.537692 2.47173i −0.0241188 0.110872i
\(498\) 0 0
\(499\) −23.3456 3.35659i −1.04509 0.150261i −0.401678 0.915781i \(-0.631573\pi\)
−0.643413 + 0.765519i \(0.722482\pi\)
\(500\) 0 0
\(501\) −39.0156 + 25.0738i −1.74309 + 1.12021i
\(502\) 0 0
\(503\) −35.0082 + 19.1159i −1.56094 + 0.852338i −0.561245 + 0.827650i \(0.689677\pi\)
−0.999695 + 0.0246878i \(0.992141\pi\)
\(504\) 0 0
\(505\) −6.35628 3.78100i −0.282851 0.168252i
\(506\) 0 0
\(507\) −27.1676 + 27.1676i −1.20656 + 1.20656i
\(508\) 0 0
\(509\) −6.39700 + 21.7862i −0.283542 + 0.965655i 0.687388 + 0.726291i \(0.258757\pi\)
−0.970930 + 0.239365i \(0.923061\pi\)
\(510\) 0 0
\(511\) 1.23064 + 1.91492i 0.0544404 + 0.0847110i
\(512\) 0 0
\(513\) −14.8870 19.8867i −0.657278 0.878020i
\(514\) 0 0
\(515\) 23.5700 + 7.87423i 1.03862 + 0.346980i
\(516\) 0 0
\(517\) 7.75578 20.7941i 0.341099 0.914521i
\(518\) 0 0
\(519\) −54.1647 + 7.78771i −2.37757 + 0.341843i
\(520\) 0 0
\(521\) 8.50895 + 28.9788i 0.372784 + 1.26958i 0.905881 + 0.423531i \(0.139210\pi\)
−0.533098 + 0.846054i \(0.678972\pi\)
\(522\) 0 0
\(523\) −1.46543 20.4894i −0.0640787 0.895938i −0.923238 0.384229i \(-0.874467\pi\)
0.859159 0.511709i \(-0.170987\pi\)
\(524\) 0 0
\(525\) −4.20350 1.57857i −0.183456 0.0688946i
\(526\) 0 0
\(527\) −3.36448 + 1.25489i −0.146559 + 0.0546637i
\(528\) 0 0
\(529\) −0.202313 + 22.9991i −0.00879623 + 0.999961i
\(530\) 0 0
\(531\) 4.15876 9.10641i 0.180475 0.395185i
\(532\) 0 0
\(533\) −0.254114 + 3.55297i −0.0110069 + 0.153896i
\(534\) 0 0
\(535\) 38.3333 + 19.2421i 1.65729 + 0.831907i
\(536\) 0 0
\(537\) 9.24350 16.9282i 0.398887 0.730506i
\(538\) 0 0
\(539\) −4.48218 31.1743i −0.193061 1.34277i
\(540\) 0 0
\(541\) 11.2889 + 24.7192i 0.485346 + 1.06276i 0.980959 + 0.194217i \(0.0622164\pi\)
−0.495612 + 0.868544i \(0.665056\pi\)
\(542\) 0 0
\(543\) 36.1340 7.86047i 1.55066 0.337325i
\(544\) 0 0
\(545\) 26.7313 33.0955i 1.14505 1.41766i
\(546\) 0 0
\(547\) −0.464314 + 2.13442i −0.0198527 + 0.0912612i −0.986007 0.166703i \(-0.946688\pi\)
0.966155 + 0.257964i \(0.0830516\pi\)
\(548\) 0 0
\(549\) 21.7254 + 6.37915i 0.927218 + 0.272256i
\(550\) 0 0
\(551\) 31.9911i 1.36287i
\(552\) 0 0
\(553\) −0.714363 0.714363i −0.0303778 0.0303778i
\(554\) 0 0
\(555\) −22.4148 + 20.8220i −0.951456 + 0.883847i
\(556\) 0 0
\(557\) −9.51889 2.07071i −0.403328 0.0877387i 0.00632509 0.999980i \(-0.497987\pi\)
−0.409653 + 0.912241i \(0.634350\pi\)
\(558\) 0 0
\(559\) 2.92601 20.3508i 0.123757 0.860749i
\(560\) 0 0
\(561\) −34.4280 22.1255i −1.45355 0.934141i
\(562\) 0 0
\(563\) 4.04402 + 1.50834i 0.170435 + 0.0635690i 0.433233 0.901282i \(-0.357373\pi\)
−0.262798 + 0.964851i \(0.584645\pi\)
\(564\) 0 0
\(565\) −14.9360 36.1733i −0.628361 1.52182i
\(566\) 0 0
\(567\) −0.136315 0.0744334i −0.00572467 0.00312591i
\(568\) 0 0
\(569\) 11.2072 12.9338i 0.469830 0.542213i −0.470534 0.882382i \(-0.655939\pi\)
0.940364 + 0.340169i \(0.110484\pi\)
\(570\) 0 0
\(571\) −6.63720 + 5.75116i −0.277758 + 0.240679i −0.782588 0.622540i \(-0.786101\pi\)
0.504830 + 0.863219i \(0.331555\pi\)
\(572\) 0 0
\(573\) −7.85518 21.0606i −0.328155 0.879818i
\(574\) 0 0
\(575\) −18.0175 15.8230i −0.751384 0.659866i
\(576\) 0 0
\(577\) 8.72672 + 23.3973i 0.363298 + 0.974040i 0.982078 + 0.188476i \(0.0603547\pi\)
−0.618780 + 0.785565i \(0.712373\pi\)
\(578\) 0 0
\(579\) −32.2733 + 27.9649i −1.34123 + 1.16218i
\(580\) 0 0
\(581\) 0.308534 0.356067i 0.0128001 0.0147722i
\(582\) 0 0
\(583\) −20.3045 11.0871i −0.840927 0.459181i
\(584\) 0 0
\(585\) 21.7000 + 52.5550i 0.897183 + 2.17288i
\(586\) 0 0
\(587\) −22.2784 8.30941i −0.919528 0.342966i −0.155266 0.987873i \(-0.549624\pi\)
−0.764261 + 0.644906i \(0.776896\pi\)
\(588\) 0 0
\(589\) −4.34696 2.79362i −0.179113 0.115109i
\(590\) 0 0
\(591\) −7.55297 + 52.5321i −0.310688 + 2.16088i
\(592\) 0 0
\(593\) −12.5933 2.73951i −0.517146 0.112498i −0.0535849 0.998563i \(-0.517065\pi\)
−0.463561 + 0.886065i \(0.653428\pi\)
\(594\) 0 0
\(595\) −1.66384 + 1.54561i −0.0682107 + 0.0633637i
\(596\) 0 0
\(597\) 18.5574 + 18.5574i 0.759505 + 0.759505i
\(598\) 0 0
\(599\) 12.8581i 0.525368i −0.964882 0.262684i \(-0.915392\pi\)
0.964882 0.262684i \(-0.0846076\pi\)
\(600\) 0 0
\(601\) −16.2507 4.77162i −0.662878 0.194639i −0.0670488 0.997750i \(-0.521358\pi\)
−0.595829 + 0.803111i \(0.703176\pi\)
\(602\) 0 0
\(603\) 0.787940 3.62210i 0.0320874 0.147503i
\(604\) 0 0
\(605\) 13.8323 17.1255i 0.562362 0.696249i
\(606\) 0 0
\(607\) −22.7354 + 4.94579i −0.922802 + 0.200743i −0.648776 0.760979i \(-0.724719\pi\)
−0.274026 + 0.961722i \(0.588355\pi\)
\(608\) 0 0
\(609\) 2.60485 + 5.70384i 0.105554 + 0.231131i
\(610\) 0 0
\(611\) 3.57107 + 24.8373i 0.144470 + 1.00481i
\(612\) 0 0
\(613\) −6.86674 + 12.5755i −0.277345 + 0.507919i −0.978806 0.204788i \(-0.934349\pi\)
0.701461 + 0.712707i \(0.252531\pi\)
\(614\) 0 0
\(615\) 3.88228 + 1.94878i 0.156549 + 0.0785824i
\(616\) 0 0
\(617\) 1.08341 15.1480i 0.0436163 0.609835i −0.927895 0.372842i \(-0.878383\pi\)
0.971511 0.236993i \(-0.0761620\pi\)
\(618\) 0 0
\(619\) −18.5706 + 40.6639i −0.746414 + 1.63442i 0.0262919 + 0.999654i \(0.491630\pi\)
−0.772706 + 0.634764i \(0.781097\pi\)
\(620\) 0 0
\(621\) −16.9418 19.7266i −0.679853 0.791600i
\(622\) 0 0
\(623\) −3.68478 + 1.37435i −0.147627 + 0.0550622i
\(624\) 0 0
\(625\) 24.7613 3.44681i 0.990450 0.137872i
\(626\) 0 0
\(627\) −4.20117 58.7401i −0.167779 2.34585i
\(628\) 0 0
\(629\) 4.35935 + 14.8466i 0.173818 + 0.591971i
\(630\) 0 0
\(631\) 3.03854 0.436875i 0.120962 0.0173917i −0.0815678 0.996668i \(-0.525993\pi\)
0.202530 + 0.979276i \(0.435084\pi\)
\(632\) 0 0
\(633\) −22.7379 + 60.9626i −0.903749 + 2.42304i
\(634\) 0 0
\(635\) 25.9433 + 8.66710i 1.02953 + 0.343943i
\(636\) 0 0
\(637\) 21.3399 + 28.5068i 0.845518 + 1.12948i
\(638\) 0 0
\(639\) 21.1190 + 32.8618i 0.835454 + 1.29999i
\(640\) 0 0
\(641\) 3.40954 11.6118i 0.134669 0.458639i −0.864352 0.502887i \(-0.832271\pi\)
0.999021 + 0.0442482i \(0.0140893\pi\)
\(642\) 0 0
\(643\) 7.93740 7.93740i 0.313020 0.313020i −0.533058 0.846079i \(-0.678957\pi\)
0.846079 + 0.533058i \(0.178957\pi\)
\(644\) 0 0
\(645\) −21.5489 12.8183i −0.848489 0.504719i
\(646\) 0 0
\(647\) 32.1772 17.5701i 1.26502 0.690750i 0.300249 0.953861i \(-0.402930\pi\)
0.964766 + 0.263110i \(0.0847483\pi\)
\(648\) 0 0
\(649\) 7.80588 5.01653i 0.306407 0.196916i
\(650\) 0 0
\(651\) −1.00251 0.144139i −0.0392914 0.00564924i
\(652\) 0 0
\(653\) 2.12555 + 9.77101i 0.0831794 + 0.382369i 0.999851 0.0172723i \(-0.00549821\pi\)
−0.916671 + 0.399642i \(0.869135\pi\)
\(654\) 0 0
\(655\) 2.65218 24.4112i 0.103629 0.953826i
\(656\) 0 0
\(657\) −28.1404 21.0656i −1.09786 0.821848i
\(658\) 0 0
\(659\) −12.0317 + 3.53283i −0.468689 + 0.137619i −0.507545 0.861625i \(-0.669447\pi\)
0.0388560 + 0.999245i \(0.487629\pi\)
\(660\) 0 0
\(661\) −7.38771 6.40149i −0.287349 0.248989i 0.499244 0.866462i \(-0.333611\pi\)
−0.786592 + 0.617473i \(0.788157\pi\)
\(662\) 0 0
\(663\) 46.1533 + 3.30095i 1.79244 + 0.128198i
\(664\) 0 0
\(665\) −3.21531 0.583830i −0.124684 0.0226400i
\(666\) 0 0
\(667\) 2.24201 + 33.4119i 0.0868108 + 1.29371i
\(668\) 0 0
\(669\) −64.3527 29.3889i −2.48802 1.13624i
\(670\) 0 0
\(671\) 13.7432 + 15.8605i 0.530551 + 0.612288i
\(672\) 0 0
\(673\) −4.79459 + 0.342916i −0.184818 + 0.0132184i −0.163441 0.986553i \(-0.552259\pi\)
−0.0213765 + 0.999771i \(0.506805\pi\)
\(674\) 0 0
\(675\) 27.1101 + 0.0608193i 1.04347 + 0.00234093i
\(676\) 0 0
\(677\) 0.677828 0.905472i 0.0260510 0.0348001i −0.787327 0.616536i \(-0.788535\pi\)
0.813378 + 0.581736i \(0.197626\pi\)
\(678\) 0 0
\(679\) −5.27088 + 2.40713i −0.202278 + 0.0923771i
\(680\) 0 0
\(681\) −3.49058 + 5.43144i −0.133759 + 0.208133i
\(682\) 0 0
\(683\) 32.4439 24.2872i 1.24143 0.929323i 0.242267 0.970210i \(-0.422109\pi\)
0.999164 + 0.0408865i \(0.0130182\pi\)
\(684\) 0 0
\(685\) 37.7326 + 35.2093i 1.44169 + 1.34528i
\(686\) 0 0
\(687\) −26.3437 48.2450i −1.00508 1.84066i
\(688\) 0 0
\(689\) 26.1567 0.996489
\(690\) 0 0
\(691\) −30.7526 −1.16988 −0.584942 0.811075i \(-0.698883\pi\)
−0.584942 + 0.811075i \(0.698883\pi\)
\(692\) 0 0
\(693\) −3.43805 6.29633i −0.130601 0.239178i
\(694\) 0 0
\(695\) 1.06723 + 30.8518i 0.0404822 + 1.17028i
\(696\) 0 0
\(697\) 1.75881 1.31663i 0.0666196 0.0498708i
\(698\) 0 0
\(699\) 13.3293 20.7408i 0.504160 0.784489i
\(700\) 0 0
\(701\) 5.55420 2.53652i 0.209779 0.0958030i −0.307754 0.951466i \(-0.599577\pi\)
0.517534 + 0.855663i \(0.326850\pi\)
\(702\) 0 0
\(703\) −13.3435 + 17.8248i −0.503259 + 0.672276i
\(704\) 0 0
\(705\) 29.6417 + 7.60102i 1.11637 + 0.286271i
\(706\) 0 0
\(707\) −1.05235 + 0.0752652i −0.0395775 + 0.00283064i
\(708\) 0 0
\(709\) −18.5484 21.4060i −0.696600 0.803919i 0.291689 0.956513i \(-0.405783\pi\)
−0.988289 + 0.152594i \(0.951237\pi\)
\(710\) 0 0
\(711\) 14.1913 + 6.48096i 0.532216 + 0.243055i
\(712\) 0 0
\(713\) −4.73579 2.61304i −0.177357 0.0978593i
\(714\) 0 0
\(715\) −9.41522 + 51.8521i −0.352109 + 1.93916i
\(716\) 0 0
\(717\) 26.9640 + 1.92850i 1.00699 + 0.0720213i
\(718\) 0 0
\(719\) 12.3866 + 10.7331i 0.461943 + 0.400275i 0.854500 0.519452i \(-0.173864\pi\)
−0.392557 + 0.919728i \(0.628409\pi\)
\(720\) 0 0
\(721\) 3.40139 0.998738i 0.126674 0.0371950i
\(722\) 0 0
\(723\) −24.8675 18.6156i −0.924833 0.692321i
\(724\) 0 0
\(725\) −27.9020 20.9850i −1.03625 0.779363i
\(726\) 0 0
\(727\) −4.30402 19.7853i −0.159627 0.733795i −0.985464 0.169885i \(-0.945660\pi\)
0.825836 0.563910i \(-0.190703\pi\)
\(728\) 0 0
\(729\) −42.9538 6.17583i −1.59088 0.228734i
\(730\) 0 0
\(731\) −10.6681 + 6.85597i −0.394574 + 0.253577i
\(732\) 0 0
\(733\) 27.3494 14.9339i 1.01017 0.551596i 0.113149 0.993578i \(-0.463906\pi\)
0.897024 + 0.441982i \(0.145724\pi\)
\(734\) 0 0
\(735\) 42.0890 10.6923i 1.55248 0.394391i
\(736\) 0 0
\(737\) 2.42940 2.42940i 0.0894881 0.0894881i
\(738\) 0 0
\(739\) −8.97815 + 30.5768i −0.330267 + 1.12478i 0.612261 + 0.790656i \(0.290260\pi\)
−0.942527 + 0.334129i \(0.891558\pi\)
\(740\) 0 0
\(741\) 35.9978 + 56.0137i 1.32241 + 2.05771i
\(742\) 0 0
\(743\) 15.2520 + 20.3742i 0.559540 + 0.747458i 0.987720 0.156236i \(-0.0499359\pi\)
−0.428180 + 0.903694i \(0.640845\pi\)
\(744\) 0 0
\(745\) 19.2813 + 38.6273i 0.706411 + 1.41519i
\(746\) 0 0
\(747\) −2.54261 + 6.81700i −0.0930292 + 0.249421i
\(748\) 0 0
\(749\) 6.05632 0.870768i 0.221293 0.0318172i
\(750\) 0 0
\(751\) 3.53649 + 12.0442i 0.129048 + 0.439499i 0.998514 0.0544949i \(-0.0173549\pi\)
−0.869466 + 0.493993i \(0.835537\pi\)
\(752\) 0 0
\(753\) 3.55821 + 49.7502i 0.129668 + 1.81300i
\(754\) 0 0
\(755\) −4.51320 25.1766i −0.164252 0.916269i
\(756\) 0 0
\(757\) −11.7473 + 4.38153i −0.426964 + 0.159249i −0.553754 0.832680i \(-0.686805\pi\)
0.126790 + 0.991930i \(0.459533\pi\)
\(758\) 0 0
\(759\) −8.50437 61.0543i −0.308689 2.21613i
\(760\) 0 0
\(761\) 0.945262 2.06983i 0.0342657 0.0750315i −0.891725 0.452577i \(-0.850505\pi\)
0.925991 + 0.377546i \(0.123232\pi\)
\(762\) 0 0
\(763\) 0.432944 6.05335i 0.0156736 0.219146i
\(764\) 0 0
\(765\) 15.7330 31.3426i 0.568827 1.13319i
\(766\) 0 0
\(767\) −5.02784 + 9.20779i −0.181545 + 0.332474i
\(768\) 0 0
\(769\) 3.79339 + 26.3836i 0.136793 + 0.951417i 0.936410 + 0.350907i \(0.114127\pi\)
−0.799617 + 0.600510i \(0.794964\pi\)
\(770\) 0 0
\(771\) 10.4722 + 22.9310i 0.377148 + 0.825839i
\(772\) 0 0
\(773\) −36.3141 + 7.89966i −1.30613 + 0.284131i −0.811183 0.584793i \(-0.801176\pi\)
−0.494946 + 0.868924i \(0.664812\pi\)
\(774\) 0 0
\(775\) 5.28798 1.95881i 0.189950 0.0703627i
\(776\) 0 0
\(777\) −0.927695 + 4.26455i −0.0332809 + 0.152990i
\(778\) 0 0
\(779\) 3.03343 + 0.890695i 0.108684 + 0.0319125i
\(780\) 0 0
\(781\) 36.2057i 1.29554i
\(782\) 0 0
\(783\) −26.7707 26.7707i −0.956706 0.956706i
\(784\) 0 0
\(785\) −0.251361 + 6.82337i −0.00897146 + 0.243536i
\(786\) 0 0
\(787\) 36.0539 + 7.84305i 1.28518 + 0.279575i 0.802728 0.596346i \(-0.203381\pi\)
0.482456 + 0.875920i \(0.339745\pi\)
\(788\) 0 0
\(789\) −8.82980 + 61.4126i −0.314349 + 2.18635i
\(790\) 0 0
\(791\) −4.69654 3.01828i −0.166990 0.107318i
\(792\) 0 0
\(793\) −22.2321 8.29215i −0.789485 0.294463i
\(794\) 0 0
\(795\) 12.2400 29.4564i 0.434107 1.04471i
\(796\) 0 0
\(797\) 1.67833 + 0.916435i 0.0594493 + 0.0324618i 0.508699 0.860945i \(-0.330127\pi\)
−0.449249 + 0.893406i \(0.648309\pi\)
\(798\) 0 0
\(799\) 10.1352 11.6966i 0.358557 0.413797i
\(800\) 0 0
\(801\) 45.8982 39.7710i 1.62173 1.40524i
\(802\) 0 0
\(803\) −11.3858 30.5264i −0.401795 1.07725i
\(804\) 0 0
\(805\) −3.39902 0.384422i −0.119800 0.0135491i
\(806\) 0 0
\(807\) 9.05422 + 24.2753i 0.318723 + 0.854531i
\(808\) 0 0
\(809\) 34.7977 30.1524i 1.22342 1.06010i 0.227149 0.973860i \(-0.427060\pi\)
0.996274 0.0862421i \(-0.0274858\pi\)
\(810\) 0 0
\(811\) 0.598397 0.690587i 0.0210126 0.0242498i −0.745146 0.666901i \(-0.767620\pi\)
0.766159 + 0.642652i \(0.222166\pi\)
\(812\) 0 0
\(813\) 41.3963 + 22.6041i 1.45183 + 0.792759i
\(814\) 0 0
\(815\) 35.8891 14.8186i 1.25714 0.519074i
\(816\) 0 0
\(817\) −17.0975 6.37705i −0.598167 0.223105i
\(818\) 0 0
\(819\) 6.82344 + 4.38516i 0.238430 + 0.153230i
\(820\) 0 0
\(821\) −5.21892 + 36.2984i −0.182142 + 1.26682i 0.669545 + 0.742771i \(0.266489\pi\)
−0.851687 + 0.524051i \(0.824420\pi\)
\(822\) 0 0
\(823\) −9.93569 2.16138i −0.346336 0.0753408i 0.0360326 0.999351i \(-0.488528\pi\)
−0.382369 + 0.924010i \(0.624892\pi\)
\(824\) 0 0
\(825\) 53.9876 + 34.8671i 1.87961 + 1.21392i
\(826\) 0 0
\(827\) 7.46991 + 7.46991i 0.259754 + 0.259754i 0.824954 0.565200i \(-0.191201\pi\)
−0.565200 + 0.824954i \(0.691201\pi\)
\(828\) 0 0
\(829\) 28.2182i 0.980057i −0.871706 0.490029i \(-0.836986\pi\)
0.871706 0.490029i \(-0.163014\pi\)
\(830\) 0 0
\(831\) −65.3993 19.2030i −2.26868 0.666144i
\(832\) 0 0
\(833\) 4.66865 21.4615i 0.161759 0.743595i
\(834\) 0 0
\(835\) −3.89649 36.6292i −0.134844 1.26761i
\(836\) 0 0
\(837\) 5.97535 1.29986i 0.206538 0.0449297i
\(838\) 0 0
\(839\) 4.76827 + 10.4411i 0.164619 + 0.360465i 0.973907 0.226947i \(-0.0728743\pi\)
−0.809288 + 0.587412i \(0.800147\pi\)
\(840\) 0 0
\(841\) 2.81152 + 19.5545i 0.0969489 + 0.674294i
\(842\) 0 0
\(843\) −16.9778 + 31.0925i −0.584746 + 1.07088i
\(844\) 0 0
\(845\) −9.60444 28.9651i −0.330403 0.996430i
\(846\) 0 0
\(847\) 0.224029 3.13234i 0.00769774 0.107628i
\(848\) 0 0
\(849\) 16.9120 37.0320i 0.580417 1.27094i
\(850\) 0 0
\(851\) −12.6869 + 19.5516i −0.434900 + 0.670219i
\(852\) 0 0
\(853\) 26.3737 9.83689i 0.903019 0.336809i 0.145298 0.989388i \(-0.453586\pi\)
0.757720 + 0.652579i \(0.226313\pi\)
\(854\) 0 0
\(855\) 49.6731 8.90449i 1.69878 0.304527i
\(856\) 0 0
\(857\) −0.830376 11.6102i −0.0283651 0.396596i −0.991725 0.128383i \(-0.959021\pi\)
0.963360 0.268213i \(-0.0864332\pi\)
\(858\) 0 0
\(859\) −14.5817 49.6607i −0.497521 1.69440i −0.699181 0.714944i \(-0.746452\pi\)
0.201661 0.979455i \(-0.435366\pi\)
\(860\) 0 0
\(861\) 0.613367 0.0881889i 0.0209035 0.00300547i
\(862\) 0 0
\(863\) 17.8732 47.9200i 0.608412 1.63122i −0.156943 0.987608i \(-0.550164\pi\)
0.765355 0.643608i \(-0.222563\pi\)
\(864\) 0 0
\(865\) 13.7719 41.2234i 0.468257 1.40164i
\(866\) 0 0
\(867\) 11.5784 + 15.4670i 0.393225 + 0.525287i
\(868\) 0 0
\(869\) 7.81770 + 12.1646i 0.265197 + 0.412655i
\(870\) 0 0
\(871\) −1.09440 + 3.72718i −0.0370823 + 0.126291i
\(872\) 0 0
\(873\) 63.2739 63.2739i 2.14150 2.14150i
\(874\) 0 0
\(875\) 2.61833 2.42135i 0.0885156 0.0818566i
\(876\) 0 0
\(877\) −35.4096 + 19.3351i −1.19570 + 0.652900i −0.948719 0.316120i \(-0.897620\pi\)
−0.246979 + 0.969021i \(0.579438\pi\)
\(878\) 0 0
\(879\) 42.4549 27.2841i 1.43197 0.920271i
\(880\) 0 0
\(881\) 2.99299 + 0.430327i 0.100836 + 0.0144981i 0.192548 0.981287i \(-0.438325\pi\)
−0.0917119 + 0.995786i \(0.529234\pi\)
\(882\) 0 0
\(883\) −7.66670 35.2432i −0.258005 1.18603i −0.905629 0.424070i \(-0.860601\pi\)
0.647625 0.761960i \(-0.275763\pi\)
\(884\) 0 0
\(885\) 8.01662 + 9.97089i 0.269476 + 0.335168i
\(886\) 0 0
\(887\) 28.2320 + 21.1342i 0.947938 + 0.709617i 0.956923 0.290342i \(-0.0937691\pi\)
−0.00898495 + 0.999960i \(0.502860\pi\)
\(888\) 0 0
\(889\) 3.74388 1.09930i 0.125566 0.0368694i
\(890\) 0 0
\(891\) 1.68004 + 1.45577i 0.0562835 + 0.0487700i
\(892\) 0 0
\(893\) 22.2143 + 1.58880i 0.743372 + 0.0531670i
\(894\) 0 0
\(895\) 8.72276 + 12.5933i 0.291570 + 0.420947i
\(896\) 0 0
\(897\) 41.5220 + 55.9785i 1.38638 + 1.86907i
\(898\) 0 0
\(899\) −7.16341 3.27142i −0.238913 0.109108i
\(900\) 0 0
\(901\) −10.5649 12.1926i −0.351968 0.406193i
\(902\) 0 0
\(903\) −3.56764 + 0.255163i −0.118724 + 0.00849128i
\(904\) 0 0
\(905\) −7.29552 + 28.4504i −0.242511 + 0.945722i
\(906\) 0 0
\(907\) 20.2190 27.0094i 0.671360 0.896832i −0.327486 0.944856i \(-0.606201\pi\)
0.998846 + 0.0480238i \(0.0152923\pi\)
\(908\) 0 0
\(909\) 14.8202 6.76817i 0.491556 0.224486i
\(910\) 0 0
\(911\) −15.9877 + 24.8773i −0.529695 + 0.824221i −0.998245 0.0592155i \(-0.981140\pi\)
0.468550 + 0.883437i \(0.344776\pi\)
\(912\) 0 0
\(913\) −5.39851 + 4.04127i −0.178665 + 0.133747i
\(914\) 0 0
\(915\) −19.7417 + 21.1565i −0.652641 + 0.699411i
\(916\) 0 0
\(917\) −1.67872 3.07435i −0.0554362 0.101524i
\(918\) 0 0
\(919\) −50.7741 −1.67488 −0.837442 0.546526i \(-0.815950\pi\)
−0.837442 + 0.546526i \(0.815950\pi\)
\(920\) 0 0
\(921\) −25.8367 −0.851348
\(922\) 0 0
\(923\) −19.6184 35.9284i −0.645747 1.18260i
\(924\) 0 0
\(925\) −6.79358 23.3303i −0.223372 0.767096i
\(926\) 0 0
\(927\) −43.8249 + 32.8069i −1.43940 + 1.07752i
\(928\) 0 0
\(929\) −15.4337 + 24.0153i −0.506363 + 0.787916i −0.996488 0.0837363i \(-0.973315\pi\)
0.490125 + 0.871652i \(0.336951\pi\)
\(930\) 0 0
\(931\) 28.7490 13.1292i 0.942209 0.430292i
\(932\) 0 0
\(933\) 39.6852 53.0132i 1.29923 1.73557i
\(934\) 0 0
\(935\) 27.9730 16.5548i 0.914817 0.541399i
\(936\) 0 0
\(937\) 31.2955 2.23830i 1.02238 0.0731220i 0.449931 0.893063i \(-0.351449\pi\)
0.572448 + 0.819941i \(0.305994\pi\)
\(938\) 0 0
\(939\) −20.9413 24.1675i −0.683393 0.788678i
\(940\) 0 0
\(941\) −10.4386 4.76713i −0.340287 0.155404i 0.237940 0.971280i \(-0.423528\pi\)
−0.578227 + 0.815876i \(0.696255\pi\)
\(942\) 0 0
\(943\) 3.23057 + 0.717662i 0.105202 + 0.0233703i
\(944\) 0 0
\(945\) 3.17918 2.20206i 0.103419 0.0716331i
\(946\) 0 0
\(947\) 12.2104 + 0.873303i 0.396784 + 0.0283785i 0.268306 0.963334i \(-0.413536\pi\)
0.128478 + 0.991712i \(0.458991\pi\)
\(948\) 0 0
\(949\) 27.8396 + 24.1231i 0.903710 + 0.783069i
\(950\) 0 0
\(951\) −67.2835 + 19.7562i −2.18182 + 0.640640i
\(952\) 0 0
\(953\) 15.8956 + 11.8993i 0.514909 + 0.385456i 0.824896 0.565285i \(-0.191234\pi\)
−0.309987 + 0.950741i \(0.600325\pi\)
\(954\) 0 0
\(955\) 17.7487 + 1.92832i 0.574333 + 0.0623990i
\(956\) 0 0
\(957\) −19.0779 87.6995i −0.616700 2.83492i
\(958\) 0 0
\(959\) 7.28715 + 1.04773i 0.235314 + 0.0338331i
\(960\) 0 0
\(961\) −25.0088 + 16.0722i −0.806735 + 0.518457i
\(962\) 0 0
\(963\) −82.9298 + 45.2831i −2.67238 + 1.45923i
\(964\) 0 0
\(965\) −8.35117 32.8734i −0.268834 1.05823i
\(966\) 0 0
\(967\) 25.5921 25.5921i 0.822985 0.822985i −0.163550 0.986535i \(-0.552294\pi\)
0.986535 + 0.163550i \(0.0522945\pi\)
\(968\) 0 0
\(969\) 11.5702 39.4044i 0.371687 1.26585i
\(970\) 0 0
\(971\) −13.6108 21.1788i −0.436792 0.679661i 0.551164 0.834397i \(-0.314184\pi\)
−0.987956 + 0.154736i \(0.950547\pi\)
\(972\) 0 0
\(973\) 2.63905 + 3.52536i 0.0846041 + 0.113018i
\(974\) 0 0
\(975\) −72.4672 5.34639i −2.32081 0.171221i
\(976\) 0 0
\(977\) −16.5871 + 44.4716i −0.530667 + 1.42277i 0.344424 + 0.938814i \(0.388074\pi\)
−0.875091 + 0.483958i \(0.839199\pi\)
\(978\) 0 0
\(979\) 55.7170 8.01090i 1.78072 0.256029i
\(980\) 0 0
\(981\) 26.4036 + 89.9225i 0.843003 + 2.87101i
\(982\) 0 0
\(983\) −2.81596 39.3722i −0.0898150 1.25578i −0.819934 0.572458i \(-0.805990\pi\)
0.730119 0.683320i \(-0.239465\pi\)
\(984\) 0 0
\(985\) −34.5983 24.0796i −1.10239 0.767240i
\(986\) 0 0
\(987\) 4.09004 1.52551i 0.130187 0.0485574i
\(988\) 0 0
\(989\) −18.3038 5.46203i −0.582026 0.173682i
\(990\) 0 0
\(991\) −3.27709 + 7.17582i −0.104100 + 0.227947i −0.954514 0.298168i \(-0.903625\pi\)
0.850413 + 0.526115i \(0.176352\pi\)
\(992\) 0 0
\(993\) −6.73088 + 94.1100i −0.213598 + 2.98649i
\(994\) 0 0
\(995\) −19.7853 + 6.56052i −0.627235 + 0.207983i
\(996\) 0 0
\(997\) 22.9777 42.0804i 0.727710 1.33270i −0.207370 0.978263i \(-0.566490\pi\)
0.935079 0.354438i \(-0.115328\pi\)
\(998\) 0 0
\(999\) −3.75004 26.0821i −0.118646 0.825202i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.753.4 yes 720
5.2 odd 4 inner 920.2.bv.a.17.4 720
23.19 odd 22 inner 920.2.bv.a.433.4 yes 720
115.42 even 44 inner 920.2.bv.a.617.4 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.4 720 5.2 odd 4 inner
920.2.bv.a.433.4 yes 720 23.19 odd 22 inner
920.2.bv.a.617.4 yes 720 115.42 even 44 inner
920.2.bv.a.753.4 yes 720 1.1 even 1 trivial