Properties

Label 920.2.bv.a.753.2
Level $920$
Weight $2$
Character 920.753
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 753.2
Character \(\chi\) \(=\) 920.753
Dual form 920.2.bv.a.617.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.54911 - 2.83699i) q^{3} +(-2.23313 - 0.114500i) q^{5} +(-3.34466 + 2.50378i) q^{7} +(-4.02684 + 6.26588i) q^{9} +(-2.09151 + 0.955162i) q^{11} +(2.95328 - 3.94512i) q^{13} +(3.13454 + 6.51275i) q^{15} +(4.28157 - 0.306224i) q^{17} +(-3.62640 - 4.18509i) q^{19} +(12.2844 + 5.61012i) q^{21} +(3.03456 + 3.71368i) q^{23} +(4.97378 + 0.511389i) q^{25} +(14.3418 + 1.02575i) q^{27} +(-4.00107 - 3.46695i) q^{29} +(-7.20387 + 2.11525i) q^{31} +(5.94977 + 4.45395i) q^{33} +(7.75575 - 5.20831i) q^{35} +(1.29686 + 5.96155i) q^{37} +(-15.7673 - 2.26699i) q^{39} +(2.67857 - 1.72141i) q^{41} +(0.928072 - 0.506766i) q^{43} +(9.70992 - 13.5315i) q^{45} +(1.89883 - 1.89883i) q^{47} +(2.94569 - 10.0321i) q^{49} +(-7.50139 - 11.6724i) q^{51} +(-2.79232 - 3.73011i) q^{53} +(4.77999 - 1.89353i) q^{55} +(-6.25535 + 16.7712i) q^{57} +(8.23557 - 1.18410i) q^{59} +(3.86637 + 13.1677i) q^{61} +(-2.21999 - 31.0395i) q^{63} +(-7.04680 + 8.47184i) q^{65} +(2.31104 - 0.861972i) q^{67} +(5.83481 - 14.3619i) q^{69} +(0.667794 - 1.46227i) q^{71} +(-0.504447 + 7.05309i) q^{73} +(-6.25414 - 14.9028i) q^{75} +(4.60388 - 8.43137i) q^{77} +(1.31624 + 9.15465i) q^{79} +(-10.0247 - 21.9511i) q^{81} +(-4.48476 + 0.975600i) q^{83} +(-9.59638 + 0.193598i) q^{85} +(-3.63758 + 16.7217i) q^{87} +(5.18455 + 1.52232i) q^{89} +20.5895i q^{91} +(17.1606 + 17.1606i) q^{93} +(7.61905 + 9.76109i) q^{95} +(11.5013 + 2.50196i) q^{97} +(2.43725 - 16.9514i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.54911 2.83699i −0.894381 1.63794i −0.762803 0.646631i \(-0.776177\pi\)
−0.131579 0.991306i \(-0.542005\pi\)
\(4\) 0 0
\(5\) −2.23313 0.114500i −0.998688 0.0512061i
\(6\) 0 0
\(7\) −3.34466 + 2.50378i −1.26416 + 0.946339i −0.999836 0.0180943i \(-0.994240\pi\)
−0.264325 + 0.964434i \(0.585149\pi\)
\(8\) 0 0
\(9\) −4.02684 + 6.26588i −1.34228 + 2.08863i
\(10\) 0 0
\(11\) −2.09151 + 0.955162i −0.630615 + 0.287992i −0.704967 0.709240i \(-0.749038\pi\)
0.0743525 + 0.997232i \(0.476311\pi\)
\(12\) 0 0
\(13\) 2.95328 3.94512i 0.819093 1.09418i −0.174883 0.984589i \(-0.555955\pi\)
0.993977 0.109591i \(-0.0349542\pi\)
\(14\) 0 0
\(15\) 3.13454 + 6.51275i 0.809336 + 1.68159i
\(16\) 0 0
\(17\) 4.28157 0.306224i 1.03843 0.0742702i 0.458305 0.888795i \(-0.348457\pi\)
0.580128 + 0.814525i \(0.303002\pi\)
\(18\) 0 0
\(19\) −3.62640 4.18509i −0.831953 0.960125i 0.167716 0.985835i \(-0.446361\pi\)
−0.999669 + 0.0257099i \(0.991815\pi\)
\(20\) 0 0
\(21\) 12.2844 + 5.61012i 2.68069 + 1.22423i
\(22\) 0 0
\(23\) 3.03456 + 3.71368i 0.632749 + 0.774357i
\(24\) 0 0
\(25\) 4.97378 + 0.511389i 0.994756 + 0.102278i
\(26\) 0 0
\(27\) 14.3418 + 1.02575i 2.76009 + 0.197406i
\(28\) 0 0
\(29\) −4.00107 3.46695i −0.742980 0.643796i 0.198795 0.980041i \(-0.436297\pi\)
−0.941774 + 0.336246i \(0.890843\pi\)
\(30\) 0 0
\(31\) −7.20387 + 2.11525i −1.29385 + 0.379910i −0.854990 0.518644i \(-0.826437\pi\)
−0.438864 + 0.898554i \(0.644619\pi\)
\(32\) 0 0
\(33\) 5.94977 + 4.45395i 1.03572 + 0.775332i
\(34\) 0 0
\(35\) 7.75575 5.20831i 1.31096 0.880365i
\(36\) 0 0
\(37\) 1.29686 + 5.96155i 0.213202 + 0.980073i 0.951989 + 0.306133i \(0.0990354\pi\)
−0.738787 + 0.673939i \(0.764601\pi\)
\(38\) 0 0
\(39\) −15.7673 2.26699i −2.52478 0.363009i
\(40\) 0 0
\(41\) 2.67857 1.72141i 0.418322 0.268839i −0.314503 0.949256i \(-0.601838\pi\)
0.732825 + 0.680417i \(0.238201\pi\)
\(42\) 0 0
\(43\) 0.928072 0.506766i 0.141530 0.0772811i −0.406924 0.913462i \(-0.633399\pi\)
0.548454 + 0.836181i \(0.315217\pi\)
\(44\) 0 0
\(45\) 9.70992 13.5315i 1.44747 2.01715i
\(46\) 0 0
\(47\) 1.89883 1.89883i 0.276973 0.276973i −0.554926 0.831899i \(-0.687254\pi\)
0.831899 + 0.554926i \(0.187254\pi\)
\(48\) 0 0
\(49\) 2.94569 10.0321i 0.420813 1.43316i
\(50\) 0 0
\(51\) −7.50139 11.6724i −1.05041 1.63446i
\(52\) 0 0
\(53\) −2.79232 3.73011i −0.383555 0.512369i 0.566665 0.823948i \(-0.308233\pi\)
−0.950220 + 0.311579i \(0.899142\pi\)
\(54\) 0 0
\(55\) 4.77999 1.89353i 0.644534 0.255323i
\(56\) 0 0
\(57\) −6.25535 + 16.7712i −0.828542 + 2.22141i
\(58\) 0 0
\(59\) 8.23557 1.18410i 1.07218 0.154156i 0.416455 0.909156i \(-0.363272\pi\)
0.655725 + 0.755000i \(0.272363\pi\)
\(60\) 0 0
\(61\) 3.86637 + 13.1677i 0.495038 + 1.68595i 0.705802 + 0.708409i \(0.250587\pi\)
−0.210764 + 0.977537i \(0.567595\pi\)
\(62\) 0 0
\(63\) −2.21999 31.0395i −0.279693 3.91061i
\(64\) 0 0
\(65\) −7.04680 + 8.47184i −0.874047 + 1.05080i
\(66\) 0 0
\(67\) 2.31104 0.861972i 0.282338 0.105307i −0.204306 0.978907i \(-0.565494\pi\)
0.486644 + 0.873601i \(0.338221\pi\)
\(68\) 0 0
\(69\) 5.83481 14.3619i 0.702429 1.72897i
\(70\) 0 0
\(71\) 0.667794 1.46227i 0.0792526 0.173539i −0.865858 0.500290i \(-0.833227\pi\)
0.945110 + 0.326751i \(0.105954\pi\)
\(72\) 0 0
\(73\) −0.504447 + 7.05309i −0.0590410 + 0.825502i 0.878525 + 0.477696i \(0.158528\pi\)
−0.937566 + 0.347806i \(0.886927\pi\)
\(74\) 0 0
\(75\) −6.25414 14.9028i −0.722166 1.72082i
\(76\) 0 0
\(77\) 4.60388 8.43137i 0.524660 0.960844i
\(78\) 0 0
\(79\) 1.31624 + 9.15465i 0.148089 + 1.02998i 0.919344 + 0.393454i \(0.128720\pi\)
−0.771256 + 0.636525i \(0.780371\pi\)
\(80\) 0 0
\(81\) −10.0247 21.9511i −1.11386 2.43902i
\(82\) 0 0
\(83\) −4.48476 + 0.975600i −0.492266 + 0.107086i −0.451844 0.892097i \(-0.649234\pi\)
−0.0404218 + 0.999183i \(0.512870\pi\)
\(84\) 0 0
\(85\) −9.59638 + 0.193598i −1.04087 + 0.0209986i
\(86\) 0 0
\(87\) −3.63758 + 16.7217i −0.389989 + 1.79275i
\(88\) 0 0
\(89\) 5.18455 + 1.52232i 0.549561 + 0.161366i 0.544713 0.838623i \(-0.316639\pi\)
0.00484811 + 0.999988i \(0.498457\pi\)
\(90\) 0 0
\(91\) 20.5895i 2.15836i
\(92\) 0 0
\(93\) 17.1606 + 17.1606i 1.77947 + 1.77947i
\(94\) 0 0
\(95\) 7.61905 + 9.76109i 0.781698 + 1.00147i
\(96\) 0 0
\(97\) 11.5013 + 2.50196i 1.16778 + 0.254036i 0.754334 0.656491i \(-0.227960\pi\)
0.413450 + 0.910527i \(0.364324\pi\)
\(98\) 0 0
\(99\) 2.43725 16.9514i 0.244953 1.70368i
\(100\) 0 0
\(101\) 5.13105 + 3.29752i 0.510558 + 0.328116i 0.770427 0.637528i \(-0.220043\pi\)
−0.259869 + 0.965644i \(0.583679\pi\)
\(102\) 0 0
\(103\) 14.4838 + 5.40218i 1.42713 + 0.532293i 0.940042 0.341058i \(-0.110785\pi\)
0.487091 + 0.873351i \(0.338058\pi\)
\(104\) 0 0
\(105\) −26.7905 13.9347i −2.61448 1.35989i
\(106\) 0 0
\(107\) 5.00008 + 2.73025i 0.483376 + 0.263943i 0.702408 0.711774i \(-0.252108\pi\)
−0.219032 + 0.975718i \(0.570290\pi\)
\(108\) 0 0
\(109\) −8.99848 + 10.3848i −0.861898 + 0.994683i 0.138093 + 0.990419i \(0.455903\pi\)
−0.999991 + 0.00426394i \(0.998643\pi\)
\(110\) 0 0
\(111\) 14.9039 12.9143i 1.41461 1.22577i
\(112\) 0 0
\(113\) −5.30620 14.2265i −0.499165 1.33831i −0.905406 0.424548i \(-0.860433\pi\)
0.406240 0.913766i \(-0.366840\pi\)
\(114\) 0 0
\(115\) −6.35136 8.64062i −0.592267 0.805742i
\(116\) 0 0
\(117\) 12.8273 + 34.3913i 1.18588 + 3.17948i
\(118\) 0 0
\(119\) −13.5537 + 11.7443i −1.24246 + 1.07660i
\(120\) 0 0
\(121\) −3.74138 + 4.31778i −0.340125 + 0.392526i
\(122\) 0 0
\(123\) −9.03303 4.93241i −0.814481 0.444740i
\(124\) 0 0
\(125\) −11.0486 1.71150i −0.988214 0.153081i
\(126\) 0 0
\(127\) 14.1918 + 5.29327i 1.25932 + 0.469702i 0.888446 0.458982i \(-0.151786\pi\)
0.370873 + 0.928684i \(0.379059\pi\)
\(128\) 0 0
\(129\) −2.87538 1.84789i −0.253163 0.162698i
\(130\) 0 0
\(131\) −0.00349255 + 0.0242912i −0.000305145 + 0.00212233i −0.989973 0.141254i \(-0.954887\pi\)
0.989668 + 0.143376i \(0.0457958\pi\)
\(132\) 0 0
\(133\) 22.6076 + 4.91798i 1.96033 + 0.426443i
\(134\) 0 0
\(135\) −31.9098 3.93278i −2.74636 0.338480i
\(136\) 0 0
\(137\) −0.503236 0.503236i −0.0429944 0.0429944i 0.685283 0.728277i \(-0.259679\pi\)
−0.728277 + 0.685283i \(0.759679\pi\)
\(138\) 0 0
\(139\) 6.91548i 0.586564i −0.956026 0.293282i \(-0.905253\pi\)
0.956026 0.293282i \(-0.0947474\pi\)
\(140\) 0 0
\(141\) −8.32847 2.44546i −0.701384 0.205945i
\(142\) 0 0
\(143\) −2.40860 + 11.0721i −0.201417 + 0.925899i
\(144\) 0 0
\(145\) 8.53796 + 8.20028i 0.709039 + 0.680996i
\(146\) 0 0
\(147\) −33.0242 + 7.18398i −2.72379 + 0.592524i
\(148\) 0 0
\(149\) 3.47939 + 7.61881i 0.285043 + 0.624157i 0.996944 0.0781229i \(-0.0248927\pi\)
−0.711901 + 0.702280i \(0.752165\pi\)
\(150\) 0 0
\(151\) −0.590028 4.10373i −0.0480158 0.333957i −0.999643 0.0267033i \(-0.991499\pi\)
0.951628 0.307254i \(-0.0994100\pi\)
\(152\) 0 0
\(153\) −15.3224 + 28.0609i −1.23874 + 2.26859i
\(154\) 0 0
\(155\) 16.3294 3.89879i 1.31161 0.313158i
\(156\) 0 0
\(157\) 0.517217 7.23164i 0.0412784 0.577148i −0.934157 0.356862i \(-0.883847\pi\)
0.975435 0.220286i \(-0.0706989\pi\)
\(158\) 0 0
\(159\) −6.25665 + 13.7002i −0.496185 + 1.08649i
\(160\) 0 0
\(161\) −19.4478 4.82314i −1.53270 0.380116i
\(162\) 0 0
\(163\) −12.0433 + 4.49192i −0.943304 + 0.351834i −0.773610 0.633663i \(-0.781551\pi\)
−0.169694 + 0.985497i \(0.554278\pi\)
\(164\) 0 0
\(165\) −12.7767 10.6275i −0.994662 0.827351i
\(166\) 0 0
\(167\) −1.12674 15.7539i −0.0871900 1.21907i −0.833136 0.553068i \(-0.813457\pi\)
0.745946 0.666007i \(-0.231998\pi\)
\(168\) 0 0
\(169\) −3.17960 10.8287i −0.244585 0.832979i
\(170\) 0 0
\(171\) 40.8262 5.86992i 3.12206 0.448884i
\(172\) 0 0
\(173\) 1.57308 4.21759i 0.119599 0.320657i −0.863331 0.504639i \(-0.831626\pi\)
0.982930 + 0.183981i \(0.0588985\pi\)
\(174\) 0 0
\(175\) −17.9160 + 10.7428i −1.35432 + 0.812081i
\(176\) 0 0
\(177\) −16.1171 21.5299i −1.21144 1.61829i
\(178\) 0 0
\(179\) 5.09858 + 7.93355i 0.381086 + 0.592981i 0.977817 0.209460i \(-0.0671706\pi\)
−0.596731 + 0.802441i \(0.703534\pi\)
\(180\) 0 0
\(181\) −5.76781 + 19.6434i −0.428718 + 1.46008i 0.408272 + 0.912861i \(0.366132\pi\)
−0.836990 + 0.547219i \(0.815687\pi\)
\(182\) 0 0
\(183\) 31.3671 31.3671i 2.31872 2.31872i
\(184\) 0 0
\(185\) −2.21345 13.4614i −0.162736 0.989704i
\(186\) 0 0
\(187\) −8.66246 + 4.73006i −0.633462 + 0.345896i
\(188\) 0 0
\(189\) −50.5368 + 32.4780i −3.67601 + 2.36243i
\(190\) 0 0
\(191\) 4.56066 + 0.655723i 0.329997 + 0.0474465i 0.305322 0.952249i \(-0.401236\pi\)
0.0246751 + 0.999696i \(0.492145\pi\)
\(192\) 0 0
\(193\) 0.615808 + 2.83082i 0.0443268 + 0.203767i 0.993984 0.109523i \(-0.0349324\pi\)
−0.949657 + 0.313290i \(0.898569\pi\)
\(194\) 0 0
\(195\) 34.9508 + 6.86785i 2.50288 + 0.491817i
\(196\) 0 0
\(197\) 11.6904 + 8.75134i 0.832908 + 0.623507i 0.928258 0.371937i \(-0.121306\pi\)
−0.0953500 + 0.995444i \(0.530397\pi\)
\(198\) 0 0
\(199\) 2.62762 0.771540i 0.186267 0.0546930i −0.187269 0.982309i \(-0.559963\pi\)
0.373536 + 0.927616i \(0.378145\pi\)
\(200\) 0 0
\(201\) −6.02546 5.22109i −0.425003 0.368267i
\(202\) 0 0
\(203\) 22.0627 + 1.57795i 1.54850 + 0.110751i
\(204\) 0 0
\(205\) −6.17870 + 3.53744i −0.431539 + 0.247066i
\(206\) 0 0
\(207\) −35.4892 + 4.05978i −2.46667 + 0.282174i
\(208\) 0 0
\(209\) 11.5821 + 5.28937i 0.801151 + 0.365873i
\(210\) 0 0
\(211\) 7.34378 + 8.47517i 0.505567 + 0.583455i 0.949958 0.312378i \(-0.101125\pi\)
−0.444391 + 0.895833i \(0.646580\pi\)
\(212\) 0 0
\(213\) −5.18292 + 0.370690i −0.355128 + 0.0253992i
\(214\) 0 0
\(215\) −2.13054 + 1.02541i −0.145301 + 0.0699325i
\(216\) 0 0
\(217\) 18.7984 25.1117i 1.27612 1.70469i
\(218\) 0 0
\(219\) 20.7910 9.49493i 1.40492 0.641608i
\(220\) 0 0
\(221\) 11.4366 17.7957i 0.769309 1.19707i
\(222\) 0 0
\(223\) −11.5674 + 8.65924i −0.774610 + 0.579866i −0.911779 0.410682i \(-0.865291\pi\)
0.137169 + 0.990548i \(0.456200\pi\)
\(224\) 0 0
\(225\) −23.2329 + 29.1058i −1.54886 + 1.94039i
\(226\) 0 0
\(227\) 2.69021 + 4.92676i 0.178556 + 0.327000i 0.951593 0.307360i \(-0.0994455\pi\)
−0.773038 + 0.634360i \(0.781264\pi\)
\(228\) 0 0
\(229\) −19.0327 −1.25771 −0.628857 0.777521i \(-0.716477\pi\)
−0.628857 + 0.777521i \(0.716477\pi\)
\(230\) 0 0
\(231\) −31.0516 −2.04305
\(232\) 0 0
\(233\) −6.92611 12.6842i −0.453744 0.830971i 0.546234 0.837633i \(-0.316061\pi\)
−0.999978 + 0.00666235i \(0.997879\pi\)
\(234\) 0 0
\(235\) −4.45776 + 4.02293i −0.290792 + 0.262427i
\(236\) 0 0
\(237\) 23.9327 17.9158i 1.55459 1.16375i
\(238\) 0 0
\(239\) −6.95690 + 10.8251i −0.450004 + 0.700221i −0.989940 0.141486i \(-0.954812\pi\)
0.539936 + 0.841706i \(0.318448\pi\)
\(240\) 0 0
\(241\) −2.91855 + 1.33286i −0.188000 + 0.0858568i −0.507191 0.861834i \(-0.669316\pi\)
0.319191 + 0.947690i \(0.396589\pi\)
\(242\) 0 0
\(243\) −20.8956 + 27.9132i −1.34045 + 1.79063i
\(244\) 0 0
\(245\) −7.72681 + 22.0658i −0.493648 + 1.40973i
\(246\) 0 0
\(247\) −27.2205 + 1.94685i −1.73200 + 0.123875i
\(248\) 0 0
\(249\) 9.71517 + 11.2119i 0.615674 + 0.710526i
\(250\) 0 0
\(251\) 2.58110 + 1.17875i 0.162918 + 0.0744021i 0.495205 0.868776i \(-0.335093\pi\)
−0.332287 + 0.943178i \(0.607820\pi\)
\(252\) 0 0
\(253\) −9.89398 4.86872i −0.622029 0.306094i
\(254\) 0 0
\(255\) 15.4151 + 26.9249i 0.965333 + 1.68611i
\(256\) 0 0
\(257\) −10.4576 0.747940i −0.652325 0.0466552i −0.258745 0.965946i \(-0.583309\pi\)
−0.393580 + 0.919290i \(0.628764\pi\)
\(258\) 0 0
\(259\) −19.2639 16.6923i −1.19700 1.03721i
\(260\) 0 0
\(261\) 37.8351 11.1094i 2.34194 0.687654i
\(262\) 0 0
\(263\) −5.61971 4.20686i −0.346526 0.259406i 0.411810 0.911270i \(-0.364897\pi\)
−0.758336 + 0.651864i \(0.773987\pi\)
\(264\) 0 0
\(265\) 5.80853 + 8.64955i 0.356815 + 0.531338i
\(266\) 0 0
\(267\) −3.71265 17.0668i −0.227210 1.04447i
\(268\) 0 0
\(269\) 28.2928 + 4.06789i 1.72504 + 0.248024i 0.932339 0.361584i \(-0.117764\pi\)
0.792703 + 0.609608i \(0.208673\pi\)
\(270\) 0 0
\(271\) −17.5599 + 11.2851i −1.06669 + 0.685518i −0.951445 0.307819i \(-0.900401\pi\)
−0.115242 + 0.993337i \(0.536764\pi\)
\(272\) 0 0
\(273\) 58.4121 31.8954i 3.53526 1.93040i
\(274\) 0 0
\(275\) −10.8912 + 3.68119i −0.656763 + 0.221984i
\(276\) 0 0
\(277\) 3.14698 3.14698i 0.189084 0.189084i −0.606216 0.795300i \(-0.707313\pi\)
0.795300 + 0.606216i \(0.207313\pi\)
\(278\) 0 0
\(279\) 15.7549 53.6564i 0.943223 3.21232i
\(280\) 0 0
\(281\) −11.4871 17.8743i −0.685265 1.06629i −0.993372 0.114941i \(-0.963332\pi\)
0.308108 0.951351i \(-0.400304\pi\)
\(282\) 0 0
\(283\) −6.04173 8.07081i −0.359144 0.479760i 0.584185 0.811621i \(-0.301414\pi\)
−0.943328 + 0.331861i \(0.892324\pi\)
\(284\) 0 0
\(285\) 15.8894 36.7362i 0.941204 2.17607i
\(286\) 0 0
\(287\) −4.64885 + 12.4641i −0.274413 + 0.735730i
\(288\) 0 0
\(289\) 1.41110 0.202885i 0.0830058 0.0119344i
\(290\) 0 0
\(291\) −10.7188 36.5050i −0.628349 2.13996i
\(292\) 0 0
\(293\) 0.522794 + 7.30962i 0.0305420 + 0.427033i 0.989602 + 0.143831i \(0.0459421\pi\)
−0.959060 + 0.283202i \(0.908603\pi\)
\(294\) 0 0
\(295\) −18.5267 + 1.70127i −1.07867 + 0.0990518i
\(296\) 0 0
\(297\) −30.9759 + 11.5534i −1.79740 + 0.670397i
\(298\) 0 0
\(299\) 23.6129 1.00415i 1.36557 0.0580715i
\(300\) 0 0
\(301\) −1.83525 + 4.01865i −0.105782 + 0.231631i
\(302\) 0 0
\(303\) 1.40647 19.6650i 0.0807994 1.12972i
\(304\) 0 0
\(305\) −7.12643 29.8479i −0.408058 1.70908i
\(306\) 0 0
\(307\) −11.7449 + 21.5092i −0.670317 + 1.22759i 0.292196 + 0.956358i \(0.405614\pi\)
−0.962513 + 0.271236i \(0.912568\pi\)
\(308\) 0 0
\(309\) −7.11114 49.4590i −0.404538 2.81363i
\(310\) 0 0
\(311\) −3.86753 8.46870i −0.219307 0.480216i 0.767717 0.640790i \(-0.221393\pi\)
−0.987024 + 0.160574i \(0.948666\pi\)
\(312\) 0 0
\(313\) 13.2222 2.87631i 0.747363 0.162579i 0.177274 0.984162i \(-0.443272\pi\)
0.570089 + 0.821583i \(0.306909\pi\)
\(314\) 0 0
\(315\) 1.40350 + 69.5696i 0.0790783 + 3.91980i
\(316\) 0 0
\(317\) −2.87438 + 13.2133i −0.161441 + 0.742133i 0.823230 + 0.567709i \(0.192170\pi\)
−0.984671 + 0.174424i \(0.944194\pi\)
\(318\) 0 0
\(319\) 11.6798 + 3.42949i 0.653942 + 0.192015i
\(320\) 0 0
\(321\) 18.4147i 1.02781i
\(322\) 0 0
\(323\) −16.8083 16.8083i −0.935237 0.935237i
\(324\) 0 0
\(325\) 16.7065 18.1119i 0.926708 1.00467i
\(326\) 0 0
\(327\) 43.4012 + 9.44136i 2.40009 + 0.522108i
\(328\) 0 0
\(329\) −1.59669 + 11.1052i −0.0880281 + 0.612249i
\(330\) 0 0
\(331\) −23.5800 15.1540i −1.29608 0.832938i −0.303297 0.952896i \(-0.598087\pi\)
−0.992779 + 0.119959i \(0.961724\pi\)
\(332\) 0 0
\(333\) −42.5766 15.8802i −2.33318 0.870232i
\(334\) 0 0
\(335\) −5.25955 + 1.66028i −0.287360 + 0.0907110i
\(336\) 0 0
\(337\) 17.2431 + 9.41546i 0.939293 + 0.512893i 0.874511 0.485007i \(-0.161183\pi\)
0.0647826 + 0.997899i \(0.479365\pi\)
\(338\) 0 0
\(339\) −32.1405 + 37.0921i −1.74563 + 2.01456i
\(340\) 0 0
\(341\) 13.0466 11.3049i 0.706512 0.612196i
\(342\) 0 0
\(343\) 5.04543 + 13.5273i 0.272428 + 0.730407i
\(344\) 0 0
\(345\) −14.6744 + 31.4040i −0.790041 + 1.69074i
\(346\) 0 0
\(347\) −7.30108 19.5750i −0.391943 1.05084i −0.971735 0.236075i \(-0.924139\pi\)
0.579792 0.814764i \(-0.303134\pi\)
\(348\) 0 0
\(349\) 12.6493 10.9607i 0.677100 0.586711i −0.246928 0.969034i \(-0.579421\pi\)
0.924029 + 0.382323i \(0.124876\pi\)
\(350\) 0 0
\(351\) 46.4022 53.5510i 2.47677 2.85834i
\(352\) 0 0
\(353\) 11.8496 + 6.47038i 0.630691 + 0.344383i 0.762592 0.646880i \(-0.223926\pi\)
−0.131901 + 0.991263i \(0.542108\pi\)
\(354\) 0 0
\(355\) −1.65870 + 3.18897i −0.0880349 + 0.169253i
\(356\) 0 0
\(357\) 54.3147 + 20.2583i 2.87464 + 1.07218i
\(358\) 0 0
\(359\) 19.7419 + 12.6873i 1.04194 + 0.669611i 0.945465 0.325725i \(-0.105608\pi\)
0.0964707 + 0.995336i \(0.469245\pi\)
\(360\) 0 0
\(361\) −1.66021 + 11.5470i −0.0873795 + 0.607738i
\(362\) 0 0
\(363\) 18.0453 + 3.92552i 0.947134 + 0.206036i
\(364\) 0 0
\(365\) 1.93408 15.6927i 0.101234 0.821395i
\(366\) 0 0
\(367\) 6.54247 + 6.54247i 0.341514 + 0.341514i 0.856936 0.515422i \(-0.172365\pi\)
−0.515422 + 0.856936i \(0.672365\pi\)
\(368\) 0 0
\(369\) 23.7154i 1.23458i
\(370\) 0 0
\(371\) 18.6787 + 5.48457i 0.969751 + 0.284745i
\(372\) 0 0
\(373\) −1.14513 + 5.26408i −0.0592926 + 0.272564i −0.997243 0.0742059i \(-0.976358\pi\)
0.937950 + 0.346770i \(0.112721\pi\)
\(374\) 0 0
\(375\) 12.2600 + 33.9960i 0.633102 + 1.75554i
\(376\) 0 0
\(377\) −25.4938 + 5.54584i −1.31300 + 0.285625i
\(378\) 0 0
\(379\) 12.7747 + 27.9727i 0.656193 + 1.43686i 0.886027 + 0.463633i \(0.153454\pi\)
−0.229834 + 0.973230i \(0.573818\pi\)
\(380\) 0 0
\(381\) −6.96776 48.4619i −0.356969 2.48278i
\(382\) 0 0
\(383\) −0.693322 + 1.26972i −0.0354271 + 0.0648799i −0.894793 0.446482i \(-0.852677\pi\)
0.859366 + 0.511361i \(0.170859\pi\)
\(384\) 0 0
\(385\) −11.2465 + 18.3012i −0.573173 + 0.932717i
\(386\) 0 0
\(387\) −0.561862 + 7.85586i −0.0285610 + 0.399336i
\(388\) 0 0
\(389\) −14.7804 + 32.3645i −0.749394 + 1.64094i 0.0180581 + 0.999837i \(0.494252\pi\)
−0.767452 + 0.641107i \(0.778476\pi\)
\(390\) 0 0
\(391\) 14.1299 + 14.9711i 0.714579 + 0.757123i
\(392\) 0 0
\(393\) 0.0743242 0.0277215i 0.00374916 0.00139836i
\(394\) 0 0
\(395\) −1.89113 20.5943i −0.0951531 1.03621i
\(396\) 0 0
\(397\) 0.798620 + 11.1662i 0.0400816 + 0.560414i 0.977326 + 0.211741i \(0.0679132\pi\)
−0.937244 + 0.348673i \(0.886632\pi\)
\(398\) 0 0
\(399\) −21.0695 71.7561i −1.05479 3.59230i
\(400\) 0 0
\(401\) 2.59697 0.373389i 0.129687 0.0186461i −0.0771658 0.997018i \(-0.524587\pi\)
0.206852 + 0.978372i \(0.433678\pi\)
\(402\) 0 0
\(403\) −12.9302 + 34.6671i −0.644097 + 1.72689i
\(404\) 0 0
\(405\) 19.8732 + 50.1677i 0.987507 + 2.49285i
\(406\) 0 0
\(407\) −8.40663 11.2299i −0.416701 0.556648i
\(408\) 0 0
\(409\) −20.8619 32.4618i −1.03156 1.60513i −0.767957 0.640502i \(-0.778726\pi\)
−0.263600 0.964632i \(-0.584910\pi\)
\(410\) 0 0
\(411\) −0.648106 + 2.20725i −0.0319687 + 0.108875i
\(412\) 0 0
\(413\) −24.5804 + 24.5804i −1.20952 + 1.20952i
\(414\) 0 0
\(415\) 10.1268 1.66514i 0.497104 0.0817385i
\(416\) 0 0
\(417\) −19.6192 + 10.7129i −0.960755 + 0.524612i
\(418\) 0 0
\(419\) −2.57092 + 1.65223i −0.125598 + 0.0807167i −0.601931 0.798548i \(-0.705602\pi\)
0.476334 + 0.879265i \(0.341965\pi\)
\(420\) 0 0
\(421\) −3.89707 0.560315i −0.189932 0.0273081i 0.0466924 0.998909i \(-0.485132\pi\)
−0.236624 + 0.971601i \(0.576041\pi\)
\(422\) 0 0
\(423\) 4.25157 + 19.5441i 0.206718 + 0.950268i
\(424\) 0 0
\(425\) 21.4522 + 0.666459i 1.04058 + 0.0323280i
\(426\) 0 0
\(427\) −45.9006 34.3608i −2.22129 1.66283i
\(428\) 0 0
\(429\) 35.1427 10.3188i 1.69671 0.498198i
\(430\) 0 0
\(431\) 1.14882 + 0.995462i 0.0553369 + 0.0479497i 0.682090 0.731268i \(-0.261071\pi\)
−0.626753 + 0.779218i \(0.715617\pi\)
\(432\) 0 0
\(433\) −15.9372 1.13985i −0.765893 0.0547777i −0.317074 0.948401i \(-0.602700\pi\)
−0.448818 + 0.893623i \(0.648155\pi\)
\(434\) 0 0
\(435\) 10.0378 36.9253i 0.481278 1.77043i
\(436\) 0 0
\(437\) 4.53758 26.1672i 0.217062 1.25175i
\(438\) 0 0
\(439\) 13.7224 + 6.26682i 0.654935 + 0.299099i 0.715030 0.699094i \(-0.246413\pi\)
−0.0600948 + 0.998193i \(0.519140\pi\)
\(440\) 0 0
\(441\) 50.9982 + 58.8550i 2.42848 + 2.80262i
\(442\) 0 0
\(443\) −9.86767 + 0.705750i −0.468827 + 0.0335312i −0.303755 0.952750i \(-0.598240\pi\)
−0.165073 + 0.986281i \(0.552786\pi\)
\(444\) 0 0
\(445\) −11.4035 3.99318i −0.540577 0.189295i
\(446\) 0 0
\(447\) 16.2245 21.6734i 0.767393 1.02512i
\(448\) 0 0
\(449\) 18.7693 8.57166i 0.885779 0.404522i 0.0800395 0.996792i \(-0.474495\pi\)
0.805740 + 0.592270i \(0.201768\pi\)
\(450\) 0 0
\(451\) −3.95803 + 6.15881i −0.186376 + 0.290007i
\(452\) 0 0
\(453\) −10.7282 + 8.03105i −0.504056 + 0.377332i
\(454\) 0 0
\(455\) 2.35750 45.9790i 0.110521 2.15553i
\(456\) 0 0
\(457\) 4.75963 + 8.71660i 0.222646 + 0.407745i 0.964995 0.262268i \(-0.0844703\pi\)
−0.742349 + 0.670013i \(0.766288\pi\)
\(458\) 0 0
\(459\) 61.7197 2.88083
\(460\) 0 0
\(461\) −14.3758 −0.669549 −0.334775 0.942298i \(-0.608660\pi\)
−0.334775 + 0.942298i \(0.608660\pi\)
\(462\) 0 0
\(463\) 17.9326 + 32.8411i 0.833399 + 1.52626i 0.850238 + 0.526398i \(0.176458\pi\)
−0.0168394 + 0.999858i \(0.505360\pi\)
\(464\) 0 0
\(465\) −36.3569 40.2867i −1.68601 1.86825i
\(466\) 0 0
\(467\) 23.1387 17.3214i 1.07073 0.801538i 0.0898110 0.995959i \(-0.471374\pi\)
0.980918 + 0.194421i \(0.0622828\pi\)
\(468\) 0 0
\(469\) −5.57143 + 8.66932i −0.257265 + 0.400312i
\(470\) 0 0
\(471\) −21.3173 + 9.73530i −0.982250 + 0.448579i
\(472\) 0 0
\(473\) −1.45703 + 1.94637i −0.0669944 + 0.0894940i
\(474\) 0 0
\(475\) −15.8967 22.6702i −0.729391 1.04018i
\(476\) 0 0
\(477\) 34.6166 2.47583i 1.58499 0.113360i
\(478\) 0 0
\(479\) 22.9239 + 26.4556i 1.04742 + 1.20879i 0.977434 + 0.211241i \(0.0677503\pi\)
0.0699870 + 0.997548i \(0.477704\pi\)
\(480\) 0 0
\(481\) 27.3490 + 12.4899i 1.24701 + 0.569490i
\(482\) 0 0
\(483\) 16.4437 + 62.6448i 0.748213 + 2.85044i
\(484\) 0 0
\(485\) −25.3976 6.90413i −1.15324 0.313500i
\(486\) 0 0
\(487\) 33.9184 + 2.42589i 1.53699 + 0.109928i 0.813973 0.580903i \(-0.197300\pi\)
0.723017 + 0.690830i \(0.242755\pi\)
\(488\) 0 0
\(489\) 31.4000 + 27.2082i 1.41996 + 1.23040i
\(490\) 0 0
\(491\) 0.209759 0.0615907i 0.00946627 0.00277955i −0.276996 0.960871i \(-0.589339\pi\)
0.286462 + 0.958092i \(0.407521\pi\)
\(492\) 0 0
\(493\) −18.1925 13.6187i −0.819350 0.613357i
\(494\) 0 0
\(495\) −7.38365 + 37.5758i −0.331871 + 1.68891i
\(496\) 0 0
\(497\) 1.42765 + 6.56278i 0.0640387 + 0.294381i
\(498\) 0 0
\(499\) 34.2383 + 4.92272i 1.53271 + 0.220371i 0.856428 0.516267i \(-0.172679\pi\)
0.676287 + 0.736638i \(0.263588\pi\)
\(500\) 0 0
\(501\) −42.9483 + 27.6012i −1.91879 + 1.23313i
\(502\) 0 0
\(503\) 5.51113 3.00930i 0.245729 0.134178i −0.351665 0.936126i \(-0.614384\pi\)
0.597394 + 0.801948i \(0.296203\pi\)
\(504\) 0 0
\(505\) −11.0807 7.95132i −0.493087 0.353829i
\(506\) 0 0
\(507\) −25.7954 + 25.7954i −1.14562 + 1.14562i
\(508\) 0 0
\(509\) 11.0233 37.5420i 0.488600 1.66402i −0.233597 0.972333i \(-0.575050\pi\)
0.722198 0.691687i \(-0.243132\pi\)
\(510\) 0 0
\(511\) −15.9722 24.8532i −0.706567 1.09944i
\(512\) 0 0
\(513\) −47.7164 63.7417i −2.10673 2.81426i
\(514\) 0 0
\(515\) −31.7258 13.7222i −1.39800 0.604673i
\(516\) 0 0
\(517\) −2.15774 + 5.78512i −0.0948972 + 0.254429i
\(518\) 0 0
\(519\) −14.4021 + 2.07072i −0.632184 + 0.0908943i
\(520\) 0 0
\(521\) 5.72139 + 19.4853i 0.250659 + 0.853666i 0.984655 + 0.174512i \(0.0558348\pi\)
−0.733996 + 0.679154i \(0.762347\pi\)
\(522\) 0 0
\(523\) −0.313672 4.38571i −0.0137159 0.191774i −0.999690 0.0248781i \(-0.992080\pi\)
0.985975 0.166896i \(-0.0533743\pi\)
\(524\) 0 0
\(525\) 58.2312 + 34.1856i 2.54142 + 1.49198i
\(526\) 0 0
\(527\) −30.1961 + 11.2626i −1.31536 + 0.490606i
\(528\) 0 0
\(529\) −4.58291 + 22.5388i −0.199257 + 0.979947i
\(530\) 0 0
\(531\) −25.7439 + 56.3713i −1.11719 + 2.44631i
\(532\) 0 0
\(533\) 1.11939 15.6511i 0.0484861 0.677924i
\(534\) 0 0
\(535\) −10.8532 6.66953i −0.469227 0.288349i
\(536\) 0 0
\(537\) 14.6091 26.7546i 0.630430 1.15455i
\(538\) 0 0
\(539\) 3.42133 + 23.7959i 0.147367 + 1.02496i
\(540\) 0 0
\(541\) −10.5234 23.0431i −0.452437 0.990699i −0.989147 0.146932i \(-0.953060\pi\)
0.536710 0.843767i \(-0.319667\pi\)
\(542\) 0 0
\(543\) 64.6630 14.0666i 2.77496 0.603655i
\(544\) 0 0
\(545\) 21.2839 22.1603i 0.911701 0.949244i
\(546\) 0 0
\(547\) −4.11046 + 18.8955i −0.175751 + 0.807912i 0.801864 + 0.597507i \(0.203842\pi\)
−0.977614 + 0.210405i \(0.932522\pi\)
\(548\) 0 0
\(549\) −98.0763 28.7978i −4.18579 1.22906i
\(550\) 0 0
\(551\) 29.3174i 1.24896i
\(552\) 0 0
\(553\) −27.3236 27.3236i −1.16192 1.16192i
\(554\) 0 0
\(555\) −34.7611 + 27.1328i −1.47552 + 1.15172i
\(556\) 0 0
\(557\) −9.37056 2.03844i −0.397043 0.0863715i 0.00961040 0.999954i \(-0.496941\pi\)
−0.406654 + 0.913582i \(0.633305\pi\)
\(558\) 0 0
\(559\) 0.741606 5.15798i 0.0313666 0.218159i
\(560\) 0 0
\(561\) 26.8383 + 17.2479i 1.13311 + 0.728207i
\(562\) 0 0
\(563\) 20.6166 + 7.68958i 0.868884 + 0.324077i 0.744069 0.668103i \(-0.232893\pi\)
0.124815 + 0.992180i \(0.460166\pi\)
\(564\) 0 0
\(565\) 10.2205 + 32.3772i 0.429981 + 1.36212i
\(566\) 0 0
\(567\) 88.4901 + 48.3193i 3.71624 + 2.02922i
\(568\) 0 0
\(569\) −25.7436 + 29.7097i −1.07923 + 1.24549i −0.111428 + 0.993773i \(0.535542\pi\)
−0.967799 + 0.251722i \(0.919003\pi\)
\(570\) 0 0
\(571\) 14.2793 12.3731i 0.597570 0.517798i −0.302725 0.953078i \(-0.597896\pi\)
0.900295 + 0.435280i \(0.143351\pi\)
\(572\) 0 0
\(573\) −5.20469 13.9543i −0.217429 0.582950i
\(574\) 0 0
\(575\) 13.1941 + 20.0229i 0.550231 + 0.835012i
\(576\) 0 0
\(577\) −0.774082 2.07540i −0.0322255 0.0863998i 0.919841 0.392292i \(-0.128318\pi\)
−0.952066 + 0.305893i \(0.901045\pi\)
\(578\) 0 0
\(579\) 7.07706 6.13231i 0.294113 0.254850i
\(580\) 0 0
\(581\) 12.5573 14.4919i 0.520964 0.601225i
\(582\) 0 0
\(583\) 9.40303 + 5.13444i 0.389434 + 0.212647i
\(584\) 0 0
\(585\) −24.7072 78.2691i −1.02152 3.23603i
\(586\) 0 0
\(587\) 0.128928 + 0.0480875i 0.00532141 + 0.00198478i 0.352123 0.935954i \(-0.385460\pi\)
−0.346802 + 0.937938i \(0.612732\pi\)
\(588\) 0 0
\(589\) 34.9766 + 22.4781i 1.44119 + 0.926195i
\(590\) 0 0
\(591\) 6.71767 46.7224i 0.276328 1.92190i
\(592\) 0 0
\(593\) 38.2479 + 8.32032i 1.57065 + 0.341675i 0.911812 0.410607i \(-0.134683\pi\)
0.658841 + 0.752282i \(0.271047\pi\)
\(594\) 0 0
\(595\) 31.6119 24.6747i 1.29596 1.01157i
\(596\) 0 0
\(597\) −6.25934 6.25934i −0.256178 0.256178i
\(598\) 0 0
\(599\) 39.1031i 1.59771i −0.601524 0.798855i \(-0.705439\pi\)
0.601524 0.798855i \(-0.294561\pi\)
\(600\) 0 0
\(601\) −25.6764 7.53926i −1.04736 0.307533i −0.287610 0.957748i \(-0.592861\pi\)
−0.759751 + 0.650215i \(0.774679\pi\)
\(602\) 0 0
\(603\) −3.90515 + 17.9517i −0.159030 + 0.731049i
\(604\) 0 0
\(605\) 8.84939 9.21380i 0.359779 0.374594i
\(606\) 0 0
\(607\) 38.1582 8.30081i 1.54879 0.336919i 0.644761 0.764384i \(-0.276957\pi\)
0.904032 + 0.427464i \(0.140593\pi\)
\(608\) 0 0
\(609\) −29.7009 65.0360i −1.20354 2.63539i
\(610\) 0 0
\(611\) −1.88334 13.0989i −0.0761917 0.529925i
\(612\) 0 0
\(613\) 10.2815 18.8292i 0.415266 0.760503i −0.583397 0.812187i \(-0.698277\pi\)
0.998664 + 0.0516836i \(0.0164587\pi\)
\(614\) 0 0
\(615\) 19.6072 + 12.0490i 0.790639 + 0.485863i
\(616\) 0 0
\(617\) −0.324597 + 4.53845i −0.0130678 + 0.182711i 0.986726 + 0.162395i \(0.0519219\pi\)
−0.999794 + 0.0203163i \(0.993533\pi\)
\(618\) 0 0
\(619\) 10.0698 22.0498i 0.404740 0.886256i −0.592028 0.805917i \(-0.701672\pi\)
0.996768 0.0803389i \(-0.0256003\pi\)
\(620\) 0 0
\(621\) 39.7119 + 56.3738i 1.59358 + 2.26220i
\(622\) 0 0
\(623\) −21.1521 + 7.88932i −0.847441 + 0.316079i
\(624\) 0 0
\(625\) 24.4770 + 5.08708i 0.979078 + 0.203483i
\(626\) 0 0
\(627\) −2.93611 41.0521i −0.117257 1.63946i
\(628\) 0 0
\(629\) 7.37815 + 25.1277i 0.294186 + 1.00191i
\(630\) 0 0
\(631\) 22.1266 3.18133i 0.880847 0.126647i 0.312973 0.949762i \(-0.398675\pi\)
0.567874 + 0.823115i \(0.307766\pi\)
\(632\) 0 0
\(633\) 12.6676 33.9632i 0.503493 1.34992i
\(634\) 0 0
\(635\) −31.0861 13.4455i −1.23361 0.533570i
\(636\) 0 0
\(637\) −30.8784 41.2488i −1.22345 1.63434i
\(638\) 0 0
\(639\) 6.47328 + 10.0726i 0.256079 + 0.398467i
\(640\) 0 0
\(641\) −8.14988 + 27.7559i −0.321901 + 1.09629i 0.626553 + 0.779379i \(0.284465\pi\)
−0.948454 + 0.316915i \(0.897353\pi\)
\(642\) 0 0
\(643\) −18.1303 + 18.1303i −0.714991 + 0.714991i −0.967575 0.252584i \(-0.918720\pi\)
0.252584 + 0.967575i \(0.418720\pi\)
\(644\) 0 0
\(645\) 6.20952 + 4.45583i 0.244500 + 0.175448i
\(646\) 0 0
\(647\) −9.88940 + 5.40002i −0.388792 + 0.212297i −0.661742 0.749732i \(-0.730183\pi\)
0.272950 + 0.962028i \(0.412001\pi\)
\(648\) 0 0
\(649\) −16.0938 + 10.3429i −0.631737 + 0.405993i
\(650\) 0 0
\(651\) −100.362 14.4299i −3.93351 0.565554i
\(652\) 0 0
\(653\) −7.86005 36.1320i −0.307587 1.41396i −0.828329 0.560242i \(-0.810708\pi\)
0.520742 0.853714i \(-0.325655\pi\)
\(654\) 0 0
\(655\) 0.0105807 0.0538456i 0.000413421 0.00210392i
\(656\) 0 0
\(657\) −42.1625 31.5624i −1.64492 1.23137i
\(658\) 0 0
\(659\) 34.0520 9.99856i 1.32648 0.389489i 0.459651 0.888100i \(-0.347975\pi\)
0.866826 + 0.498611i \(0.166156\pi\)
\(660\) 0 0
\(661\) 2.19716 + 1.90385i 0.0854598 + 0.0740513i 0.696543 0.717515i \(-0.254721\pi\)
−0.611083 + 0.791566i \(0.709266\pi\)
\(662\) 0 0
\(663\) −68.2028 4.87796i −2.64878 0.189444i
\(664\) 0 0
\(665\) −49.9227 13.5711i −1.93592 0.526265i
\(666\) 0 0
\(667\) 0.733665 25.3794i 0.0284076 0.982693i
\(668\) 0 0
\(669\) 42.4854 + 19.4024i 1.64258 + 0.750141i
\(670\) 0 0
\(671\) −20.6638 23.8473i −0.797718 0.920615i
\(672\) 0 0
\(673\) 17.2311 1.23239i 0.664210 0.0475052i 0.264836 0.964293i \(-0.414682\pi\)
0.399374 + 0.916788i \(0.369228\pi\)
\(674\) 0 0
\(675\) 70.8086 + 12.4361i 2.72543 + 0.478666i
\(676\) 0 0
\(677\) −22.4257 + 29.9572i −0.861890 + 1.15135i 0.125350 + 0.992113i \(0.459994\pi\)
−0.987240 + 0.159238i \(0.949096\pi\)
\(678\) 0 0
\(679\) −44.7324 + 20.4286i −1.71667 + 0.783978i
\(680\) 0 0
\(681\) 9.80972 15.2642i 0.375909 0.584926i
\(682\) 0 0
\(683\) 25.1699 18.8420i 0.963100 0.720968i 0.00281712 0.999996i \(-0.499103\pi\)
0.960283 + 0.279028i \(0.0900124\pi\)
\(684\) 0 0
\(685\) 1.06617 + 1.18141i 0.0407364 + 0.0451395i
\(686\) 0 0
\(687\) 29.4838 + 53.9955i 1.12488 + 2.06006i
\(688\) 0 0
\(689\) −22.9623 −0.874792
\(690\) 0 0
\(691\) 28.8391 1.09709 0.548546 0.836120i \(-0.315182\pi\)
0.548546 + 0.836120i \(0.315182\pi\)
\(692\) 0 0
\(693\) 34.2909 + 62.7991i 1.30260 + 2.38554i
\(694\) 0 0
\(695\) −0.791825 + 15.4432i −0.0300357 + 0.585794i
\(696\) 0 0
\(697\) 10.9413 8.19058i 0.414432 0.310240i
\(698\) 0 0
\(699\) −25.2557 + 39.2986i −0.955257 + 1.48641i
\(700\) 0 0
\(701\) 8.28667 3.78439i 0.312983 0.142935i −0.252730 0.967537i \(-0.581328\pi\)
0.565713 + 0.824602i \(0.308601\pi\)
\(702\) 0 0
\(703\) 20.2467 27.0464i 0.763619 1.02008i
\(704\) 0 0
\(705\) 18.3186 + 6.41465i 0.689918 + 0.241590i
\(706\) 0 0
\(707\) −25.4179 + 1.81792i −0.955937 + 0.0683699i
\(708\) 0 0
\(709\) −14.7992 17.0792i −0.555795 0.641422i 0.406428 0.913683i \(-0.366774\pi\)
−0.962223 + 0.272261i \(0.912229\pi\)
\(710\) 0 0
\(711\) −62.6623 28.6169i −2.35002 1.07322i
\(712\) 0 0
\(713\) −29.7159 20.3341i −1.11287 0.761517i
\(714\) 0 0
\(715\) 6.64648 24.4498i 0.248564 0.914370i
\(716\) 0 0
\(717\) 41.4879 + 2.96727i 1.54939 + 0.110815i
\(718\) 0 0
\(719\) −31.2180 27.0506i −1.16424 1.00882i −0.999748 0.0224362i \(-0.992858\pi\)
−0.164487 0.986379i \(-0.552597\pi\)
\(720\) 0 0
\(721\) −61.9693 + 18.1958i −2.30786 + 0.677648i
\(722\) 0 0
\(723\) 8.30246 + 6.21514i 0.308772 + 0.231144i
\(724\) 0 0
\(725\) −18.1275 19.2899i −0.673237 0.716410i
\(726\) 0 0
\(727\) −1.91054 8.78260i −0.0708579 0.325728i 0.928050 0.372456i \(-0.121484\pi\)
−0.998908 + 0.0467277i \(0.985121\pi\)
\(728\) 0 0
\(729\) 39.9004 + 5.73681i 1.47779 + 0.212474i
\(730\) 0 0
\(731\) 3.81842 2.45395i 0.141229 0.0907627i
\(732\) 0 0
\(733\) 24.9032 13.5982i 0.919820 0.502260i 0.0517271 0.998661i \(-0.483527\pi\)
0.868093 + 0.496401i \(0.165346\pi\)
\(734\) 0 0
\(735\) 74.5701 12.2615i 2.75056 0.452272i
\(736\) 0 0
\(737\) −4.01024 + 4.01024i −0.147719 + 0.147719i
\(738\) 0 0
\(739\) 14.1334 48.1338i 0.519904 1.77063i −0.109972 0.993935i \(-0.535076\pi\)
0.629876 0.776696i \(-0.283106\pi\)
\(740\) 0 0
\(741\) 47.6908 + 74.2084i 1.75197 + 2.72611i
\(742\) 0 0
\(743\) 8.32714 + 11.1238i 0.305493 + 0.408091i 0.926847 0.375439i \(-0.122508\pi\)
−0.621354 + 0.783530i \(0.713417\pi\)
\(744\) 0 0
\(745\) −6.89760 17.4122i −0.252708 0.637934i
\(746\) 0 0
\(747\) 11.9464 32.0296i 0.437096 1.17190i
\(748\) 0 0
\(749\) −23.5595 + 3.38735i −0.860845 + 0.123771i
\(750\) 0 0
\(751\) 6.66147 + 22.6869i 0.243080 + 0.827856i 0.987156 + 0.159760i \(0.0510721\pi\)
−0.744076 + 0.668096i \(0.767110\pi\)
\(752\) 0 0
\(753\) −0.654320 9.14859i −0.0238447 0.333393i
\(754\) 0 0
\(755\) 0.847732 + 9.23175i 0.0308521 + 0.335978i
\(756\) 0 0
\(757\) 3.83338 1.42978i 0.139327 0.0519661i −0.278834 0.960339i \(-0.589948\pi\)
0.418160 + 0.908373i \(0.362675\pi\)
\(758\) 0 0
\(759\) 1.51439 + 35.6113i 0.0549689 + 1.29261i
\(760\) 0 0
\(761\) −15.7521 + 34.4922i −0.571012 + 1.25034i 0.375244 + 0.926926i \(0.377559\pi\)
−0.946257 + 0.323417i \(0.895168\pi\)
\(762\) 0 0
\(763\) 4.09559 57.2638i 0.148270 2.07309i
\(764\) 0 0
\(765\) 37.4300 60.9094i 1.35329 2.20218i
\(766\) 0 0
\(767\) 19.6506 35.9873i 0.709541 1.29943i
\(768\) 0 0
\(769\) 0.722968 + 5.02835i 0.0260709 + 0.181327i 0.998696 0.0510530i \(-0.0162578\pi\)
−0.972625 + 0.232380i \(0.925349\pi\)
\(770\) 0 0
\(771\) 14.0781 + 30.8267i 0.507009 + 1.11020i
\(772\) 0 0
\(773\) 10.7096 2.32974i 0.385199 0.0837950i −0.0157957 0.999875i \(-0.505028\pi\)
0.400995 + 0.916080i \(0.368664\pi\)
\(774\) 0 0
\(775\) −36.9122 + 6.83679i −1.32593 + 0.245585i
\(776\) 0 0
\(777\) −17.5138 + 80.5099i −0.628306 + 2.88828i
\(778\) 0 0
\(779\) −16.9178 4.96752i −0.606144 0.177980i
\(780\) 0 0
\(781\) 3.69620i 0.132260i
\(782\) 0 0
\(783\) −53.8265 53.8265i −1.92360 1.92360i
\(784\) 0 0
\(785\) −1.98304 + 16.0900i −0.0707778 + 0.574277i
\(786\) 0 0
\(787\) −24.7543 5.38497i −0.882396 0.191953i −0.251534 0.967848i \(-0.580935\pi\)
−0.630862 + 0.775895i \(0.717299\pi\)
\(788\) 0 0
\(789\) −3.22925 + 22.4600i −0.114964 + 0.799596i
\(790\) 0 0
\(791\) 53.3673 + 34.2971i 1.89752 + 1.21946i
\(792\) 0 0
\(793\) 63.3665 + 23.6345i 2.25021 + 0.839286i
\(794\) 0 0
\(795\) 15.5406 29.8779i 0.551169 1.05966i
\(796\) 0 0
\(797\) −18.2752 9.97904i −0.647342 0.353476i 0.121799 0.992555i \(-0.461134\pi\)
−0.769141 + 0.639079i \(0.779316\pi\)
\(798\) 0 0
\(799\) 7.54851 8.71145i 0.267047 0.308189i
\(800\) 0 0
\(801\) −30.4160 + 26.3556i −1.07470 + 0.931230i
\(802\) 0 0
\(803\) −5.68178 15.2334i −0.200506 0.537577i
\(804\) 0 0
\(805\) 42.8773 + 12.9975i 1.51123 + 0.458101i
\(806\) 0 0
\(807\) −32.2882 86.5680i −1.13660 3.04734i
\(808\) 0 0
\(809\) −4.58736 + 3.97497i −0.161283 + 0.139753i −0.731764 0.681559i \(-0.761302\pi\)
0.570480 + 0.821311i \(0.306757\pi\)
\(810\) 0 0
\(811\) −33.2168 + 38.3343i −1.16640 + 1.34610i −0.239453 + 0.970908i \(0.576968\pi\)
−0.926948 + 0.375190i \(0.877577\pi\)
\(812\) 0 0
\(813\) 59.2179 + 32.3354i 2.07686 + 1.13405i
\(814\) 0 0
\(815\) 27.4086 8.65210i 0.960083 0.303070i
\(816\) 0 0
\(817\) −5.48642 2.04633i −0.191946 0.0715920i
\(818\) 0 0
\(819\) −129.011 82.9104i −4.50801 2.89712i
\(820\) 0 0
\(821\) 1.76169 12.2528i 0.0614835 0.427627i −0.935711 0.352768i \(-0.885240\pi\)
0.997194 0.0748585i \(-0.0238505\pi\)
\(822\) 0 0
\(823\) −13.4731 2.93089i −0.469642 0.102164i −0.0284846 0.999594i \(-0.509068\pi\)
−0.441157 + 0.897430i \(0.645432\pi\)
\(824\) 0 0
\(825\) 27.3152 + 25.1956i 0.950992 + 0.877198i
\(826\) 0 0
\(827\) −7.11232 7.11232i −0.247320 0.247320i 0.572550 0.819870i \(-0.305954\pi\)
−0.819870 + 0.572550i \(0.805954\pi\)
\(828\) 0 0
\(829\) 42.7316i 1.48413i 0.670329 + 0.742064i \(0.266153\pi\)
−0.670329 + 0.742064i \(0.733847\pi\)
\(830\) 0 0
\(831\) −13.8030 4.05292i −0.478820 0.140594i
\(832\) 0 0
\(833\) 9.54012 43.8552i 0.330545 1.51949i
\(834\) 0 0
\(835\) 0.712338 + 35.3096i 0.0246515 + 1.22194i
\(836\) 0 0
\(837\) −105.487 + 22.9472i −3.64615 + 0.793171i
\(838\) 0 0
\(839\) −14.6209 32.0152i −0.504769 1.10529i −0.974890 0.222687i \(-0.928517\pi\)
0.470121 0.882602i \(-0.344210\pi\)
\(840\) 0 0
\(841\) −0.138294 0.961854i −0.00476875 0.0331674i
\(842\) 0 0
\(843\) −32.9144 + 60.2782i −1.13363 + 2.07609i
\(844\) 0 0
\(845\) 5.86058 + 24.5461i 0.201610 + 0.844410i
\(846\) 0 0
\(847\) 1.70286 23.8091i 0.0585109 0.818090i
\(848\) 0 0
\(849\) −13.5375 + 29.6429i −0.464605 + 1.01734i
\(850\) 0 0
\(851\) −18.2039 + 22.9068i −0.624023 + 0.785234i
\(852\) 0 0
\(853\) −45.7228 + 17.0537i −1.56552 + 0.583909i −0.974822 0.222985i \(-0.928420\pi\)
−0.590698 + 0.806893i \(0.701147\pi\)
\(854\) 0 0
\(855\) −91.8425 + 8.43371i −3.14095 + 0.288427i
\(856\) 0 0
\(857\) 1.83633 + 25.6752i 0.0627278 + 0.877049i 0.927247 + 0.374450i \(0.122168\pi\)
−0.864519 + 0.502600i \(0.832377\pi\)
\(858\) 0 0
\(859\) 13.3715 + 45.5390i 0.456228 + 1.55377i 0.791209 + 0.611546i \(0.209452\pi\)
−0.334980 + 0.942225i \(0.608730\pi\)
\(860\) 0 0
\(861\) 42.5620 6.11950i 1.45051 0.208552i
\(862\) 0 0
\(863\) 0.0330663 0.0886542i 0.00112559 0.00301782i −0.936386 0.350973i \(-0.885851\pi\)
0.937511 + 0.347955i \(0.113124\pi\)
\(864\) 0 0
\(865\) −3.99581 + 9.23833i −0.135862 + 0.314113i
\(866\) 0 0
\(867\) −2.76154 3.68898i −0.0937867 0.125284i
\(868\) 0 0
\(869\) −11.4971 17.8898i −0.390013 0.606871i
\(870\) 0 0
\(871\) 3.42456 11.6630i 0.116037 0.395185i
\(872\) 0 0
\(873\) −61.9910 + 61.9910i −2.09808 + 2.09808i
\(874\) 0 0
\(875\) 41.2389 21.9388i 1.39413 0.741666i
\(876\) 0 0
\(877\) −24.2848 + 13.2605i −0.820041 + 0.447776i −0.833758 0.552130i \(-0.813815\pi\)
0.0137174 + 0.999906i \(0.495633\pi\)
\(878\) 0 0
\(879\) 19.9275 12.8066i 0.672136 0.431956i
\(880\) 0 0
\(881\) 17.6335 + 2.53531i 0.594088 + 0.0854169i 0.432799 0.901490i \(-0.357526\pi\)
0.161288 + 0.986907i \(0.448435\pi\)
\(882\) 0 0
\(883\) 4.86128 + 22.3469i 0.163595 + 0.752034i 0.983699 + 0.179820i \(0.0575516\pi\)
−0.820104 + 0.572214i \(0.806085\pi\)
\(884\) 0 0
\(885\) 33.5265 + 49.9247i 1.12698 + 1.67820i
\(886\) 0 0
\(887\) 40.1788 + 30.0775i 1.34907 + 1.00990i 0.997271 + 0.0738299i \(0.0235222\pi\)
0.351803 + 0.936074i \(0.385569\pi\)
\(888\) 0 0
\(889\) −60.7199 + 17.8290i −2.03648 + 0.597964i
\(890\) 0 0
\(891\) 41.9338 + 36.3358i 1.40483 + 1.21730i
\(892\) 0 0
\(893\) −14.8327 1.06086i −0.496357 0.0355002i
\(894\) 0 0
\(895\) −10.4774 18.3005i −0.350222 0.611717i
\(896\) 0 0
\(897\) −39.4278 65.4339i −1.31645 2.18477i
\(898\) 0 0
\(899\) 36.1566 + 16.5122i 1.20589 + 0.550712i
\(900\) 0 0
\(901\) −13.0978 15.1156i −0.436350 0.503575i
\(902\) 0 0
\(903\) 14.2439 1.01874i 0.474006 0.0339016i
\(904\) 0 0
\(905\) 15.1295 43.2058i 0.502921 1.43621i
\(906\) 0 0
\(907\) −9.35076 + 12.4912i −0.310487 + 0.414762i −0.928457 0.371439i \(-0.878864\pi\)
0.617970 + 0.786202i \(0.287955\pi\)
\(908\) 0 0
\(909\) −41.3238 + 18.8719i −1.37062 + 0.625943i
\(910\) 0 0
\(911\) −11.0404 + 17.1791i −0.365783 + 0.569170i −0.974547 0.224181i \(-0.928029\pi\)
0.608764 + 0.793351i \(0.291666\pi\)
\(912\) 0 0
\(913\) 8.44807 6.32415i 0.279590 0.209299i
\(914\) 0 0
\(915\) −73.6384 + 66.4553i −2.43441 + 2.19695i
\(916\) 0 0
\(917\) −0.0491384 0.0899903i −0.00162269 0.00297174i
\(918\) 0 0
\(919\) −22.4132 −0.739343 −0.369671 0.929163i \(-0.620530\pi\)
−0.369671 + 0.929163i \(0.620530\pi\)
\(920\) 0 0
\(921\) 79.2155 2.61024
\(922\) 0 0
\(923\) −3.79663 6.95301i −0.124968 0.228861i
\(924\) 0 0
\(925\) 3.40160 + 30.3146i 0.111844 + 0.996739i
\(926\) 0 0
\(927\) −92.1734 + 69.0002i −3.02737 + 2.26626i
\(928\) 0 0
\(929\) 11.0398 17.1783i 0.362204 0.563600i −0.611549 0.791206i \(-0.709453\pi\)
0.973753 + 0.227606i \(0.0730898\pi\)
\(930\) 0 0
\(931\) −52.6675 + 24.0525i −1.72611 + 0.788287i
\(932\) 0 0
\(933\) −18.0344 + 24.0911i −0.590419 + 0.788708i
\(934\) 0 0
\(935\) 19.8860 9.57101i 0.650343 0.313005i
\(936\) 0 0
\(937\) 16.1300 1.15364i 0.526946 0.0376879i 0.194667 0.980869i \(-0.437637\pi\)
0.332278 + 0.943181i \(0.392183\pi\)
\(938\) 0 0
\(939\) −28.6428 33.0555i −0.934721 1.07873i
\(940\) 0 0
\(941\) −51.1471 23.3581i −1.66735 0.761452i −0.999858 0.0168314i \(-0.994642\pi\)
−0.667488 0.744620i \(-0.732631\pi\)
\(942\) 0 0
\(943\) 14.5210 + 4.72363i 0.472870 + 0.153823i
\(944\) 0 0
\(945\) 116.574 66.7413i 3.79216 2.17110i
\(946\) 0 0
\(947\) 13.4467 + 0.961725i 0.436958 + 0.0312519i 0.288086 0.957605i \(-0.406981\pi\)
0.148872 + 0.988856i \(0.452436\pi\)
\(948\) 0 0
\(949\) 26.3355 + 22.8199i 0.854888 + 0.740764i
\(950\) 0 0
\(951\) 41.9387 12.3143i 1.35996 0.399319i
\(952\) 0 0
\(953\) 41.1618 + 30.8133i 1.33336 + 0.998142i 0.998437 + 0.0558973i \(0.0178019\pi\)
0.334925 + 0.942245i \(0.391289\pi\)
\(954\) 0 0
\(955\) −10.1095 1.98651i −0.327135 0.0642821i
\(956\) 0 0
\(957\) −8.36387 38.4481i −0.270365 1.24285i
\(958\) 0 0
\(959\) 2.94314 + 0.423160i 0.0950391 + 0.0136646i
\(960\) 0 0
\(961\) 21.3427 13.7161i 0.688473 0.442455i
\(962\) 0 0
\(963\) −37.2419 + 20.3356i −1.20011 + 0.655307i
\(964\) 0 0
\(965\) −1.05105 6.39212i −0.0338345 0.205770i
\(966\) 0 0
\(967\) −28.5701 + 28.5701i −0.918753 + 0.918753i −0.996939 0.0781856i \(-0.975087\pi\)
0.0781856 + 0.996939i \(0.475087\pi\)
\(968\) 0 0
\(969\) −21.6470 + 73.7228i −0.695401 + 2.36832i
\(970\) 0 0
\(971\) 15.9668 + 24.8448i 0.512399 + 0.797308i 0.996998 0.0774281i \(-0.0246708\pi\)
−0.484599 + 0.874736i \(0.661034\pi\)
\(972\) 0 0
\(973\) 17.3148 + 23.1299i 0.555088 + 0.741511i
\(974\) 0 0
\(975\) −77.2635 19.3387i −2.47441 0.619334i
\(976\) 0 0
\(977\) 20.9997 56.3025i 0.671841 1.80128i 0.0776081 0.996984i \(-0.475272\pi\)
0.594233 0.804293i \(-0.297456\pi\)
\(978\) 0 0
\(979\) −12.2976 + 1.76813i −0.393033 + 0.0565097i
\(980\) 0 0
\(981\) −28.8345 98.2013i −0.920615 3.13533i
\(982\) 0 0
\(983\) −0.616629 8.62160i −0.0196674 0.274986i −0.997764 0.0668350i \(-0.978710\pi\)
0.978097 0.208151i \(-0.0667446\pi\)
\(984\) 0 0
\(985\) −25.1043 20.8815i −0.799888 0.665339i
\(986\) 0 0
\(987\) 33.9788 12.6734i 1.08156 0.403400i
\(988\) 0 0
\(989\) 4.69826 + 1.90876i 0.149396 + 0.0606950i
\(990\) 0 0
\(991\) −18.4846 + 40.4757i −0.587184 + 1.28575i 0.349945 + 0.936770i \(0.386200\pi\)
−0.937129 + 0.348983i \(0.886527\pi\)
\(992\) 0 0
\(993\) −6.46350 + 90.3716i −0.205113 + 2.86785i
\(994\) 0 0
\(995\) −5.95618 + 1.42209i −0.188824 + 0.0450832i
\(996\) 0 0
\(997\) 22.2631 40.7718i 0.705080 1.29126i −0.242006 0.970275i \(-0.577805\pi\)
0.947085 0.320982i \(-0.104013\pi\)
\(998\) 0 0
\(999\) 12.4843 + 86.8299i 0.394984 + 2.74718i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.753.2 yes 720
5.2 odd 4 inner 920.2.bv.a.17.2 720
23.19 odd 22 inner 920.2.bv.a.433.2 yes 720
115.42 even 44 inner 920.2.bv.a.617.2 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.2 720 5.2 odd 4 inner
920.2.bv.a.433.2 yes 720 23.19 odd 22 inner
920.2.bv.a.617.2 yes 720 115.42 even 44 inner
920.2.bv.a.753.2 yes 720 1.1 even 1 trivial