Properties

Label 920.2.bv.a.753.18
Level $920$
Weight $2$
Character 920.753
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 753.18
Character \(\chi\) \(=\) 920.753
Dual form 920.2.bv.a.617.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0224040 - 0.0410298i) q^{3} +(2.13690 + 0.658540i) q^{5} +(2.31180 - 1.73059i) q^{7} +(1.62074 - 2.52192i) q^{9} +(0.565611 - 0.258306i) q^{11} +(0.666316 - 0.890094i) q^{13} +(-0.0208552 - 0.102430i) q^{15} +(-2.08532 + 0.149145i) q^{17} +(-1.43969 - 1.66149i) q^{19} +(-0.122799 - 0.0560805i) q^{21} +(-2.25231 - 4.23404i) q^{23} +(4.13265 + 2.81446i) q^{25} +(-0.279672 - 0.0200025i) q^{27} +(1.86944 + 1.61988i) q^{29} +(-8.11526 + 2.38286i) q^{31} +(-0.0232702 - 0.0174198i) q^{33} +(6.07973 - 2.17568i) q^{35} +(0.190749 + 0.876858i) q^{37} +(-0.0514485 - 0.00739718i) q^{39} +(6.19326 - 3.98017i) q^{41} +(-5.01600 + 2.73894i) q^{43} +(5.12414 - 4.32176i) q^{45} +(1.83333 - 1.83333i) q^{47} +(0.377336 - 1.28509i) q^{49} +(0.0528390 + 0.0822190i) q^{51} +(1.91884 + 2.56327i) q^{53} +(1.37876 - 0.179495i) q^{55} +(-0.0359158 + 0.0962940i) q^{57} +(6.13247 - 0.881716i) q^{59} +(3.88373 + 13.2268i) q^{61} +(-0.617588 - 8.63501i) q^{63} +(2.01001 - 1.46324i) q^{65} +(12.7829 - 4.76778i) q^{67} +(-0.123261 + 0.187271i) q^{69} +(-0.404054 + 0.884756i) q^{71} +(-0.272310 + 3.80740i) q^{73} +(0.0228892 - 0.232617i) q^{75} +(0.860556 - 1.57599i) q^{77} +(-0.310067 - 2.15657i) q^{79} +(-3.73057 - 8.16880i) q^{81} +(-10.2708 + 2.23428i) q^{83} +(-4.55434 - 1.05456i) q^{85} +(0.0245804 - 0.112994i) q^{87} +(9.66802 + 2.83879i) q^{89} -3.21083i q^{91} +(0.279582 + 0.279582i) q^{93} +(-1.98230 - 4.49852i) q^{95} +(-10.7495 - 2.33842i) q^{97} +(0.265282 - 1.84507i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0224040 0.0410298i −0.0129349 0.0236886i 0.871132 0.491050i \(-0.163387\pi\)
−0.884067 + 0.467361i \(0.845205\pi\)
\(4\) 0 0
\(5\) 2.13690 + 0.658540i 0.955649 + 0.294508i
\(6\) 0 0
\(7\) 2.31180 1.73059i 0.873777 0.654101i −0.0652785 0.997867i \(-0.520794\pi\)
0.939055 + 0.343766i \(0.111703\pi\)
\(8\) 0 0
\(9\) 1.62074 2.52192i 0.540247 0.840641i
\(10\) 0 0
\(11\) 0.565611 0.258306i 0.170538 0.0778822i −0.328317 0.944568i \(-0.606481\pi\)
0.498855 + 0.866686i \(0.333754\pi\)
\(12\) 0 0
\(13\) 0.666316 0.890094i 0.184803 0.246868i −0.698567 0.715545i \(-0.746178\pi\)
0.883369 + 0.468677i \(0.155269\pi\)
\(14\) 0 0
\(15\) −0.0208552 0.102430i −0.00538479 0.0264474i
\(16\) 0 0
\(17\) −2.08532 + 0.149145i −0.505765 + 0.0361730i −0.321891 0.946777i \(-0.604318\pi\)
−0.183874 + 0.982950i \(0.558864\pi\)
\(18\) 0 0
\(19\) −1.43969 1.66149i −0.330287 0.381171i 0.566180 0.824281i \(-0.308421\pi\)
−0.896467 + 0.443110i \(0.853875\pi\)
\(20\) 0 0
\(21\) −0.122799 0.0560805i −0.0267970 0.0122378i
\(22\) 0 0
\(23\) −2.25231 4.23404i −0.469639 0.882859i
\(24\) 0 0
\(25\) 4.13265 + 2.81446i 0.826530 + 0.562893i
\(26\) 0 0
\(27\) −0.279672 0.0200025i −0.0538229 0.00384949i
\(28\) 0 0
\(29\) 1.86944 + 1.61988i 0.347145 + 0.300803i 0.810928 0.585146i \(-0.198963\pi\)
−0.463783 + 0.885949i \(0.653508\pi\)
\(30\) 0 0
\(31\) −8.11526 + 2.38286i −1.45754 + 0.427974i −0.912028 0.410127i \(-0.865484\pi\)
−0.545516 + 0.838101i \(0.683666\pi\)
\(32\) 0 0
\(33\) −0.0232702 0.0174198i −0.00405082 0.00303241i
\(34\) 0 0
\(35\) 6.07973 2.17568i 1.02766 0.367757i
\(36\) 0 0
\(37\) 0.190749 + 0.876858i 0.0313589 + 0.144155i 0.990164 0.139909i \(-0.0446810\pi\)
−0.958805 + 0.284064i \(0.908317\pi\)
\(38\) 0 0
\(39\) −0.0514485 0.00739718i −0.00823836 0.00118450i
\(40\) 0 0
\(41\) 6.19326 3.98017i 0.967225 0.621597i 0.0412362 0.999149i \(-0.486870\pi\)
0.925988 + 0.377552i \(0.123234\pi\)
\(42\) 0 0
\(43\) −5.01600 + 2.73894i −0.764933 + 0.417685i −0.813818 0.581119i \(-0.802615\pi\)
0.0488854 + 0.998804i \(0.484433\pi\)
\(44\) 0 0
\(45\) 5.12414 4.32176i 0.763862 0.644250i
\(46\) 0 0
\(47\) 1.83333 1.83333i 0.267418 0.267418i −0.560641 0.828059i \(-0.689445\pi\)
0.828059 + 0.560641i \(0.189445\pi\)
\(48\) 0 0
\(49\) 0.377336 1.28509i 0.0539051 0.183584i
\(50\) 0 0
\(51\) 0.0528390 + 0.0822190i 0.00739893 + 0.0115130i
\(52\) 0 0
\(53\) 1.91884 + 2.56327i 0.263573 + 0.352092i 0.912731 0.408561i \(-0.133969\pi\)
−0.649158 + 0.760654i \(0.724879\pi\)
\(54\) 0 0
\(55\) 1.37876 0.179495i 0.185912 0.0242031i
\(56\) 0 0
\(57\) −0.0359158 + 0.0962940i −0.00475717 + 0.0127545i
\(58\) 0 0
\(59\) 6.13247 0.881716i 0.798379 0.114790i 0.268962 0.963151i \(-0.413320\pi\)
0.529418 + 0.848361i \(0.322410\pi\)
\(60\) 0 0
\(61\) 3.88373 + 13.2268i 0.497260 + 1.69351i 0.699884 + 0.714256i \(0.253235\pi\)
−0.202624 + 0.979257i \(0.564947\pi\)
\(62\) 0 0
\(63\) −0.617588 8.63501i −0.0778088 1.08791i
\(64\) 0 0
\(65\) 2.01001 1.46324i 0.249311 0.181493i
\(66\) 0 0
\(67\) 12.7829 4.76778i 1.56168 0.582477i 0.587695 0.809082i \(-0.300035\pi\)
0.973987 + 0.226605i \(0.0727627\pi\)
\(68\) 0 0
\(69\) −0.123261 + 0.187271i −0.0148389 + 0.0225448i
\(70\) 0 0
\(71\) −0.404054 + 0.884756i −0.0479524 + 0.105001i −0.932092 0.362222i \(-0.882018\pi\)
0.884139 + 0.467223i \(0.154746\pi\)
\(72\) 0 0
\(73\) −0.272310 + 3.80740i −0.0318715 + 0.445622i 0.956312 + 0.292348i \(0.0944364\pi\)
−0.988184 + 0.153275i \(0.951018\pi\)
\(74\) 0 0
\(75\) 0.0228892 0.232617i 0.00264301 0.0268603i
\(76\) 0 0
\(77\) 0.860556 1.57599i 0.0980695 0.179601i
\(78\) 0 0
\(79\) −0.310067 2.15657i −0.0348853 0.242633i 0.964916 0.262558i \(-0.0845662\pi\)
−0.999801 + 0.0199256i \(0.993657\pi\)
\(80\) 0 0
\(81\) −3.73057 8.16880i −0.414507 0.907645i
\(82\) 0 0
\(83\) −10.2708 + 2.23428i −1.12737 + 0.245244i −0.737316 0.675548i \(-0.763907\pi\)
−0.390053 + 0.920792i \(0.627543\pi\)
\(84\) 0 0
\(85\) −4.55434 1.05456i −0.493987 0.114383i
\(86\) 0 0
\(87\) 0.0245804 0.112994i 0.00263530 0.0121143i
\(88\) 0 0
\(89\) 9.66802 + 2.83879i 1.02481 + 0.300911i 0.750598 0.660759i \(-0.229765\pi\)
0.274210 + 0.961670i \(0.411584\pi\)
\(90\) 0 0
\(91\) 3.21083i 0.336587i
\(92\) 0 0
\(93\) 0.279582 + 0.279582i 0.0289913 + 0.0289913i
\(94\) 0 0
\(95\) −1.98230 4.49852i −0.203380 0.461538i
\(96\) 0 0
\(97\) −10.7495 2.33842i −1.09145 0.237430i −0.369399 0.929271i \(-0.620436\pi\)
−0.722050 + 0.691841i \(0.756800\pi\)
\(98\) 0 0
\(99\) 0.265282 1.84507i 0.0266618 0.185437i
\(100\) 0 0
\(101\) 3.59659 + 2.31139i 0.357874 + 0.229991i 0.707206 0.707007i \(-0.249955\pi\)
−0.349332 + 0.936999i \(0.613592\pi\)
\(102\) 0 0
\(103\) 3.53500 + 1.31849i 0.348314 + 0.129915i 0.517531 0.855664i \(-0.326851\pi\)
−0.169217 + 0.985579i \(0.554124\pi\)
\(104\) 0 0
\(105\) −0.225478 0.200706i −0.0220044 0.0195869i
\(106\) 0 0
\(107\) −7.23107 3.94846i −0.699054 0.381712i 0.0900793 0.995935i \(-0.471288\pi\)
−0.789133 + 0.614222i \(0.789470\pi\)
\(108\) 0 0
\(109\) 9.46629 10.9247i 0.906706 1.04639i −0.0920111 0.995758i \(-0.529330\pi\)
0.998717 0.0506366i \(-0.0161250\pi\)
\(110\) 0 0
\(111\) 0.0317038 0.0274715i 0.00300919 0.00260748i
\(112\) 0 0
\(113\) 4.63290 + 12.4213i 0.435826 + 1.16850i 0.950395 + 0.311046i \(0.100679\pi\)
−0.514569 + 0.857449i \(0.672048\pi\)
\(114\) 0 0
\(115\) −2.02466 10.5309i −0.188801 0.982015i
\(116\) 0 0
\(117\) −1.16482 3.12301i −0.107688 0.288722i
\(118\) 0 0
\(119\) −4.56273 + 3.95363i −0.418265 + 0.362429i
\(120\) 0 0
\(121\) −6.95027 + 8.02104i −0.631843 + 0.729186i
\(122\) 0 0
\(123\) −0.302059 0.164937i −0.0272358 0.0148719i
\(124\) 0 0
\(125\) 6.97760 + 8.73573i 0.624096 + 0.781348i
\(126\) 0 0
\(127\) −6.24728 2.33011i −0.554356 0.206764i 0.0566443 0.998394i \(-0.481960\pi\)
−0.611000 + 0.791630i \(0.709233\pi\)
\(128\) 0 0
\(129\) 0.224757 + 0.144442i 0.0197887 + 0.0127174i
\(130\) 0 0
\(131\) −1.65287 + 11.4959i −0.144412 + 1.00440i 0.780753 + 0.624839i \(0.214836\pi\)
−0.925165 + 0.379565i \(0.876074\pi\)
\(132\) 0 0
\(133\) −6.20361 1.34951i −0.537921 0.117018i
\(134\) 0 0
\(135\) −0.584458 0.226919i −0.0503021 0.0195301i
\(136\) 0 0
\(137\) −13.8908 13.8908i −1.18677 1.18677i −0.977954 0.208819i \(-0.933038\pi\)
−0.208819 0.977954i \(-0.566962\pi\)
\(138\) 0 0
\(139\) 12.3148i 1.04453i 0.852784 + 0.522264i \(0.174912\pi\)
−0.852784 + 0.522264i \(0.825088\pi\)
\(140\) 0 0
\(141\) −0.116295 0.0341473i −0.00979380 0.00287572i
\(142\) 0 0
\(143\) 0.146959 0.675560i 0.0122893 0.0564932i
\(144\) 0 0
\(145\) 2.92804 + 4.69260i 0.243160 + 0.389699i
\(146\) 0 0
\(147\) −0.0611807 + 0.0133091i −0.00504610 + 0.00109771i
\(148\) 0 0
\(149\) 3.32109 + 7.27217i 0.272074 + 0.595759i 0.995513 0.0946298i \(-0.0301667\pi\)
−0.723439 + 0.690389i \(0.757439\pi\)
\(150\) 0 0
\(151\) 3.34577 + 23.2704i 0.272275 + 1.89372i 0.424593 + 0.905384i \(0.360417\pi\)
−0.152318 + 0.988332i \(0.548674\pi\)
\(152\) 0 0
\(153\) −3.00364 + 5.50075i −0.242830 + 0.444709i
\(154\) 0 0
\(155\) −18.9107 0.252311i −1.51894 0.0202661i
\(156\) 0 0
\(157\) 0.434190 6.07076i 0.0346521 0.484500i −0.950262 0.311453i \(-0.899184\pi\)
0.984914 0.173047i \(-0.0553611\pi\)
\(158\) 0 0
\(159\) 0.0621809 0.136157i 0.00493127 0.0107980i
\(160\) 0 0
\(161\) −12.5343 5.89042i −0.987838 0.464230i
\(162\) 0 0
\(163\) −7.57095 + 2.82382i −0.593003 + 0.221179i −0.628006 0.778209i \(-0.716129\pi\)
0.0350031 + 0.999387i \(0.488856\pi\)
\(164\) 0 0
\(165\) −0.0382543 0.0525488i −0.00297809 0.00409092i
\(166\) 0 0
\(167\) −0.592237 8.28055i −0.0458287 0.640768i −0.967512 0.252825i \(-0.918640\pi\)
0.921683 0.387943i \(-0.126814\pi\)
\(168\) 0 0
\(169\) 3.31423 + 11.2872i 0.254941 + 0.868249i
\(170\) 0 0
\(171\) −6.52350 + 0.937938i −0.498864 + 0.0717259i
\(172\) 0 0
\(173\) 0.906895 2.43148i 0.0689499 0.184862i −0.897904 0.440190i \(-0.854911\pi\)
0.966854 + 0.255329i \(0.0821836\pi\)
\(174\) 0 0
\(175\) 14.4245 0.645451i 1.09039 0.0487915i
\(176\) 0 0
\(177\) −0.173568 0.231860i −0.0130462 0.0174277i
\(178\) 0 0
\(179\) 0.0260598 + 0.0405498i 0.00194780 + 0.00303084i 0.842226 0.539125i \(-0.181245\pi\)
−0.840278 + 0.542155i \(0.817608\pi\)
\(180\) 0 0
\(181\) −1.62901 + 5.54788i −0.121083 + 0.412371i −0.997619 0.0689653i \(-0.978030\pi\)
0.876536 + 0.481336i \(0.159848\pi\)
\(182\) 0 0
\(183\) 0.455681 0.455681i 0.0336849 0.0336849i
\(184\) 0 0
\(185\) −0.169836 + 1.99937i −0.0124866 + 0.146997i
\(186\) 0 0
\(187\) −1.14096 + 0.623010i −0.0834350 + 0.0455590i
\(188\) 0 0
\(189\) −0.681161 + 0.437756i −0.0495472 + 0.0318420i
\(190\) 0 0
\(191\) 8.15000 + 1.17179i 0.589713 + 0.0847880i 0.430710 0.902490i \(-0.358263\pi\)
0.159003 + 0.987278i \(0.449172\pi\)
\(192\) 0 0
\(193\) 3.29926 + 15.1665i 0.237486 + 1.09171i 0.929212 + 0.369546i \(0.120487\pi\)
−0.691726 + 0.722160i \(0.743149\pi\)
\(194\) 0 0
\(195\) −0.105069 0.0496879i −0.00752414 0.00355823i
\(196\) 0 0
\(197\) −2.21376 1.65720i −0.157724 0.118070i 0.517501 0.855683i \(-0.326862\pi\)
−0.675225 + 0.737612i \(0.735953\pi\)
\(198\) 0 0
\(199\) −18.4366 + 5.41346i −1.30693 + 0.383750i −0.859760 0.510698i \(-0.829387\pi\)
−0.447173 + 0.894448i \(0.647569\pi\)
\(200\) 0 0
\(201\) −0.482010 0.417664i −0.0339983 0.0294597i
\(202\) 0 0
\(203\) 7.12509 + 0.509597i 0.500083 + 0.0357667i
\(204\) 0 0
\(205\) 15.8555 4.42669i 1.10739 0.309173i
\(206\) 0 0
\(207\) −14.3283 1.18214i −0.995888 0.0821641i
\(208\) 0 0
\(209\) −1.24347 0.567876i −0.0860129 0.0392808i
\(210\) 0 0
\(211\) 1.83738 + 2.12045i 0.126490 + 0.145978i 0.815462 0.578811i \(-0.196483\pi\)
−0.688972 + 0.724788i \(0.741938\pi\)
\(212\) 0 0
\(213\) 0.0453538 0.00324377i 0.00310759 0.000222259i
\(214\) 0 0
\(215\) −12.5224 + 2.54960i −0.854019 + 0.173881i
\(216\) 0 0
\(217\) −14.6371 + 19.5529i −0.993630 + 1.32733i
\(218\) 0 0
\(219\) 0.162318 0.0741280i 0.0109684 0.00500911i
\(220\) 0 0
\(221\) −1.25673 + 1.95551i −0.0845369 + 0.131542i
\(222\) 0 0
\(223\) −12.6841 + 9.49522i −0.849392 + 0.635847i −0.932691 0.360678i \(-0.882545\pi\)
0.0832984 + 0.996525i \(0.473455\pi\)
\(224\) 0 0
\(225\) 13.7958 5.86070i 0.919721 0.390714i
\(226\) 0 0
\(227\) −6.23822 11.4244i −0.414045 0.758267i 0.584544 0.811362i \(-0.301273\pi\)
−0.998589 + 0.0530949i \(0.983091\pi\)
\(228\) 0 0
\(229\) −1.27982 −0.0845730 −0.0422865 0.999106i \(-0.513464\pi\)
−0.0422865 + 0.999106i \(0.513464\pi\)
\(230\) 0 0
\(231\) −0.0839425 −0.00552301
\(232\) 0 0
\(233\) −7.58228 13.8859i −0.496731 0.909696i −0.998988 0.0449770i \(-0.985679\pi\)
0.502257 0.864719i \(-0.332503\pi\)
\(234\) 0 0
\(235\) 5.12495 2.71031i 0.334315 0.176801i
\(236\) 0 0
\(237\) −0.0815368 + 0.0610377i −0.00529638 + 0.00396482i
\(238\) 0 0
\(239\) 4.50993 7.01758i 0.291723 0.453930i −0.664197 0.747558i \(-0.731226\pi\)
0.955920 + 0.293628i \(0.0948627\pi\)
\(240\) 0 0
\(241\) −13.2858 + 6.06744i −0.855816 + 0.390838i −0.794488 0.607280i \(-0.792261\pi\)
−0.0613278 + 0.998118i \(0.519534\pi\)
\(242\) 0 0
\(243\) −0.755673 + 1.00946i −0.0484765 + 0.0647570i
\(244\) 0 0
\(245\) 1.65261 2.49761i 0.105581 0.159566i
\(246\) 0 0
\(247\) −2.43817 + 0.174381i −0.155137 + 0.0110956i
\(248\) 0 0
\(249\) 0.321779 + 0.371353i 0.0203919 + 0.0235335i
\(250\) 0 0
\(251\) 7.92879 + 3.62096i 0.500461 + 0.228553i 0.649618 0.760261i \(-0.274929\pi\)
−0.149157 + 0.988813i \(0.547656\pi\)
\(252\) 0 0
\(253\) −2.36761 1.81304i −0.148850 0.113985i
\(254\) 0 0
\(255\) 0.0587668 + 0.210490i 0.00368012 + 0.0131814i
\(256\) 0 0
\(257\) −20.5547 1.47010i −1.28217 0.0917025i −0.586431 0.809999i \(-0.699467\pi\)
−0.695737 + 0.718297i \(0.744922\pi\)
\(258\) 0 0
\(259\) 1.95845 + 1.69701i 0.121692 + 0.105447i
\(260\) 0 0
\(261\) 7.11507 2.08917i 0.440412 0.129317i
\(262\) 0 0
\(263\) 4.58938 + 3.43557i 0.282993 + 0.211846i 0.731339 0.682014i \(-0.238896\pi\)
−0.448346 + 0.893860i \(0.647987\pi\)
\(264\) 0 0
\(265\) 2.41235 + 6.74108i 0.148189 + 0.414101i
\(266\) 0 0
\(267\) −0.100127 0.460277i −0.00612769 0.0281685i
\(268\) 0 0
\(269\) −5.04128 0.724827i −0.307373 0.0441935i −0.0130973 0.999914i \(-0.504169\pi\)
−0.294275 + 0.955721i \(0.595078\pi\)
\(270\) 0 0
\(271\) 17.3028 11.1198i 1.05107 0.675481i 0.103369 0.994643i \(-0.467038\pi\)
0.947700 + 0.319162i \(0.103401\pi\)
\(272\) 0 0
\(273\) −0.131740 + 0.0719355i −0.00797327 + 0.00435373i
\(274\) 0 0
\(275\) 3.06447 + 0.524404i 0.184794 + 0.0316228i
\(276\) 0 0
\(277\) 19.5001 19.5001i 1.17165 1.17165i 0.189831 0.981817i \(-0.439206\pi\)
0.981817 0.189831i \(-0.0607940\pi\)
\(278\) 0 0
\(279\) −7.14336 + 24.3280i −0.427662 + 1.45648i
\(280\) 0 0
\(281\) −15.2584 23.7425i −0.910239 1.41636i −0.909200 0.416360i \(-0.863306\pi\)
−0.00103862 0.999999i \(-0.500331\pi\)
\(282\) 0 0
\(283\) −7.93155 10.5953i −0.471482 0.629826i 0.500259 0.865876i \(-0.333238\pi\)
−0.971741 + 0.236050i \(0.924147\pi\)
\(284\) 0 0
\(285\) −0.140162 + 0.182118i −0.00830247 + 0.0107878i
\(286\) 0 0
\(287\) 7.42952 19.9193i 0.438551 1.17580i
\(288\) 0 0
\(289\) −12.5006 + 1.79732i −0.735331 + 0.105725i
\(290\) 0 0
\(291\) 0.144887 + 0.493441i 0.00849345 + 0.0289260i
\(292\) 0 0
\(293\) 1.13358 + 15.8495i 0.0662245 + 0.925940i 0.916611 + 0.399781i \(0.130914\pi\)
−0.850386 + 0.526159i \(0.823632\pi\)
\(294\) 0 0
\(295\) 13.6851 + 2.15434i 0.796777 + 0.125431i
\(296\) 0 0
\(297\) −0.163352 + 0.0609273i −0.00947867 + 0.00353536i
\(298\) 0 0
\(299\) −5.26944 0.816442i −0.304740 0.0472161i
\(300\) 0 0
\(301\) −6.85599 + 15.0125i −0.395172 + 0.865307i
\(302\) 0 0
\(303\) 0.0142579 0.199352i 0.000819095 0.0114524i
\(304\) 0 0
\(305\) −0.411232 + 30.8218i −0.0235471 + 1.76485i
\(306\) 0 0
\(307\) −5.46708 + 10.0122i −0.312023 + 0.571427i −0.985884 0.167431i \(-0.946453\pi\)
0.673861 + 0.738858i \(0.264635\pi\)
\(308\) 0 0
\(309\) −0.0251008 0.174580i −0.00142794 0.00993151i
\(310\) 0 0
\(311\) 4.59387 + 10.0592i 0.260494 + 0.570403i 0.994012 0.109267i \(-0.0348503\pi\)
−0.733518 + 0.679670i \(0.762123\pi\)
\(312\) 0 0
\(313\) −15.0197 + 3.26733i −0.848963 + 0.184681i −0.615942 0.787791i \(-0.711225\pi\)
−0.233021 + 0.972472i \(0.574861\pi\)
\(314\) 0 0
\(315\) 4.36678 18.8588i 0.246040 1.06257i
\(316\) 0 0
\(317\) 5.03014 23.1232i 0.282521 1.29873i −0.588905 0.808202i \(-0.700441\pi\)
0.871426 0.490526i \(-0.163195\pi\)
\(318\) 0 0
\(319\) 1.47580 + 0.433333i 0.0826288 + 0.0242620i
\(320\) 0 0
\(321\) 0.385151i 0.0214970i
\(322\) 0 0
\(323\) 3.25002 + 3.25002i 0.180836 + 0.180836i
\(324\) 0 0
\(325\) 5.25879 1.80312i 0.291705 0.100019i
\(326\) 0 0
\(327\) −0.660320 0.143644i −0.0365158 0.00794353i
\(328\) 0 0
\(329\) 1.06554 7.41101i 0.0587453 0.408582i
\(330\) 0 0
\(331\) 0.748852 + 0.481258i 0.0411606 + 0.0264523i 0.561059 0.827776i \(-0.310394\pi\)
−0.519899 + 0.854228i \(0.674030\pi\)
\(332\) 0 0
\(333\) 2.52052 + 0.940106i 0.138124 + 0.0515175i
\(334\) 0 0
\(335\) 30.4555 1.77019i 1.66396 0.0967158i
\(336\) 0 0
\(337\) −9.68813 5.29012i −0.527746 0.288171i 0.193203 0.981159i \(-0.438112\pi\)
−0.720950 + 0.692987i \(0.756294\pi\)
\(338\) 0 0
\(339\) 0.405847 0.468373i 0.0220426 0.0254385i
\(340\) 0 0
\(341\) −3.97458 + 3.44399i −0.215235 + 0.186503i
\(342\) 0 0
\(343\) 5.71262 + 15.3161i 0.308453 + 0.826994i
\(344\) 0 0
\(345\) −0.386722 + 0.319007i −0.0208204 + 0.0171747i
\(346\) 0 0
\(347\) −2.81036 7.53487i −0.150868 0.404493i 0.839427 0.543472i \(-0.182891\pi\)
−0.990295 + 0.138979i \(0.955618\pi\)
\(348\) 0 0
\(349\) 19.0865 16.5386i 1.02168 0.885289i 0.0282326 0.999601i \(-0.491012\pi\)
0.993445 + 0.114313i \(0.0364666\pi\)
\(350\) 0 0
\(351\) −0.204154 + 0.235606i −0.0108969 + 0.0125757i
\(352\) 0 0
\(353\) −24.4128 13.3304i −1.29936 0.709507i −0.327456 0.944866i \(-0.606191\pi\)
−0.971908 + 0.235360i \(0.924373\pi\)
\(354\) 0 0
\(355\) −1.44607 + 1.62454i −0.0767494 + 0.0862219i
\(356\) 0 0
\(357\) 0.264440 + 0.0986311i 0.0139957 + 0.00522011i
\(358\) 0 0
\(359\) 15.5908 + 10.0196i 0.822853 + 0.528816i 0.883000 0.469374i \(-0.155520\pi\)
−0.0601462 + 0.998190i \(0.519157\pi\)
\(360\) 0 0
\(361\) 2.01614 14.0226i 0.106113 0.738030i
\(362\) 0 0
\(363\) 0.484816 + 0.105465i 0.0254462 + 0.00553549i
\(364\) 0 0
\(365\) −3.08922 + 7.95669i −0.161697 + 0.416472i
\(366\) 0 0
\(367\) 14.6761 + 14.6761i 0.766085 + 0.766085i 0.977415 0.211330i \(-0.0677793\pi\)
−0.211330 + 0.977415i \(0.567779\pi\)
\(368\) 0 0
\(369\) 22.0697i 1.14890i
\(370\) 0 0
\(371\) 8.87194 + 2.60504i 0.460608 + 0.135247i
\(372\) 0 0
\(373\) −2.13339 + 9.80702i −0.110463 + 0.507788i 0.888354 + 0.459159i \(0.151849\pi\)
−0.998817 + 0.0486298i \(0.984515\pi\)
\(374\) 0 0
\(375\) 0.202100 0.482005i 0.0104364 0.0248906i
\(376\) 0 0
\(377\) 2.68748 0.584625i 0.138412 0.0301097i
\(378\) 0 0
\(379\) 9.57218 + 20.9601i 0.491690 + 1.07665i 0.979082 + 0.203467i \(0.0652210\pi\)
−0.487392 + 0.873183i \(0.662052\pi\)
\(380\) 0 0
\(381\) 0.0443597 + 0.308529i 0.00227262 + 0.0158064i
\(382\) 0 0
\(383\) 11.7921 21.5957i 0.602549 1.10349i −0.381294 0.924454i \(-0.624521\pi\)
0.983843 0.179032i \(-0.0572967\pi\)
\(384\) 0 0
\(385\) 2.87677 2.80102i 0.146614 0.142753i
\(386\) 0 0
\(387\) −1.22224 + 17.0891i −0.0621297 + 0.868687i
\(388\) 0 0
\(389\) 5.42505 11.8792i 0.275061 0.602300i −0.720805 0.693138i \(-0.756227\pi\)
0.995866 + 0.0908387i \(0.0289548\pi\)
\(390\) 0 0
\(391\) 5.32828 + 8.49342i 0.269463 + 0.429531i
\(392\) 0 0
\(393\) 0.508707 0.189738i 0.0256609 0.00957101i
\(394\) 0 0
\(395\) 0.757604 4.81255i 0.0381192 0.242146i
\(396\) 0 0
\(397\) 0.516506 + 7.22169i 0.0259227 + 0.362446i 0.993812 + 0.111071i \(0.0354282\pi\)
−0.967890 + 0.251375i \(0.919117\pi\)
\(398\) 0 0
\(399\) 0.0836153 + 0.284768i 0.00418600 + 0.0142562i
\(400\) 0 0
\(401\) −37.5899 + 5.40462i −1.87715 + 0.269894i −0.983774 0.179413i \(-0.942580\pi\)
−0.893377 + 0.449307i \(0.851671\pi\)
\(402\) 0 0
\(403\) −3.28636 + 8.81108i −0.163705 + 0.438911i
\(404\) 0 0
\(405\) −2.59235 19.9126i −0.128815 0.989465i
\(406\) 0 0
\(407\) 0.334387 + 0.446689i 0.0165750 + 0.0221416i
\(408\) 0 0
\(409\) −8.61194 13.4004i −0.425833 0.662609i 0.560352 0.828254i \(-0.310666\pi\)
−0.986185 + 0.165645i \(0.947029\pi\)
\(410\) 0 0
\(411\) −0.258728 + 0.881148i −0.0127621 + 0.0434638i
\(412\) 0 0
\(413\) 12.6511 12.6511i 0.622521 0.622521i
\(414\) 0 0
\(415\) −23.4190 1.98932i −1.14959 0.0976520i
\(416\) 0 0
\(417\) 0.505274 0.275901i 0.0247434 0.0135109i
\(418\) 0 0
\(419\) −10.2159 + 6.56534i −0.499078 + 0.320738i −0.765847 0.643023i \(-0.777680\pi\)
0.266770 + 0.963760i \(0.414044\pi\)
\(420\) 0 0
\(421\) 24.3000 + 3.49382i 1.18431 + 0.170278i 0.706194 0.708018i \(-0.250410\pi\)
0.478117 + 0.878296i \(0.341320\pi\)
\(422\) 0 0
\(423\) −1.65216 7.59485i −0.0803307 0.369274i
\(424\) 0 0
\(425\) −9.03767 5.25270i −0.438392 0.254793i
\(426\) 0 0
\(427\) 31.8685 + 23.8564i 1.54222 + 1.15449i
\(428\) 0 0
\(429\) −0.0310106 + 0.00910553i −0.00149721 + 0.000439619i
\(430\) 0 0
\(431\) −4.43914 3.84653i −0.213826 0.185281i 0.541362 0.840790i \(-0.317909\pi\)
−0.755188 + 0.655509i \(0.772454\pi\)
\(432\) 0 0
\(433\) −16.3463 1.16911i −0.785555 0.0561840i −0.327202 0.944954i \(-0.606106\pi\)
−0.458353 + 0.888770i \(0.651560\pi\)
\(434\) 0 0
\(435\) 0.126937 0.225270i 0.00608617 0.0108009i
\(436\) 0 0
\(437\) −3.79218 + 9.83787i −0.181405 + 0.470609i
\(438\) 0 0
\(439\) −8.36448 3.81993i −0.399215 0.182315i 0.205682 0.978619i \(-0.434059\pi\)
−0.604897 + 0.796303i \(0.706786\pi\)
\(440\) 0 0
\(441\) −2.62933 3.03440i −0.125206 0.144495i
\(442\) 0 0
\(443\) 27.1784 1.94384i 1.29129 0.0923546i 0.591265 0.806477i \(-0.298629\pi\)
0.700021 + 0.714122i \(0.253174\pi\)
\(444\) 0 0
\(445\) 18.7901 + 12.4330i 0.890736 + 0.589380i
\(446\) 0 0
\(447\) 0.223970 0.299189i 0.0105934 0.0141512i
\(448\) 0 0
\(449\) 9.78375 4.46809i 0.461724 0.210862i −0.170951 0.985279i \(-0.554684\pi\)
0.632675 + 0.774417i \(0.281957\pi\)
\(450\) 0 0
\(451\) 2.47488 3.85098i 0.116537 0.181336i
\(452\) 0 0
\(453\) 0.879821 0.658626i 0.0413376 0.0309449i
\(454\) 0 0
\(455\) 2.11446 6.86122i 0.0991276 0.321659i
\(456\) 0 0
\(457\) 10.5034 + 19.2356i 0.491330 + 0.899804i 0.999262 + 0.0384067i \(0.0122282\pi\)
−0.507932 + 0.861397i \(0.669590\pi\)
\(458\) 0 0
\(459\) 0.586190 0.0273610
\(460\) 0 0
\(461\) 5.44735 0.253709 0.126854 0.991921i \(-0.459512\pi\)
0.126854 + 0.991921i \(0.459512\pi\)
\(462\) 0 0
\(463\) −7.65647 14.0218i −0.355826 0.651647i 0.637046 0.770825i \(-0.280156\pi\)
−0.992873 + 0.119178i \(0.961974\pi\)
\(464\) 0 0
\(465\) 0.413322 + 0.781555i 0.0191674 + 0.0362437i
\(466\) 0 0
\(467\) 27.3138 20.4468i 1.26393 0.946166i 0.264098 0.964496i \(-0.414926\pi\)
0.999832 + 0.0183300i \(0.00583496\pi\)
\(468\) 0 0
\(469\) 21.3004 33.1441i 0.983562 1.53045i
\(470\) 0 0
\(471\) −0.258810 + 0.118195i −0.0119253 + 0.00544612i
\(472\) 0 0
\(473\) −2.12962 + 2.84484i −0.0979200 + 0.130806i
\(474\) 0 0
\(475\) −1.27353 10.9183i −0.0584333 0.500965i
\(476\) 0 0
\(477\) 9.57431 0.684768i 0.438378 0.0313534i
\(478\) 0 0
\(479\) 7.08995 + 8.18224i 0.323948 + 0.373856i 0.894241 0.447585i \(-0.147716\pi\)
−0.570293 + 0.821441i \(0.693170\pi\)
\(480\) 0 0
\(481\) 0.907585 + 0.414480i 0.0413823 + 0.0188987i
\(482\) 0 0
\(483\) 0.0391346 + 0.646248i 0.00178068 + 0.0294053i
\(484\) 0 0
\(485\) −21.4307 12.0759i −0.973117 0.548341i
\(486\) 0 0
\(487\) −17.3804 1.24307i −0.787581 0.0563289i −0.328246 0.944592i \(-0.606458\pi\)
−0.459335 + 0.888263i \(0.651912\pi\)
\(488\) 0 0
\(489\) 0.285480 + 0.247370i 0.0129099 + 0.0111865i
\(490\) 0 0
\(491\) 8.92733 2.62130i 0.402885 0.118298i −0.0740112 0.997257i \(-0.523580\pi\)
0.476896 + 0.878960i \(0.341762\pi\)
\(492\) 0 0
\(493\) −4.13997 3.09915i −0.186455 0.139579i
\(494\) 0 0
\(495\) 1.78193 3.76803i 0.0800920 0.169360i
\(496\) 0 0
\(497\) 0.597057 + 2.74463i 0.0267817 + 0.123113i
\(498\) 0 0
\(499\) 8.96005 + 1.28826i 0.401107 + 0.0576705i 0.339916 0.940456i \(-0.389601\pi\)
0.0611905 + 0.998126i \(0.480510\pi\)
\(500\) 0 0
\(501\) −0.326481 + 0.209817i −0.0145861 + 0.00937392i
\(502\) 0 0
\(503\) −4.76877 + 2.60394i −0.212629 + 0.116104i −0.582034 0.813164i \(-0.697743\pi\)
0.369406 + 0.929268i \(0.379561\pi\)
\(504\) 0 0
\(505\) 6.16339 + 7.30769i 0.274267 + 0.325188i
\(506\) 0 0
\(507\) 0.388862 0.388862i 0.0172699 0.0172699i
\(508\) 0 0
\(509\) 7.09233 24.1543i 0.314362 1.07062i −0.639104 0.769120i \(-0.720695\pi\)
0.953466 0.301499i \(-0.0974870\pi\)
\(510\) 0 0
\(511\) 5.95951 + 9.27318i 0.263633 + 0.410222i
\(512\) 0 0
\(513\) 0.369406 + 0.493469i 0.0163097 + 0.0217872i
\(514\) 0 0
\(515\) 6.68566 + 5.14541i 0.294605 + 0.226734i
\(516\) 0 0
\(517\) 0.563391 1.51051i 0.0247779 0.0664321i
\(518\) 0 0
\(519\) −0.120081 + 0.0172651i −0.00527098 + 0.000757853i
\(520\) 0 0
\(521\) −10.1091 34.4283i −0.442886 1.50833i −0.814621 0.579994i \(-0.803055\pi\)
0.371735 0.928339i \(-0.378763\pi\)
\(522\) 0 0
\(523\) 2.87793 + 40.2388i 0.125843 + 1.75952i 0.532958 + 0.846142i \(0.321080\pi\)
−0.407115 + 0.913377i \(0.633465\pi\)
\(524\) 0 0
\(525\) −0.349650 0.577375i −0.0152600 0.0251987i
\(526\) 0 0
\(527\) 16.5676 6.17938i 0.721694 0.269178i
\(528\) 0 0
\(529\) −12.8542 + 19.0727i −0.558879 + 0.829250i
\(530\) 0 0
\(531\) 7.71552 16.8946i 0.334825 0.733165i
\(532\) 0 0
\(533\) 0.583946 8.16463i 0.0252935 0.353649i
\(534\) 0 0
\(535\) −12.8518 13.1994i −0.555633 0.570660i
\(536\) 0 0
\(537\) 0.00107991 0.00197771i 4.66015e−5 8.53444e-5i
\(538\) 0 0
\(539\) −0.118520 0.824327i −0.00510503 0.0355063i
\(540\) 0 0
\(541\) 9.00737 + 19.7234i 0.387257 + 0.847975i 0.998405 + 0.0564583i \(0.0179808\pi\)
−0.611148 + 0.791516i \(0.709292\pi\)
\(542\) 0 0
\(543\) 0.264125 0.0574569i 0.0113347 0.00246571i
\(544\) 0 0
\(545\) 27.4228 17.1110i 1.17466 0.732954i
\(546\) 0 0
\(547\) 2.31948 10.6625i 0.0991738 0.455895i −0.900600 0.434648i \(-0.856873\pi\)
0.999774 0.0212467i \(-0.00676354\pi\)
\(548\) 0 0
\(549\) 39.6514 + 11.6427i 1.69228 + 0.496898i
\(550\) 0 0
\(551\) 5.43816i 0.231673i
\(552\) 0 0
\(553\) −4.44894 4.44894i −0.189188 0.189188i
\(554\) 0 0
\(555\) 0.0858388 0.0378255i 0.00364366 0.00160560i
\(556\) 0 0
\(557\) −10.1142 2.20022i −0.428554 0.0932263i −0.00688568 0.999976i \(-0.502192\pi\)
−0.421669 + 0.906750i \(0.638555\pi\)
\(558\) 0 0
\(559\) −0.904324 + 6.28971i −0.0382488 + 0.266027i
\(560\) 0 0
\(561\) 0.0511240 + 0.0328554i 0.00215846 + 0.00138716i
\(562\) 0 0
\(563\) −15.4906 5.77770i −0.652851 0.243501i 0.00114429 0.999999i \(-0.499636\pi\)
−0.653996 + 0.756498i \(0.726908\pi\)
\(564\) 0 0
\(565\) 1.72011 + 29.5939i 0.0723655 + 1.24503i
\(566\) 0 0
\(567\) −22.7611 12.4285i −0.955878 0.521949i
\(568\) 0 0
\(569\) 3.37859 3.89910i 0.141638 0.163459i −0.680498 0.732750i \(-0.738237\pi\)
0.822136 + 0.569291i \(0.192782\pi\)
\(570\) 0 0
\(571\) −13.9138 + 12.0564i −0.582275 + 0.504544i −0.895456 0.445149i \(-0.853151\pi\)
0.313182 + 0.949693i \(0.398605\pi\)
\(572\) 0 0
\(573\) −0.134514 0.360646i −0.00561940 0.0150662i
\(574\) 0 0
\(575\) 2.60855 23.8369i 0.108784 0.994065i
\(576\) 0 0
\(577\) −11.0657 29.6682i −0.460670 1.23510i −0.934966 0.354738i \(-0.884570\pi\)
0.474296 0.880365i \(-0.342703\pi\)
\(578\) 0 0
\(579\) 0.548361 0.475158i 0.0227891 0.0197469i
\(580\) 0 0
\(581\) −19.8774 + 22.9398i −0.824654 + 0.951702i
\(582\) 0 0
\(583\) 1.74743 + 0.954166i 0.0723710 + 0.0395175i
\(584\) 0 0
\(585\) −0.432477 7.44063i −0.0178807 0.307632i
\(586\) 0 0
\(587\) 16.4230 + 6.12545i 0.677848 + 0.252824i 0.664723 0.747089i \(-0.268549\pi\)
0.0131249 + 0.999914i \(0.495822\pi\)
\(588\) 0 0
\(589\) 15.6425 + 10.0528i 0.644539 + 0.414220i
\(590\) 0 0
\(591\) −0.0183976 + 0.127958i −0.000756775 + 0.00526349i
\(592\) 0 0
\(593\) −0.0623474 0.0135628i −0.00256030 0.000556959i 0.211285 0.977425i \(-0.432235\pi\)
−0.213845 + 0.976868i \(0.568599\pi\)
\(594\) 0 0
\(595\) −12.3537 + 5.44376i −0.506453 + 0.223172i
\(596\) 0 0
\(597\) 0.635166 + 0.635166i 0.0259956 + 0.0259956i
\(598\) 0 0
\(599\) 22.7964i 0.931437i −0.884933 0.465719i \(-0.845796\pi\)
0.884933 0.465719i \(-0.154204\pi\)
\(600\) 0 0
\(601\) 35.2693 + 10.3560i 1.43867 + 0.422430i 0.905777 0.423755i \(-0.139288\pi\)
0.532888 + 0.846186i \(0.321107\pi\)
\(602\) 0 0
\(603\) 8.69382 39.9649i 0.354040 1.62749i
\(604\) 0 0
\(605\) −20.1342 + 12.5631i −0.818571 + 0.510763i
\(606\) 0 0
\(607\) 28.8501 6.27596i 1.17099 0.254733i 0.415313 0.909678i \(-0.363672\pi\)
0.755676 + 0.654945i \(0.227308\pi\)
\(608\) 0 0
\(609\) −0.138722 0.303758i −0.00562129 0.0123089i
\(610\) 0 0
\(611\) −0.410258 2.85341i −0.0165973 0.115437i
\(612\) 0 0
\(613\) 12.2521 22.4381i 0.494859 0.906267i −0.504229 0.863570i \(-0.668223\pi\)
0.999088 0.0426970i \(-0.0135950\pi\)
\(614\) 0 0
\(615\) −0.536852 0.551371i −0.0216479 0.0222334i
\(616\) 0 0
\(617\) −2.14810 + 30.0344i −0.0864793 + 1.20914i 0.750112 + 0.661311i \(0.230000\pi\)
−0.836591 + 0.547828i \(0.815455\pi\)
\(618\) 0 0
\(619\) 14.7832 32.3707i 0.594188 1.30109i −0.338691 0.940898i \(-0.609984\pi\)
0.932878 0.360192i \(-0.117289\pi\)
\(620\) 0 0
\(621\) 0.545216 + 1.22920i 0.0218788 + 0.0493259i
\(622\) 0 0
\(623\) 27.2633 10.1687i 1.09228 0.407399i
\(624\) 0 0
\(625\) 9.15759 + 23.2624i 0.366303 + 0.930495i
\(626\) 0 0
\(627\) 0.00455893 + 0.0637422i 0.000182066 + 0.00254562i
\(628\) 0 0
\(629\) −0.528552 1.80008i −0.0210748 0.0717740i
\(630\) 0 0
\(631\) −44.0286 + 6.33036i −1.75275 + 0.252008i −0.942531 0.334118i \(-0.891562\pi\)
−0.810220 + 0.586125i \(0.800653\pi\)
\(632\) 0 0
\(633\) 0.0458371 0.122894i 0.00182186 0.00488459i
\(634\) 0 0
\(635\) −11.8153 9.09329i −0.468876 0.360856i
\(636\) 0 0
\(637\) −0.892423 1.19214i −0.0353591 0.0472342i
\(638\) 0 0
\(639\) 1.57642 + 2.45295i 0.0623621 + 0.0970373i
\(640\) 0 0
\(641\) 3.57248 12.1667i 0.141104 0.480557i −0.858368 0.513034i \(-0.828521\pi\)
0.999472 + 0.0324770i \(0.0103396\pi\)
\(642\) 0 0
\(643\) −25.5764 + 25.5764i −1.00863 + 1.00863i −0.00867061 + 0.999962i \(0.502760\pi\)
−0.999962 + 0.00867061i \(0.997240\pi\)
\(644\) 0 0
\(645\) 0.385161 + 0.456670i 0.0151657 + 0.0179814i
\(646\) 0 0
\(647\) 7.68042 4.19382i 0.301948 0.164876i −0.321131 0.947035i \(-0.604063\pi\)
0.623080 + 0.782158i \(0.285881\pi\)
\(648\) 0 0
\(649\) 3.24084 2.08276i 0.127214 0.0817555i
\(650\) 0 0
\(651\) 1.13018 + 0.162495i 0.0442952 + 0.00636869i
\(652\) 0 0
\(653\) 3.73723 + 17.1798i 0.146249 + 0.672296i 0.990632 + 0.136556i \(0.0436035\pi\)
−0.844383 + 0.535740i \(0.820033\pi\)
\(654\) 0 0
\(655\) −11.1025 + 23.4771i −0.433812 + 0.917328i
\(656\) 0 0
\(657\) 9.16062 + 6.85755i 0.357390 + 0.267539i
\(658\) 0 0
\(659\) −45.1308 + 13.2516i −1.75805 + 0.516210i −0.991963 0.126529i \(-0.959616\pi\)
−0.766085 + 0.642739i \(0.777798\pi\)
\(660\) 0 0
\(661\) −5.93565 5.14327i −0.230870 0.200050i 0.531742 0.846907i \(-0.321538\pi\)
−0.762612 + 0.646857i \(0.776083\pi\)
\(662\) 0 0
\(663\) 0.108390 + 0.00775221i 0.00420952 + 0.000301071i
\(664\) 0 0
\(665\) −12.3678 6.96910i −0.479601 0.270250i
\(666\) 0 0
\(667\) 2.64807 11.5637i 0.102534 0.447749i
\(668\) 0 0
\(669\) 0.673762 + 0.307697i 0.0260492 + 0.0118963i
\(670\) 0 0
\(671\) 5.61323 + 6.47801i 0.216696 + 0.250081i
\(672\) 0 0
\(673\) 26.0220 1.86113i 1.00307 0.0717412i 0.439872 0.898061i \(-0.355024\pi\)
0.563202 + 0.826319i \(0.309569\pi\)
\(674\) 0 0
\(675\) −1.09949 0.869791i −0.0423194 0.0334783i
\(676\) 0 0
\(677\) −29.1494 + 38.9391i −1.12030 + 1.49655i −0.275635 + 0.961262i \(0.588888\pi\)
−0.844669 + 0.535289i \(0.820203\pi\)
\(678\) 0 0
\(679\) −28.8976 + 13.1971i −1.10899 + 0.506457i
\(680\) 0 0
\(681\) −0.328982 + 0.511906i −0.0126066 + 0.0196163i
\(682\) 0 0
\(683\) 33.9979 25.4505i 1.30089 0.973837i 0.301098 0.953593i \(-0.402647\pi\)
0.999795 0.0202434i \(-0.00644413\pi\)
\(684\) 0 0
\(685\) −20.5356 38.8309i −0.784625 1.48365i
\(686\) 0 0
\(687\) 0.0286731 + 0.0525109i 0.00109395 + 0.00200341i
\(688\) 0 0
\(689\) 3.56011 0.135629
\(690\) 0 0
\(691\) 18.2417 0.693947 0.346974 0.937875i \(-0.387209\pi\)
0.346974 + 0.937875i \(0.387209\pi\)
\(692\) 0 0
\(693\) −2.57979 4.72453i −0.0979980 0.179470i
\(694\) 0 0
\(695\) −8.10979 + 26.3154i −0.307622 + 0.998202i
\(696\) 0 0
\(697\) −12.3213 + 9.22363i −0.466703 + 0.349370i
\(698\) 0 0
\(699\) −0.399863 + 0.622199i −0.0151242 + 0.0235337i
\(700\) 0 0
\(701\) −5.66689 + 2.58798i −0.214036 + 0.0977468i −0.519548 0.854441i \(-0.673900\pi\)
0.305512 + 0.952188i \(0.401172\pi\)
\(702\) 0 0
\(703\) 1.18227 1.57933i 0.0445902 0.0595655i
\(704\) 0 0
\(705\) −0.226023 0.149554i −0.00851251 0.00563253i
\(706\) 0 0
\(707\) 12.3146 0.880760i 0.463139 0.0331244i
\(708\) 0 0
\(709\) −21.3230 24.6080i −0.800801 0.924174i 0.197624 0.980278i \(-0.436678\pi\)
−0.998425 + 0.0561043i \(0.982132\pi\)
\(710\) 0 0
\(711\) −5.94123 2.71327i −0.222814 0.101756i
\(712\) 0 0
\(713\) 28.3672 + 28.9934i 1.06236 + 1.08581i
\(714\) 0 0
\(715\) 0.758920 1.34682i 0.0283820 0.0503684i
\(716\) 0 0
\(717\) −0.388971 0.0278197i −0.0145264 0.00103895i
\(718\) 0 0
\(719\) 30.4326 + 26.3700i 1.13494 + 0.983435i 0.999973 0.00741457i \(-0.00236015\pi\)
0.134972 + 0.990849i \(0.456906\pi\)
\(720\) 0 0
\(721\) 10.4540 3.06956i 0.389326 0.114316i
\(722\) 0 0
\(723\) 0.546602 + 0.409181i 0.0203283 + 0.0152176i
\(724\) 0 0
\(725\) 3.16664 + 11.9558i 0.117606 + 0.444029i
\(726\) 0 0
\(727\) 10.3007 + 47.3516i 0.382032 + 1.75617i 0.619711 + 0.784830i \(0.287250\pi\)
−0.237679 + 0.971344i \(0.576387\pi\)
\(728\) 0 0
\(729\) −26.6084 3.82572i −0.985498 0.141693i
\(730\) 0 0
\(731\) 10.0515 6.45970i 0.371768 0.238920i
\(732\) 0 0
\(733\) −20.1241 + 10.9886i −0.743301 + 0.405873i −0.805812 0.592171i \(-0.798271\pi\)
0.0625110 + 0.998044i \(0.480089\pi\)
\(734\) 0 0
\(735\) −0.139501 0.0118499i −0.00514559 0.000437090i
\(736\) 0 0
\(737\) 5.99861 5.99861i 0.220962 0.220962i
\(738\) 0 0
\(739\) −12.6529 + 43.0918i −0.465444 + 1.58516i 0.308060 + 0.951367i \(0.400320\pi\)
−0.773504 + 0.633791i \(0.781498\pi\)
\(740\) 0 0
\(741\) 0.0617794 + 0.0961307i 0.00226952 + 0.00353145i
\(742\) 0 0
\(743\) −6.70612 8.95832i −0.246024 0.328649i 0.660483 0.750841i \(-0.270352\pi\)
−0.906506 + 0.422192i \(0.861261\pi\)
\(744\) 0 0
\(745\) 2.30780 + 17.7269i 0.0845514 + 0.649464i
\(746\) 0 0
\(747\) −11.0117 + 29.5234i −0.402895 + 1.08020i
\(748\) 0 0
\(749\) −23.5499 + 3.38597i −0.860495 + 0.123721i
\(750\) 0 0
\(751\) −11.4649 39.0458i −0.418359 1.42480i −0.851918 0.523675i \(-0.824561\pi\)
0.433559 0.901125i \(-0.357258\pi\)
\(752\) 0 0
\(753\) −0.0290692 0.406441i −0.00105934 0.0148115i
\(754\) 0 0
\(755\) −8.17490 + 51.9297i −0.297515 + 1.88991i
\(756\) 0 0
\(757\) −5.75625 + 2.14697i −0.209215 + 0.0780330i −0.451887 0.892075i \(-0.649249\pi\)
0.242672 + 0.970108i \(0.421976\pi\)
\(758\) 0 0
\(759\) −0.0213447 + 0.137762i −0.000774763 + 0.00500044i
\(760\) 0 0
\(761\) 4.22538 9.25230i 0.153170 0.335396i −0.817455 0.575992i \(-0.804616\pi\)
0.970625 + 0.240597i \(0.0773431\pi\)
\(762\) 0 0
\(763\) 2.97800 41.6379i 0.107811 1.50739i
\(764\) 0 0
\(765\) −10.0409 + 9.77651i −0.363030 + 0.353471i
\(766\) 0 0
\(767\) 3.30135 6.04597i 0.119205 0.218307i
\(768\) 0 0
\(769\) 2.92270 + 20.3278i 0.105395 + 0.733039i 0.972159 + 0.234321i \(0.0752866\pi\)
−0.866764 + 0.498718i \(0.833804\pi\)
\(770\) 0 0
\(771\) 0.400189 + 0.876293i 0.0144125 + 0.0315589i
\(772\) 0 0
\(773\) 19.6869 4.28263i 0.708090 0.154036i 0.155923 0.987769i \(-0.450165\pi\)
0.552167 + 0.833734i \(0.313801\pi\)
\(774\) 0 0
\(775\) −40.2440 12.9926i −1.44561 0.466708i
\(776\) 0 0
\(777\) 0.0257509 0.118375i 0.000923807 0.00424667i
\(778\) 0 0
\(779\) −15.5293 4.55983i −0.556397 0.163373i
\(780\) 0 0
\(781\) 0.604797i 0.0216413i
\(782\) 0 0
\(783\) −0.490427 0.490427i −0.0175264 0.0175264i
\(784\) 0 0
\(785\) 4.92566 12.6867i 0.175804 0.452806i
\(786\) 0 0
\(787\) −42.0079 9.13827i −1.49742 0.325744i −0.612121 0.790764i \(-0.709683\pi\)
−0.885300 + 0.465020i \(0.846047\pi\)
\(788\) 0 0
\(789\) 0.0381403 0.265272i 0.00135783 0.00944393i
\(790\) 0 0
\(791\) 32.2064 + 20.6978i 1.14513 + 0.735930i
\(792\) 0 0
\(793\) 14.3608 + 5.35632i 0.509969 + 0.190208i
\(794\) 0 0
\(795\) 0.222539 0.250005i 0.00789265 0.00886677i
\(796\) 0 0
\(797\) −44.1371 24.1007i −1.56342 0.853690i −0.999614 0.0277795i \(-0.991156\pi\)
−0.563802 0.825910i \(-0.690662\pi\)
\(798\) 0 0
\(799\) −3.54965 + 4.09651i −0.125577 + 0.144924i
\(800\) 0 0
\(801\) 22.8286 19.7811i 0.806607 0.698929i
\(802\) 0 0
\(803\) 0.829452 + 2.22385i 0.0292707 + 0.0784778i
\(804\) 0 0
\(805\) −22.9053 20.8415i −0.807307 0.734567i
\(806\) 0 0
\(807\) 0.0832053 + 0.223082i 0.00292897 + 0.00785286i
\(808\) 0 0
\(809\) −34.4294 + 29.8333i −1.21047 + 1.04888i −0.213057 + 0.977040i \(0.568342\pi\)
−0.997416 + 0.0718416i \(0.977112\pi\)
\(810\) 0 0
\(811\) −34.8890 + 40.2641i −1.22512 + 1.41386i −0.345344 + 0.938476i \(0.612238\pi\)
−0.879776 + 0.475388i \(0.842308\pi\)
\(812\) 0 0
\(813\) −0.843896 0.460802i −0.0295967 0.0161610i
\(814\) 0 0
\(815\) −18.0379 + 1.04843i −0.631841 + 0.0367250i
\(816\) 0 0
\(817\) 11.7722 + 4.39080i 0.411857 + 0.153615i
\(818\) 0 0
\(819\) −8.09747 5.20393i −0.282949 0.181840i
\(820\) 0 0
\(821\) 0.848233 5.89959i 0.0296035 0.205897i −0.969651 0.244492i \(-0.921379\pi\)
0.999255 + 0.0385944i \(0.0122880\pi\)
\(822\) 0 0
\(823\) −1.10009 0.239309i −0.0383466 0.00834179i 0.193351 0.981130i \(-0.438064\pi\)
−0.231698 + 0.972788i \(0.574428\pi\)
\(824\) 0 0
\(825\) −0.0471400 0.137483i −0.00164120 0.00478655i
\(826\) 0 0
\(827\) −2.56413 2.56413i −0.0891635 0.0891635i 0.661118 0.750282i \(-0.270082\pi\)
−0.750282 + 0.661118i \(0.770082\pi\)
\(828\) 0 0
\(829\) 6.22752i 0.216291i 0.994135 + 0.108145i \(0.0344912\pi\)
−0.994135 + 0.108145i \(0.965509\pi\)
\(830\) 0 0
\(831\) −1.23697 0.363206i −0.0429099 0.0125995i
\(832\) 0 0
\(833\) −0.595202 + 2.73610i −0.0206225 + 0.0948002i
\(834\) 0 0
\(835\) 4.18753 18.0847i 0.144915 0.625846i
\(836\) 0 0
\(837\) 2.31728 0.504092i 0.0800968 0.0174240i
\(838\) 0 0
\(839\) −15.7581 34.5054i −0.544030 1.19126i −0.959514 0.281659i \(-0.909115\pi\)
0.415484 0.909600i \(-0.363612\pi\)
\(840\) 0 0
\(841\) −3.25634 22.6483i −0.112287 0.780976i
\(842\) 0 0
\(843\) −0.632302 + 1.15798i −0.0217777 + 0.0398828i
\(844\) 0 0
\(845\) −0.350931 + 26.3022i −0.0120724 + 0.904824i
\(846\) 0 0
\(847\) −2.18649 + 30.5711i −0.0751286 + 1.05043i
\(848\) 0 0
\(849\) −0.257026 + 0.562808i −0.00882110 + 0.0193155i
\(850\) 0 0
\(851\) 3.28303 2.78259i 0.112541 0.0953861i
\(852\) 0 0
\(853\) 25.7340 9.59827i 0.881114 0.328638i 0.132134 0.991232i \(-0.457817\pi\)
0.748979 + 0.662593i \(0.230544\pi\)
\(854\) 0 0
\(855\) −14.5577 2.29171i −0.497863 0.0783749i
\(856\) 0 0
\(857\) −0.875592 12.2424i −0.0299097 0.418192i −0.990244 0.139342i \(-0.955501\pi\)
0.960335 0.278850i \(-0.0899532\pi\)
\(858\) 0 0
\(859\) 5.72595 + 19.5008i 0.195367 + 0.665359i 0.997656 + 0.0684234i \(0.0217969\pi\)
−0.802289 + 0.596935i \(0.796385\pi\)
\(860\) 0 0
\(861\) −0.983737 + 0.141440i −0.0335257 + 0.00482026i
\(862\) 0 0
\(863\) −6.74716 + 18.0898i −0.229676 + 0.615785i −0.999754 0.0221643i \(-0.992944\pi\)
0.770078 + 0.637949i \(0.220217\pi\)
\(864\) 0 0
\(865\) 3.53917 4.59859i 0.120335 0.156357i
\(866\) 0 0
\(867\) 0.353808 + 0.472632i 0.0120159 + 0.0160514i
\(868\) 0 0
\(869\) −0.732431 1.13969i −0.0248460 0.0386612i
\(870\) 0 0
\(871\) 4.27369 14.5548i 0.144808 0.493172i
\(872\) 0 0
\(873\) −23.3195 + 23.3195i −0.789246 + 0.789246i
\(874\) 0 0
\(875\) 31.2488 + 8.11987i 1.05640 + 0.274502i
\(876\) 0 0
\(877\) 9.46774 5.16978i 0.319703 0.174571i −0.311382 0.950285i \(-0.600792\pi\)
0.631085 + 0.775714i \(0.282610\pi\)
\(878\) 0 0
\(879\) 0.624907 0.401604i 0.0210776 0.0135458i
\(880\) 0 0
\(881\) −0.0444367 0.00638903i −0.00149711 0.000215252i 0.141566 0.989929i \(-0.454786\pi\)
−0.143063 + 0.989714i \(0.545695\pi\)
\(882\) 0 0
\(883\) −5.72351 26.3106i −0.192612 0.885421i −0.967411 0.253213i \(-0.918513\pi\)
0.774799 0.632208i \(-0.217851\pi\)
\(884\) 0 0
\(885\) −0.218208 0.609763i −0.00733499 0.0204970i
\(886\) 0 0
\(887\) 33.9162 + 25.3893i 1.13879 + 0.852490i 0.990644 0.136475i \(-0.0435772\pi\)
0.148150 + 0.988965i \(0.452668\pi\)
\(888\) 0 0
\(889\) −18.4749 + 5.42472i −0.619628 + 0.181939i
\(890\) 0 0
\(891\) −4.22010 3.65674i −0.141379 0.122505i
\(892\) 0 0
\(893\) −5.68546 0.406632i −0.190257 0.0136074i
\(894\) 0 0
\(895\) 0.0289834 + 0.103812i 0.000968808 + 0.00347006i
\(896\) 0 0
\(897\) 0.0845580 + 0.234496i 0.00282331 + 0.00782959i
\(898\) 0 0
\(899\) −19.0309 8.69111i −0.634716 0.289865i
\(900\) 0 0
\(901\) −4.38370 5.05906i −0.146042 0.168542i
\(902\) 0 0
\(903\) 0.769562 0.0550402i 0.0256094 0.00183162i
\(904\) 0 0
\(905\) −7.13452 + 10.7825i −0.237160 + 0.358422i
\(906\) 0 0
\(907\) 6.66578 8.90444i 0.221334 0.295667i −0.676106 0.736804i \(-0.736334\pi\)
0.897440 + 0.441137i \(0.145425\pi\)
\(908\) 0 0
\(909\) 11.6583 5.32415i 0.386680 0.176591i
\(910\) 0 0
\(911\) 12.2990 19.1376i 0.407485 0.634059i −0.575488 0.817810i \(-0.695188\pi\)
0.982973 + 0.183752i \(0.0588242\pi\)
\(912\) 0 0
\(913\) −5.23216 + 3.91675i −0.173159 + 0.129625i
\(914\) 0 0
\(915\) 1.27383 0.673658i 0.0421114 0.0222705i
\(916\) 0 0
\(917\) 16.0736 + 29.4367i 0.530799 + 0.972085i
\(918\) 0 0
\(919\) −17.6471 −0.582125 −0.291063 0.956704i \(-0.594009\pi\)
−0.291063 + 0.956704i \(0.594009\pi\)
\(920\) 0 0
\(921\) 0.533283 0.0175723
\(922\) 0 0
\(923\) 0.518288 + 0.949173i 0.0170596 + 0.0312424i
\(924\) 0 0
\(925\) −1.67959 + 4.16060i −0.0552245 + 0.136800i
\(926\) 0 0
\(927\) 9.05445 6.77808i 0.297387 0.222621i
\(928\) 0 0
\(929\) −4.94656 + 7.69700i −0.162292 + 0.252531i −0.912870 0.408251i \(-0.866139\pi\)
0.750578 + 0.660782i \(0.229775\pi\)
\(930\) 0 0
\(931\) −2.67840 + 1.22318i −0.0877810 + 0.0400882i
\(932\) 0 0
\(933\) 0.309805 0.413851i 0.0101426 0.0135489i
\(934\) 0 0
\(935\) −2.84838 + 0.579941i −0.0931521 + 0.0189661i
\(936\) 0 0
\(937\) 8.21678 0.587675i 0.268430 0.0191985i 0.0635248 0.997980i \(-0.479766\pi\)
0.204906 + 0.978782i \(0.434311\pi\)
\(938\) 0 0
\(939\) 0.470559 + 0.543054i 0.0153561 + 0.0177219i
\(940\) 0 0
\(941\) −28.3568 12.9501i −0.924405 0.422162i −0.104411 0.994534i \(-0.533296\pi\)
−0.819994 + 0.572373i \(0.806023\pi\)
\(942\) 0 0
\(943\) −30.8013 17.2579i −1.00303 0.561996i
\(944\) 0 0
\(945\) −1.74385 + 0.486866i −0.0567274 + 0.0158378i
\(946\) 0 0
\(947\) −32.2017 2.30311i −1.04641 0.0748411i −0.462470 0.886635i \(-0.653037\pi\)
−0.583944 + 0.811794i \(0.698491\pi\)
\(948\) 0 0
\(949\) 3.20750 + 2.77931i 0.104120 + 0.0902203i
\(950\) 0 0
\(951\) −1.06144 + 0.311666i −0.0344194 + 0.0101065i
\(952\) 0 0
\(953\) 31.0797 + 23.2659i 1.00677 + 0.753658i 0.969361 0.245642i \(-0.0789988\pi\)
0.0374085 + 0.999300i \(0.488090\pi\)
\(954\) 0 0
\(955\) 16.6440 + 7.87110i 0.538588 + 0.254703i
\(956\) 0 0
\(957\) −0.0152841 0.0702601i −0.000494066 0.00227119i
\(958\) 0 0
\(959\) −56.1521 8.07345i −1.81325 0.260705i
\(960\) 0 0
\(961\) 34.1006 21.9151i 1.10002 0.706940i
\(962\) 0 0
\(963\) −21.6774 + 11.8368i −0.698544 + 0.381434i
\(964\) 0 0
\(965\) −2.93755 + 34.5819i −0.0945630 + 1.11323i
\(966\) 0 0
\(967\) 10.2193 10.2193i 0.328630 0.328630i −0.523435 0.852065i \(-0.675350\pi\)
0.852065 + 0.523435i \(0.175350\pi\)
\(968\) 0 0
\(969\) 0.0605343 0.206161i 0.00194464 0.00662284i
\(970\) 0 0
\(971\) −4.46633 6.94974i −0.143331 0.223028i 0.762164 0.647384i \(-0.224137\pi\)
−0.905495 + 0.424356i \(0.860501\pi\)
\(972\) 0 0
\(973\) 21.3119 + 28.4693i 0.683227 + 0.912684i
\(974\) 0 0
\(975\) −0.191800 0.175370i −0.00614251 0.00561634i
\(976\) 0 0
\(977\) −5.49131 + 14.7228i −0.175683 + 0.471024i −0.994709 0.102732i \(-0.967241\pi\)
0.819026 + 0.573756i \(0.194514\pi\)
\(978\) 0 0
\(979\) 6.20162 0.891658i 0.198205 0.0284975i
\(980\) 0 0
\(981\) −12.2088 41.5793i −0.389797 1.32753i
\(982\) 0 0
\(983\) 0.0879238 + 1.22934i 0.00280433 + 0.0392097i 0.998662 0.0517205i \(-0.0164705\pi\)
−0.995857 + 0.0909303i \(0.971016\pi\)
\(984\) 0 0
\(985\) −3.63924 4.99911i −0.115956 0.159285i
\(986\) 0 0
\(987\) −0.327945 + 0.122317i −0.0104386 + 0.00389340i
\(988\) 0 0
\(989\) 22.8944 + 15.0690i 0.727999 + 0.479166i
\(990\) 0 0
\(991\) 23.7777 52.0659i 0.755323 1.65393i −0.00123431 0.999999i \(-0.500393\pi\)
0.756557 0.653927i \(-0.226880\pi\)
\(992\) 0 0
\(993\) 0.00296867 0.0415074i 9.42078e−5 0.00131720i
\(994\) 0 0
\(995\) −42.9620 0.573209i −1.36199 0.0181720i
\(996\) 0 0
\(997\) −26.6669 + 48.8369i −0.844551 + 1.54668i −0.00722554 + 0.999974i \(0.502300\pi\)
−0.837325 + 0.546705i \(0.815882\pi\)
\(998\) 0 0
\(999\) −0.0358077 0.249048i −0.00113291 0.00787954i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.753.18 yes 720
5.2 odd 4 inner 920.2.bv.a.17.18 720
23.19 odd 22 inner 920.2.bv.a.433.18 yes 720
115.42 even 44 inner 920.2.bv.a.617.18 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.18 720 5.2 odd 4 inner
920.2.bv.a.433.18 yes 720 23.19 odd 22 inner
920.2.bv.a.617.18 yes 720 115.42 even 44 inner
920.2.bv.a.753.18 yes 720 1.1 even 1 trivial