Properties

Label 920.2.bv.a.753.17
Level $920$
Weight $2$
Character 920.753
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [920,2,Mod(17,920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(920, base_ring=CyclotomicField(44)) chi = DirichletCharacter(H, H._module([0, 0, 11, 14])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("920.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 753.17
Character \(\chi\) \(=\) 920.753
Dual form 920.2.bv.a.617.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0448920 - 0.0822135i) q^{3} +(-0.769038 - 2.09966i) q^{5} +(4.17150 - 3.12275i) q^{7} +(1.61718 - 2.51638i) q^{9} +(-3.36211 + 1.53542i) q^{11} +(1.31000 - 1.74996i) q^{13} +(-0.138097 + 0.157483i) q^{15} +(-6.18393 + 0.442284i) q^{17} +(2.05565 + 2.37235i) q^{19} +(-0.443999 - 0.202768i) q^{21} +(-0.466813 - 4.77306i) q^{23} +(-3.81716 + 3.22944i) q^{25} +(-0.559777 - 0.0400361i) q^{27} +(1.75914 + 1.52430i) q^{29} +(-0.693792 + 0.203716i) q^{31} +(0.277164 + 0.207482i) q^{33} +(-9.76475 - 6.35723i) q^{35} +(1.77600 + 8.16416i) q^{37} +(-0.202679 - 0.0291408i) q^{39} +(-4.34358 + 2.79145i) q^{41} +(-0.726651 + 0.396781i) q^{43} +(-6.52722 - 1.46034i) q^{45} +(6.39744 - 6.39744i) q^{47} +(5.67774 - 19.3366i) q^{49} +(0.313971 + 0.488548i) q^{51} +(-6.14168 - 8.20433i) q^{53} +(5.80946 + 5.87849i) q^{55} +(0.102757 - 0.275502i) q^{57} +(1.11563 - 0.160403i) q^{59} +(1.41688 + 4.82546i) q^{61} +(-1.11195 - 15.5471i) q^{63} +(-4.68176 - 1.40478i) q^{65} +(3.47401 - 1.29574i) q^{67} +(-0.371454 + 0.252650i) q^{69} +(5.27911 - 11.5596i) q^{71} +(-0.0898299 + 1.25599i) q^{73} +(0.436864 + 0.168846i) q^{75} +(-9.23029 + 16.9040i) q^{77} +(-0.267327 - 1.85930i) q^{79} +(-3.70596 - 8.11493i) q^{81} +(14.0832 - 3.06361i) q^{83} +(5.68433 + 12.6440i) q^{85} +(0.0463470 - 0.213054i) q^{87} +(-11.9814 - 3.51804i) q^{89} -11.3907i q^{91} +(0.0478939 + 0.0478939i) q^{93} +(3.40025 - 6.14060i) q^{95} +(10.4438 + 2.27190i) q^{97} +(-1.57342 + 10.9434i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0448920 0.0822135i −0.0259184 0.0474660i 0.864399 0.502807i \(-0.167699\pi\)
−0.890317 + 0.455341i \(0.849517\pi\)
\(4\) 0 0
\(5\) −0.769038 2.09966i −0.343924 0.938997i
\(6\) 0 0
\(7\) 4.17150 3.12275i 1.57668 1.18029i 0.684107 0.729381i \(-0.260192\pi\)
0.892572 0.450906i \(-0.148899\pi\)
\(8\) 0 0
\(9\) 1.61718 2.51638i 0.539060 0.838793i
\(10\) 0 0
\(11\) −3.36211 + 1.53542i −1.01371 + 0.462947i −0.851805 0.523859i \(-0.824492\pi\)
−0.161908 + 0.986806i \(0.551765\pi\)
\(12\) 0 0
\(13\) 1.31000 1.74996i 0.363329 0.485351i −0.581208 0.813755i \(-0.697420\pi\)
0.944537 + 0.328404i \(0.106511\pi\)
\(14\) 0 0
\(15\) −0.138097 + 0.157483i −0.0356565 + 0.0406620i
\(16\) 0 0
\(17\) −6.18393 + 0.442284i −1.49982 + 0.107270i −0.796950 0.604045i \(-0.793555\pi\)
−0.702874 + 0.711314i \(0.748100\pi\)
\(18\) 0 0
\(19\) 2.05565 + 2.37235i 0.471599 + 0.544254i 0.940856 0.338808i \(-0.110024\pi\)
−0.469257 + 0.883062i \(0.655478\pi\)
\(20\) 0 0
\(21\) −0.443999 0.202768i −0.0968885 0.0442475i
\(22\) 0 0
\(23\) −0.466813 4.77306i −0.0973372 0.995251i
\(24\) 0 0
\(25\) −3.81716 + 3.22944i −0.763432 + 0.645888i
\(26\) 0 0
\(27\) −0.559777 0.0400361i −0.107729 0.00770494i
\(28\) 0 0
\(29\) 1.75914 + 1.52430i 0.326664 + 0.283056i 0.802716 0.596361i \(-0.203387\pi\)
−0.476053 + 0.879417i \(0.657933\pi\)
\(30\) 0 0
\(31\) −0.693792 + 0.203716i −0.124609 + 0.0365884i −0.343442 0.939174i \(-0.611593\pi\)
0.218834 + 0.975762i \(0.429775\pi\)
\(32\) 0 0
\(33\) 0.277164 + 0.207482i 0.0482481 + 0.0361181i
\(34\) 0 0
\(35\) −9.76475 6.35723i −1.65054 1.07457i
\(36\) 0 0
\(37\) 1.77600 + 8.16416i 0.291973 + 1.34218i 0.856236 + 0.516584i \(0.172797\pi\)
−0.564263 + 0.825595i \(0.690840\pi\)
\(38\) 0 0
\(39\) −0.202679 0.0291408i −0.0324546 0.00466626i
\(40\) 0 0
\(41\) −4.34358 + 2.79145i −0.678354 + 0.435951i −0.833928 0.551873i \(-0.813913\pi\)
0.155575 + 0.987824i \(0.450277\pi\)
\(42\) 0 0
\(43\) −0.726651 + 0.396781i −0.110813 + 0.0605086i −0.533700 0.845674i \(-0.679199\pi\)
0.422886 + 0.906183i \(0.361017\pi\)
\(44\) 0 0
\(45\) −6.52722 1.46034i −0.973020 0.217694i
\(46\) 0 0
\(47\) 6.39744 6.39744i 0.933163 0.933163i −0.0647394 0.997902i \(-0.520622\pi\)
0.997902 + 0.0647394i \(0.0206216\pi\)
\(48\) 0 0
\(49\) 5.67774 19.3366i 0.811106 2.76237i
\(50\) 0 0
\(51\) 0.313971 + 0.488548i 0.0439647 + 0.0684104i
\(52\) 0 0
\(53\) −6.14168 8.20433i −0.843625 1.12695i −0.990461 0.137790i \(-0.956000\pi\)
0.146836 0.989161i \(-0.453091\pi\)
\(54\) 0 0
\(55\) 5.80946 + 5.87849i 0.783347 + 0.792655i
\(56\) 0 0
\(57\) 0.102757 0.275502i 0.0136105 0.0364911i
\(58\) 0 0
\(59\) 1.11563 0.160403i 0.145242 0.0208827i −0.0693102 0.997595i \(-0.522080\pi\)
0.214552 + 0.976712i \(0.431171\pi\)
\(60\) 0 0
\(61\) 1.41688 + 4.82546i 0.181413 + 0.617837i 0.999110 + 0.0421875i \(0.0134327\pi\)
−0.817696 + 0.575650i \(0.804749\pi\)
\(62\) 0 0
\(63\) −1.11195 15.5471i −0.140093 1.95875i
\(64\) 0 0
\(65\) −4.68176 1.40478i −0.580701 0.174241i
\(66\) 0 0
\(67\) 3.47401 1.29574i 0.424418 0.158300i −0.128174 0.991752i \(-0.540912\pi\)
0.552592 + 0.833452i \(0.313639\pi\)
\(68\) 0 0
\(69\) −0.371454 + 0.252650i −0.0447178 + 0.0304155i
\(70\) 0 0
\(71\) 5.27911 11.5596i 0.626515 1.37188i −0.284169 0.958774i \(-0.591718\pi\)
0.910684 0.413103i \(-0.135555\pi\)
\(72\) 0 0
\(73\) −0.0898299 + 1.25599i −0.0105138 + 0.147002i 0.989483 + 0.144646i \(0.0462044\pi\)
−0.999997 + 0.00235582i \(0.999250\pi\)
\(74\) 0 0
\(75\) 0.436864 + 0.168846i 0.0504447 + 0.0194967i
\(76\) 0 0
\(77\) −9.23029 + 16.9040i −1.05189 + 1.92639i
\(78\) 0 0
\(79\) −0.267327 1.85930i −0.0300766 0.209187i 0.969241 0.246112i \(-0.0791530\pi\)
−0.999318 + 0.0369245i \(0.988244\pi\)
\(80\) 0 0
\(81\) −3.70596 8.11493i −0.411774 0.901658i
\(82\) 0 0
\(83\) 14.0832 3.06361i 1.54583 0.336275i 0.642862 0.765982i \(-0.277747\pi\)
0.902968 + 0.429708i \(0.141383\pi\)
\(84\) 0 0
\(85\) 5.68433 + 12.6440i 0.616552 + 1.37144i
\(86\) 0 0
\(87\) 0.0463470 0.213054i 0.00496892 0.0228418i
\(88\) 0 0
\(89\) −11.9814 3.51804i −1.27002 0.372912i −0.423806 0.905753i \(-0.639306\pi\)
−0.846215 + 0.532841i \(0.821124\pi\)
\(90\) 0 0
\(91\) 11.3907i 1.19407i
\(92\) 0 0
\(93\) 0.0478939 + 0.0478939i 0.00496637 + 0.00496637i
\(94\) 0 0
\(95\) 3.40025 6.14060i 0.348859 0.630012i
\(96\) 0 0
\(97\) 10.4438 + 2.27190i 1.06040 + 0.230677i 0.708754 0.705455i \(-0.249257\pi\)
0.351649 + 0.936132i \(0.385621\pi\)
\(98\) 0 0
\(99\) −1.57342 + 10.9434i −0.158135 + 1.09985i
\(100\) 0 0
\(101\) −1.66564 1.07044i −0.165738 0.106513i 0.455142 0.890419i \(-0.349588\pi\)
−0.620880 + 0.783905i \(0.713225\pi\)
\(102\) 0 0
\(103\) 7.17254 + 2.67522i 0.706731 + 0.263597i 0.677023 0.735962i \(-0.263270\pi\)
0.0297077 + 0.999559i \(0.490542\pi\)
\(104\) 0 0
\(105\) −0.0842910 + 1.08818i −0.00822596 + 0.106196i
\(106\) 0 0
\(107\) 15.0652 + 8.22621i 1.45641 + 0.795258i 0.995730 0.0923106i \(-0.0294253\pi\)
0.460676 + 0.887568i \(0.347607\pi\)
\(108\) 0 0
\(109\) −10.7923 + 12.4550i −1.03372 + 1.19297i −0.0527863 + 0.998606i \(0.516810\pi\)
−0.980929 + 0.194365i \(0.937735\pi\)
\(110\) 0 0
\(111\) 0.591476 0.512517i 0.0561404 0.0486459i
\(112\) 0 0
\(113\) 1.24302 + 3.33266i 0.116933 + 0.313510i 0.982210 0.187784i \(-0.0601304\pi\)
−0.865277 + 0.501294i \(0.832858\pi\)
\(114\) 0 0
\(115\) −9.66281 + 4.65081i −0.901062 + 0.433691i
\(116\) 0 0
\(117\) −2.28505 6.12645i −0.211253 0.566391i
\(118\) 0 0
\(119\) −24.4151 + 21.1558i −2.23813 + 1.93935i
\(120\) 0 0
\(121\) 1.74276 2.01126i 0.158433 0.182841i
\(122\) 0 0
\(123\) 0.424487 + 0.231788i 0.0382747 + 0.0208996i
\(124\) 0 0
\(125\) 9.71628 + 5.53118i 0.869050 + 0.494724i
\(126\) 0 0
\(127\) −2.90286 1.08271i −0.257587 0.0960751i 0.217353 0.976093i \(-0.430258\pi\)
−0.474940 + 0.880018i \(0.657530\pi\)
\(128\) 0 0
\(129\) 0.0652416 + 0.0419282i 0.00574420 + 0.00369157i
\(130\) 0 0
\(131\) 0.187109 1.30137i 0.0163478 0.113701i −0.980014 0.198931i \(-0.936253\pi\)
0.996361 + 0.0852292i \(0.0271623\pi\)
\(132\) 0 0
\(133\) 15.9834 + 3.47697i 1.38594 + 0.301492i
\(134\) 0 0
\(135\) 0.346428 + 1.20613i 0.0298158 + 0.103807i
\(136\) 0 0
\(137\) 13.6508 + 13.6508i 1.16627 + 1.16627i 0.983078 + 0.183188i \(0.0586417\pi\)
0.183188 + 0.983078i \(0.441358\pi\)
\(138\) 0 0
\(139\) 14.1071i 1.19655i −0.801291 0.598275i \(-0.795853\pi\)
0.801291 0.598275i \(-0.204147\pi\)
\(140\) 0 0
\(141\) −0.813150 0.238762i −0.0684796 0.0201074i
\(142\) 0 0
\(143\) −1.71744 + 7.89495i −0.143620 + 0.660208i
\(144\) 0 0
\(145\) 1.84767 4.86584i 0.153441 0.404086i
\(146\) 0 0
\(147\) −1.84462 + 0.401272i −0.152141 + 0.0330963i
\(148\) 0 0
\(149\) 4.09582 + 8.96860i 0.335543 + 0.734736i 0.999920 0.0126614i \(-0.00403036\pi\)
−0.664377 + 0.747398i \(0.731303\pi\)
\(150\) 0 0
\(151\) −0.807321 5.61504i −0.0656989 0.456946i −0.995942 0.0900011i \(-0.971313\pi\)
0.930243 0.366945i \(-0.119596\pi\)
\(152\) 0 0
\(153\) −8.88757 + 16.2764i −0.718518 + 1.31587i
\(154\) 0 0
\(155\) 0.961287 + 1.30006i 0.0772124 + 0.104424i
\(156\) 0 0
\(157\) 1.00032 13.9863i 0.0798340 1.11623i −0.786776 0.617239i \(-0.788251\pi\)
0.866610 0.498987i \(-0.166294\pi\)
\(158\) 0 0
\(159\) −0.398795 + 0.873238i −0.0316265 + 0.0692523i
\(160\) 0 0
\(161\) −16.8524 18.4531i −1.32815 1.45431i
\(162\) 0 0
\(163\) −19.2743 + 7.18895i −1.50968 + 0.563082i −0.961867 0.273518i \(-0.911813\pi\)
−0.547815 + 0.836600i \(0.684540\pi\)
\(164\) 0 0
\(165\) 0.222493 0.741513i 0.0173211 0.0577267i
\(166\) 0 0
\(167\) 1.45702 + 20.3718i 0.112748 + 1.57642i 0.667633 + 0.744490i \(0.267307\pi\)
−0.554886 + 0.831927i \(0.687238\pi\)
\(168\) 0 0
\(169\) 2.31628 + 7.88852i 0.178175 + 0.606809i
\(170\) 0 0
\(171\) 9.29408 1.33629i 0.710736 0.102188i
\(172\) 0 0
\(173\) −1.50556 + 4.03657i −0.114466 + 0.306895i −0.981532 0.191298i \(-0.938730\pi\)
0.867066 + 0.498193i \(0.166003\pi\)
\(174\) 0 0
\(175\) −5.83856 + 25.3916i −0.441354 + 1.91943i
\(176\) 0 0
\(177\) −0.0632700 0.0845188i −0.00475566 0.00635282i
\(178\) 0 0
\(179\) −8.73930 13.5986i −0.653206 1.01641i −0.997003 0.0773644i \(-0.975350\pi\)
0.343797 0.939044i \(-0.388287\pi\)
\(180\) 0 0
\(181\) 2.83153 9.64330i 0.210466 0.716781i −0.784814 0.619732i \(-0.787241\pi\)
0.995280 0.0970491i \(-0.0309404\pi\)
\(182\) 0 0
\(183\) 0.333112 0.333112i 0.0246243 0.0246243i
\(184\) 0 0
\(185\) 15.7762 10.0076i 1.15989 0.735770i
\(186\) 0 0
\(187\) 20.1119 10.9820i 1.47073 0.803080i
\(188\) 0 0
\(189\) −2.46013 + 1.58103i −0.178948 + 0.115003i
\(190\) 0 0
\(191\) 13.5513 + 1.94839i 0.980541 + 0.140980i 0.613901 0.789383i \(-0.289599\pi\)
0.366639 + 0.930363i \(0.380508\pi\)
\(192\) 0 0
\(193\) −5.21680 23.9812i −0.375513 1.72621i −0.645871 0.763446i \(-0.723506\pi\)
0.270358 0.962760i \(-0.412858\pi\)
\(194\) 0 0
\(195\) 0.0946819 + 0.447967i 0.00678031 + 0.0320796i
\(196\) 0 0
\(197\) 8.46693 + 6.33826i 0.603243 + 0.451582i 0.856736 0.515755i \(-0.172488\pi\)
−0.253493 + 0.967337i \(0.581579\pi\)
\(198\) 0 0
\(199\) 4.47558 1.31415i 0.317265 0.0931575i −0.119223 0.992868i \(-0.538040\pi\)
0.436488 + 0.899710i \(0.356222\pi\)
\(200\) 0 0
\(201\) −0.262483 0.227443i −0.0185141 0.0160426i
\(202\) 0 0
\(203\) 12.0982 + 0.865284i 0.849130 + 0.0607310i
\(204\) 0 0
\(205\) 9.20149 + 6.97332i 0.642660 + 0.487038i
\(206\) 0 0
\(207\) −12.7657 6.54421i −0.887281 0.454854i
\(208\) 0 0
\(209\) −10.5539 4.81979i −0.730026 0.333392i
\(210\) 0 0
\(211\) 0.725033 + 0.836732i 0.0499133 + 0.0576030i 0.780157 0.625584i \(-0.215139\pi\)
−0.730244 + 0.683187i \(0.760594\pi\)
\(212\) 0 0
\(213\) −1.18735 + 0.0849209i −0.0813558 + 0.00581868i
\(214\) 0 0
\(215\) 1.39193 + 1.22058i 0.0949288 + 0.0832429i
\(216\) 0 0
\(217\) −2.25800 + 3.01634i −0.153283 + 0.204762i
\(218\) 0 0
\(219\) 0.107292 0.0489985i 0.00725010 0.00331101i
\(220\) 0 0
\(221\) −7.32699 + 11.4010i −0.492866 + 0.766915i
\(222\) 0 0
\(223\) 2.52333 1.88894i 0.168975 0.126493i −0.511443 0.859317i \(-0.670889\pi\)
0.680418 + 0.732824i \(0.261798\pi\)
\(224\) 0 0
\(225\) 1.95347 + 14.8280i 0.130231 + 0.988534i
\(226\) 0 0
\(227\) −0.289984 0.531065i −0.0192469 0.0352480i 0.867879 0.496776i \(-0.165483\pi\)
−0.887125 + 0.461528i \(0.847301\pi\)
\(228\) 0 0
\(229\) 4.05820 0.268174 0.134087 0.990970i \(-0.457190\pi\)
0.134087 + 0.990970i \(0.457190\pi\)
\(230\) 0 0
\(231\) 1.80410 0.118701
\(232\) 0 0
\(233\) 2.37673 + 4.35266i 0.155705 + 0.285152i 0.943873 0.330307i \(-0.107152\pi\)
−0.788169 + 0.615459i \(0.788971\pi\)
\(234\) 0 0
\(235\) −18.3523 8.51259i −1.19717 0.555300i
\(236\) 0 0
\(237\) −0.140859 + 0.105445i −0.00914974 + 0.00684941i
\(238\) 0 0
\(239\) −8.48775 + 13.2072i −0.549027 + 0.854302i −0.999254 0.0386117i \(-0.987706\pi\)
0.450228 + 0.892914i \(0.351343\pi\)
\(240\) 0 0
\(241\) −1.35109 + 0.617023i −0.0870315 + 0.0397460i −0.458455 0.888718i \(-0.651597\pi\)
0.371424 + 0.928464i \(0.378870\pi\)
\(242\) 0 0
\(243\) −1.50975 + 2.01678i −0.0968502 + 0.129377i
\(244\) 0 0
\(245\) −44.9668 + 2.94926i −2.87282 + 0.188421i
\(246\) 0 0
\(247\) 6.84441 0.489522i 0.435499 0.0311475i
\(248\) 0 0
\(249\) −0.884092 1.02030i −0.0560270 0.0646587i
\(250\) 0 0
\(251\) 19.3359 + 8.83043i 1.22047 + 0.557372i 0.918302 0.395882i \(-0.129561\pi\)
0.302172 + 0.953253i \(0.402288\pi\)
\(252\) 0 0
\(253\) 8.89813 + 15.3308i 0.559421 + 0.963837i
\(254\) 0 0
\(255\) 0.784330 1.03494i 0.0491167 0.0648108i
\(256\) 0 0
\(257\) 15.1803 + 1.08572i 0.946921 + 0.0677251i 0.536251 0.844059i \(-0.319840\pi\)
0.410670 + 0.911784i \(0.365295\pi\)
\(258\) 0 0
\(259\) 32.9032 + 28.5108i 2.04450 + 1.77157i
\(260\) 0 0
\(261\) 6.68056 1.96159i 0.413516 0.121419i
\(262\) 0 0
\(263\) 9.61917 + 7.20082i 0.593144 + 0.444022i 0.853209 0.521569i \(-0.174653\pi\)
−0.260065 + 0.965591i \(0.583744\pi\)
\(264\) 0 0
\(265\) −12.5031 + 19.2049i −0.768061 + 1.17975i
\(266\) 0 0
\(267\) 0.248636 + 1.14296i 0.0152163 + 0.0699481i
\(268\) 0 0
\(269\) −7.23305 1.03996i −0.441007 0.0634073i −0.0817650 0.996652i \(-0.526056\pi\)
−0.359242 + 0.933244i \(0.616965\pi\)
\(270\) 0 0
\(271\) −5.54876 + 3.56597i −0.337063 + 0.216617i −0.698212 0.715891i \(-0.746021\pi\)
0.361149 + 0.932508i \(0.382385\pi\)
\(272\) 0 0
\(273\) −0.936474 + 0.511353i −0.0566780 + 0.0309485i
\(274\) 0 0
\(275\) 7.87514 16.7187i 0.474889 1.00817i
\(276\) 0 0
\(277\) −9.26408 + 9.26408i −0.556625 + 0.556625i −0.928345 0.371720i \(-0.878768\pi\)
0.371720 + 0.928345i \(0.378768\pi\)
\(278\) 0 0
\(279\) −0.609360 + 2.07529i −0.0364814 + 0.124244i
\(280\) 0 0
\(281\) 3.20148 + 4.98161i 0.190985 + 0.297178i 0.923519 0.383552i \(-0.125299\pi\)
−0.732535 + 0.680730i \(0.761663\pi\)
\(282\) 0 0
\(283\) 15.3748 + 20.5383i 0.913934 + 1.22087i 0.974880 + 0.222732i \(0.0714975\pi\)
−0.0609454 + 0.998141i \(0.519412\pi\)
\(284\) 0 0
\(285\) −0.657484 0.00388322i −0.0389460 0.000230022i
\(286\) 0 0
\(287\) −9.40227 + 25.2084i −0.554998 + 1.48801i
\(288\) 0 0
\(289\) 21.2185 3.05076i 1.24815 0.179456i
\(290\) 0 0
\(291\) −0.282060 0.960608i −0.0165347 0.0563119i
\(292\) 0 0
\(293\) −1.02432 14.3219i −0.0598417 0.836696i −0.935402 0.353587i \(-0.884962\pi\)
0.875560 0.483109i \(-0.160493\pi\)
\(294\) 0 0
\(295\) −1.19475 2.21908i −0.0695611 0.129200i
\(296\) 0 0
\(297\) 1.94350 0.724889i 0.112773 0.0420623i
\(298\) 0 0
\(299\) −8.96417 5.43581i −0.518411 0.314361i
\(300\) 0 0
\(301\) −1.79218 + 3.92432i −0.103299 + 0.226194i
\(302\) 0 0
\(303\) −0.0132310 + 0.184993i −0.000760098 + 0.0106276i
\(304\) 0 0
\(305\) 9.04221 6.68595i 0.517755 0.382836i
\(306\) 0 0
\(307\) 4.93578 9.03920i 0.281700 0.515895i −0.698068 0.716031i \(-0.745957\pi\)
0.979768 + 0.200137i \(0.0641386\pi\)
\(308\) 0 0
\(309\) −0.102050 0.709775i −0.00580544 0.0403777i
\(310\) 0 0
\(311\) −2.93295 6.42227i −0.166313 0.364174i 0.808065 0.589094i \(-0.200515\pi\)
−0.974377 + 0.224920i \(0.927788\pi\)
\(312\) 0 0
\(313\) 27.8434 6.05696i 1.57380 0.342360i 0.660880 0.750492i \(-0.270183\pi\)
0.912923 + 0.408132i \(0.133820\pi\)
\(314\) 0 0
\(315\) −31.7886 + 14.2910i −1.79108 + 0.805209i
\(316\) 0 0
\(317\) 4.88851 22.4721i 0.274566 1.26216i −0.608742 0.793368i \(-0.708326\pi\)
0.883308 0.468793i \(-0.155311\pi\)
\(318\) 0 0
\(319\) −8.25485 2.42384i −0.462183 0.135709i
\(320\) 0 0
\(321\) 1.60785i 0.0897416i
\(322\) 0 0
\(323\) −13.7613 13.7613i −0.765697 0.765697i
\(324\) 0 0
\(325\) 0.650898 + 10.9104i 0.0361053 + 0.605202i
\(326\) 0 0
\(327\) 1.50846 + 0.328145i 0.0834178 + 0.0181464i
\(328\) 0 0
\(329\) 6.70934 46.6645i 0.369898 2.57270i
\(330\) 0 0
\(331\) 16.4282 + 10.5577i 0.902973 + 0.580306i 0.907671 0.419683i \(-0.137859\pi\)
−0.00469731 + 0.999989i \(0.501495\pi\)
\(332\) 0 0
\(333\) 23.4162 + 8.73380i 1.28320 + 0.478609i
\(334\) 0 0
\(335\) −5.39226 6.29778i −0.294611 0.344084i
\(336\) 0 0
\(337\) −17.8321 9.73706i −0.971376 0.530412i −0.0865071 0.996251i \(-0.527571\pi\)
−0.884869 + 0.465840i \(0.845752\pi\)
\(338\) 0 0
\(339\) 0.218188 0.251802i 0.0118503 0.0136760i
\(340\) 0 0
\(341\) 2.01981 1.75018i 0.109379 0.0947775i
\(342\) 0 0
\(343\) −23.9516 64.2167i −1.29327 3.46738i
\(344\) 0 0
\(345\) 0.816143 + 0.585630i 0.0439396 + 0.0315292i
\(346\) 0 0
\(347\) 6.24949 + 16.7555i 0.335490 + 0.899484i 0.989698 + 0.143170i \(0.0457294\pi\)
−0.654208 + 0.756315i \(0.726998\pi\)
\(348\) 0 0
\(349\) 3.02435 2.62061i 0.161890 0.140278i −0.570149 0.821541i \(-0.693114\pi\)
0.732039 + 0.681263i \(0.238569\pi\)
\(350\) 0 0
\(351\) −0.803371 + 0.927139i −0.0428807 + 0.0494870i
\(352\) 0 0
\(353\) −7.09691 3.87521i −0.377731 0.206257i 0.279156 0.960246i \(-0.409945\pi\)
−0.656887 + 0.753989i \(0.728127\pi\)
\(354\) 0 0
\(355\) −28.3312 2.19454i −1.50366 0.116474i
\(356\) 0 0
\(357\) 2.83534 + 1.05753i 0.150062 + 0.0559703i
\(358\) 0 0
\(359\) −5.37915 3.45697i −0.283901 0.182452i 0.390938 0.920417i \(-0.372151\pi\)
−0.674839 + 0.737965i \(0.735787\pi\)
\(360\) 0 0
\(361\) 1.30165 9.05318i 0.0685079 0.476483i
\(362\) 0 0
\(363\) −0.243589 0.0529894i −0.0127851 0.00278122i
\(364\) 0 0
\(365\) 2.70623 0.777289i 0.141651 0.0406852i
\(366\) 0 0
\(367\) 9.22004 + 9.22004i 0.481282 + 0.481282i 0.905541 0.424259i \(-0.139465\pi\)
−0.424259 + 0.905541i \(0.639465\pi\)
\(368\) 0 0
\(369\) 15.4444i 0.804002i
\(370\) 0 0
\(371\) −51.2401 15.0454i −2.66025 0.781120i
\(372\) 0 0
\(373\) 3.41918 15.7177i 0.177038 0.813832i −0.799870 0.600173i \(-0.795098\pi\)
0.976908 0.213659i \(-0.0685380\pi\)
\(374\) 0 0
\(375\) 0.0185551 1.04712i 0.000958179 0.0540728i
\(376\) 0 0
\(377\) 4.97193 1.08158i 0.256068 0.0557041i
\(378\) 0 0
\(379\) −2.89732 6.34424i −0.148825 0.325882i 0.820507 0.571637i \(-0.193691\pi\)
−0.969332 + 0.245755i \(0.920964\pi\)
\(380\) 0 0
\(381\) 0.0413017 + 0.287260i 0.00211595 + 0.0147168i
\(382\) 0 0
\(383\) −3.54900 + 6.49950i −0.181345 + 0.332109i −0.952500 0.304539i \(-0.901498\pi\)
0.771155 + 0.636648i \(0.219679\pi\)
\(384\) 0 0
\(385\) 42.5912 + 6.38065i 2.17065 + 0.325188i
\(386\) 0 0
\(387\) −0.176672 + 2.47020i −0.00898074 + 0.125567i
\(388\) 0 0
\(389\) −5.34994 + 11.7147i −0.271253 + 0.593960i −0.995413 0.0956713i \(-0.969500\pi\)
0.724160 + 0.689632i \(0.242227\pi\)
\(390\) 0 0
\(391\) 4.99779 + 29.3098i 0.252749 + 1.48226i
\(392\) 0 0
\(393\) −0.115390 + 0.0430383i −0.00582066 + 0.00217099i
\(394\) 0 0
\(395\) −3.69831 + 1.99117i −0.186082 + 0.100186i
\(396\) 0 0
\(397\) 1.74392 + 24.3832i 0.0875249 + 1.22376i 0.831490 + 0.555540i \(0.187488\pi\)
−0.743965 + 0.668218i \(0.767057\pi\)
\(398\) 0 0
\(399\) −0.431672 1.47014i −0.0216106 0.0735990i
\(400\) 0 0
\(401\) 11.6429 1.67400i 0.581420 0.0835956i 0.154672 0.987966i \(-0.450568\pi\)
0.426749 + 0.904370i \(0.359659\pi\)
\(402\) 0 0
\(403\) −0.552375 + 1.48097i −0.0275158 + 0.0737726i
\(404\) 0 0
\(405\) −14.1886 + 14.0220i −0.705036 + 0.696757i
\(406\) 0 0
\(407\) −18.5065 24.7218i −0.917335 1.22542i
\(408\) 0 0
\(409\) −12.2604 19.0776i −0.606238 0.943325i −0.999712 0.0239890i \(-0.992363\pi\)
0.393474 0.919336i \(-0.371273\pi\)
\(410\) 0 0
\(411\) 0.509469 1.73509i 0.0251302 0.0855857i
\(412\) 0 0
\(413\) 4.15294 4.15294i 0.204353 0.204353i
\(414\) 0 0
\(415\) −17.2630 27.2139i −0.847410 1.33588i
\(416\) 0 0
\(417\) −1.15980 + 0.633296i −0.0567954 + 0.0310126i
\(418\) 0 0
\(419\) 6.67893 4.29228i 0.326287 0.209692i −0.367234 0.930129i \(-0.619695\pi\)
0.693520 + 0.720437i \(0.256059\pi\)
\(420\) 0 0
\(421\) −30.5073 4.38629i −1.48684 0.213775i −0.649457 0.760398i \(-0.725004\pi\)
−0.837378 + 0.546624i \(0.815913\pi\)
\(422\) 0 0
\(423\) −5.75258 26.4442i −0.279700 1.28576i
\(424\) 0 0
\(425\) 22.1767 21.6589i 1.07573 1.05061i
\(426\) 0 0
\(427\) 20.9792 + 15.7049i 1.01526 + 0.760011i
\(428\) 0 0
\(429\) 0.726171 0.213223i 0.0350598 0.0102945i
\(430\) 0 0
\(431\) 19.7726 + 17.1330i 0.952411 + 0.825269i 0.984709 0.174209i \(-0.0557369\pi\)
−0.0322974 + 0.999478i \(0.510282\pi\)
\(432\) 0 0
\(433\) 7.43551 + 0.531798i 0.357328 + 0.0255566i 0.248849 0.968542i \(-0.419948\pi\)
0.108478 + 0.994099i \(0.465402\pi\)
\(434\) 0 0
\(435\) −0.482984 + 0.0665335i −0.0231573 + 0.00319004i
\(436\) 0 0
\(437\) 10.3637 10.9192i 0.495765 0.522335i
\(438\) 0 0
\(439\) −18.9660 8.66148i −0.905198 0.413390i −0.0922564 0.995735i \(-0.529408\pi\)
−0.812942 + 0.582345i \(0.802135\pi\)
\(440\) 0 0
\(441\) −39.4763 45.5581i −1.87983 2.16943i
\(442\) 0 0
\(443\) −30.0075 + 2.14618i −1.42570 + 0.101968i −0.762748 0.646696i \(-0.776150\pi\)
−0.662949 + 0.748664i \(0.730696\pi\)
\(444\) 0 0
\(445\) 1.82742 + 27.8623i 0.0866280 + 1.32080i
\(446\) 0 0
\(447\) 0.553470 0.739350i 0.0261783 0.0349701i
\(448\) 0 0
\(449\) 23.6470 10.7992i 1.11597 0.509647i 0.229908 0.973212i \(-0.426157\pi\)
0.886063 + 0.463566i \(0.153430\pi\)
\(450\) 0 0
\(451\) 10.3175 16.0544i 0.485833 0.755972i
\(452\) 0 0
\(453\) −0.425390 + 0.318443i −0.0199866 + 0.0149618i
\(454\) 0 0
\(455\) −23.9167 + 8.75992i −1.12123 + 0.410671i
\(456\) 0 0
\(457\) 8.48697 + 15.5427i 0.397004 + 0.727058i 0.997355 0.0726783i \(-0.0231546\pi\)
−0.600352 + 0.799736i \(0.704973\pi\)
\(458\) 0 0
\(459\) 3.47933 0.162401
\(460\) 0 0
\(461\) −4.59398 −0.213963 −0.106981 0.994261i \(-0.534119\pi\)
−0.106981 + 0.994261i \(0.534119\pi\)
\(462\) 0 0
\(463\) 11.9013 + 21.7956i 0.553101 + 1.01293i 0.993359 + 0.115057i \(0.0367052\pi\)
−0.440258 + 0.897871i \(0.645113\pi\)
\(464\) 0 0
\(465\) 0.0637288 0.137393i 0.00295535 0.00637146i
\(466\) 0 0
\(467\) −24.5702 + 18.3930i −1.13697 + 0.851127i −0.990422 0.138077i \(-0.955908\pi\)
−0.146550 + 0.989203i \(0.546817\pi\)
\(468\) 0 0
\(469\) 10.4456 16.2536i 0.482332 0.750523i
\(470\) 0 0
\(471\) −1.19477 + 0.545632i −0.0550519 + 0.0251414i
\(472\) 0 0
\(473\) 1.83385 2.44974i 0.0843205 0.112639i
\(474\) 0 0
\(475\) −15.5081 2.41703i −0.711560 0.110901i
\(476\) 0 0
\(477\) −30.5774 + 2.18694i −1.40004 + 0.100133i
\(478\) 0 0
\(479\) 22.7676 + 26.2752i 1.04028 + 1.20054i 0.979302 + 0.202404i \(0.0648755\pi\)
0.0609748 + 0.998139i \(0.480579\pi\)
\(480\) 0 0
\(481\) 16.6135 + 7.58713i 0.757510 + 0.345943i
\(482\) 0 0
\(483\) −0.760557 + 2.21389i −0.0346065 + 0.100735i
\(484\) 0 0
\(485\) −3.26143 23.6755i −0.148094 1.07505i
\(486\) 0 0
\(487\) 36.8159 + 2.63312i 1.66829 + 0.119318i 0.873259 0.487256i \(-0.162002\pi\)
0.795027 + 0.606574i \(0.207457\pi\)
\(488\) 0 0
\(489\) 1.45629 + 1.26188i 0.0658558 + 0.0570644i
\(490\) 0 0
\(491\) −11.2432 + 3.30129i −0.507397 + 0.148985i −0.525404 0.850853i \(-0.676086\pi\)
0.0180074 + 0.999838i \(0.494268\pi\)
\(492\) 0 0
\(493\) −11.5526 8.64814i −0.520301 0.389493i
\(494\) 0 0
\(495\) 24.1874 5.11223i 1.08714 0.229778i
\(496\) 0 0
\(497\) −14.0760 64.7064i −0.631395 2.90248i
\(498\) 0 0
\(499\) −29.6737 4.26643i −1.32838 0.190992i −0.558670 0.829390i \(-0.688688\pi\)
−0.769706 + 0.638399i \(0.779597\pi\)
\(500\) 0 0
\(501\) 1.60943 1.03432i 0.0719040 0.0462099i
\(502\) 0 0
\(503\) 29.5396 16.1298i 1.31711 0.719194i 0.341741 0.939794i \(-0.388983\pi\)
0.975364 + 0.220600i \(0.0708015\pi\)
\(504\) 0 0
\(505\) −0.966628 + 4.32050i −0.0430144 + 0.192260i
\(506\) 0 0
\(507\) 0.544560 0.544560i 0.0241848 0.0241848i
\(508\) 0 0
\(509\) 5.85578 19.9430i 0.259553 0.883956i −0.721858 0.692041i \(-0.756712\pi\)
0.981411 0.191916i \(-0.0614700\pi\)
\(510\) 0 0
\(511\) 3.54740 + 5.51986i 0.156928 + 0.244184i
\(512\) 0 0
\(513\) −1.05573 1.41029i −0.0466115 0.0622657i
\(514\) 0 0
\(515\) 0.101097 17.1172i 0.00445488 0.754276i
\(516\) 0 0
\(517\) −11.6861 + 31.3316i −0.513954 + 1.37796i
\(518\) 0 0
\(519\) 0.399448 0.0574320i 0.0175338 0.00252098i
\(520\) 0 0
\(521\) −6.36709 21.6843i −0.278947 0.950007i −0.973139 0.230217i \(-0.926056\pi\)
0.694192 0.719790i \(-0.255762\pi\)
\(522\) 0 0
\(523\) −1.82395 25.5022i −0.0797558 1.11513i −0.866940 0.498413i \(-0.833916\pi\)
0.787184 0.616718i \(-0.211538\pi\)
\(524\) 0 0
\(525\) 2.34964 0.659872i 0.102547 0.0287992i
\(526\) 0 0
\(527\) 4.20027 1.56662i 0.182966 0.0682430i
\(528\) 0 0
\(529\) −22.5642 + 4.45625i −0.981051 + 0.193750i
\(530\) 0 0
\(531\) 1.40053 3.06674i 0.0607780 0.133085i
\(532\) 0 0
\(533\) −0.805180 + 11.2579i −0.0348762 + 0.487633i
\(534\) 0 0
\(535\) 5.68656 37.9581i 0.245851 1.64107i
\(536\) 0 0
\(537\) −0.725666 + 1.32896i −0.0313148 + 0.0573488i
\(538\) 0 0
\(539\) 10.6007 + 73.7295i 0.456604 + 3.17575i
\(540\) 0 0
\(541\) 15.5497 + 34.0491i 0.668534 + 1.46389i 0.874350 + 0.485295i \(0.161288\pi\)
−0.205816 + 0.978591i \(0.565985\pi\)
\(542\) 0 0
\(543\) −0.919922 + 0.200117i −0.0394777 + 0.00858784i
\(544\) 0 0
\(545\) 34.4510 + 13.0818i 1.47572 + 0.560364i
\(546\) 0 0
\(547\) 5.43406 24.9800i 0.232344 1.06807i −0.702134 0.712045i \(-0.747769\pi\)
0.934478 0.356022i \(-0.115867\pi\)
\(548\) 0 0
\(549\) 14.4341 + 4.23822i 0.616030 + 0.180883i
\(550\) 0 0
\(551\) 7.30671i 0.311276i
\(552\) 0 0
\(553\) −6.92126 6.92126i −0.294322 0.294322i
\(554\) 0 0
\(555\) −1.53098 0.847754i −0.0649865 0.0359852i
\(556\) 0 0
\(557\) −13.3952 2.91394i −0.567572 0.123468i −0.0803824 0.996764i \(-0.525614\pi\)
−0.487189 + 0.873296i \(0.661978\pi\)
\(558\) 0 0
\(559\) −0.257563 + 1.79139i −0.0108938 + 0.0757678i
\(560\) 0 0
\(561\) −1.80573 1.16047i −0.0762380 0.0489952i
\(562\) 0 0
\(563\) −19.3134 7.20354i −0.813964 0.303593i −0.0922075 0.995740i \(-0.529392\pi\)
−0.721757 + 0.692147i \(0.756665\pi\)
\(564\) 0 0
\(565\) 6.04152 5.17285i 0.254169 0.217624i
\(566\) 0 0
\(567\) −40.8003 22.2786i −1.71345 0.935615i
\(568\) 0 0
\(569\) −5.30428 + 6.12147i −0.222367 + 0.256625i −0.855961 0.517041i \(-0.827034\pi\)
0.633594 + 0.773666i \(0.281579\pi\)
\(570\) 0 0
\(571\) −16.5118 + 14.3075i −0.690996 + 0.598752i −0.927921 0.372776i \(-0.878406\pi\)
0.236925 + 0.971528i \(0.423860\pi\)
\(572\) 0 0
\(573\) −0.448163 1.20157i −0.0187223 0.0501963i
\(574\) 0 0
\(575\) 17.1962 + 16.7120i 0.717132 + 0.696938i
\(576\) 0 0
\(577\) 2.59037 + 6.94505i 0.107838 + 0.289126i 0.979649 0.200716i \(-0.0643270\pi\)
−0.871811 + 0.489843i \(0.837054\pi\)
\(578\) 0 0
\(579\) −1.73739 + 1.50546i −0.0722034 + 0.0625646i
\(580\) 0 0
\(581\) 49.1811 56.7580i 2.04038 2.35472i
\(582\) 0 0
\(583\) 33.2461 + 18.1537i 1.37691 + 0.751851i
\(584\) 0 0
\(585\) −11.1062 + 9.50931i −0.459184 + 0.393161i
\(586\) 0 0
\(587\) 22.3765 + 8.34600i 0.923577 + 0.344476i 0.765859 0.643008i \(-0.222314\pi\)
0.157717 + 0.987484i \(0.449587\pi\)
\(588\) 0 0
\(589\) −1.90948 1.22715i −0.0786787 0.0505637i
\(590\) 0 0
\(591\) 0.140994 0.980633i 0.00579971 0.0403378i
\(592\) 0 0
\(593\) −45.3434 9.86386i −1.86203 0.405060i −0.866474 0.499222i \(-0.833619\pi\)
−0.995557 + 0.0941617i \(0.969983\pi\)
\(594\) 0 0
\(595\) 63.1963 + 34.9939i 2.59080 + 1.43461i
\(596\) 0 0
\(597\) −0.308958 0.308958i −0.0126448 0.0126448i
\(598\) 0 0
\(599\) 21.0837i 0.861457i 0.902482 + 0.430729i \(0.141743\pi\)
−0.902482 + 0.430729i \(0.858257\pi\)
\(600\) 0 0
\(601\) 3.89733 + 1.14436i 0.158976 + 0.0466794i 0.360252 0.932855i \(-0.382691\pi\)
−0.201276 + 0.979534i \(0.564509\pi\)
\(602\) 0 0
\(603\) 2.35753 10.8374i 0.0960059 0.441332i
\(604\) 0 0
\(605\) −5.56321 2.11248i −0.226177 0.0858846i
\(606\) 0 0
\(607\) 39.2561 8.53964i 1.59336 0.346613i 0.673598 0.739098i \(-0.264748\pi\)
0.919759 + 0.392485i \(0.128384\pi\)
\(608\) 0 0
\(609\) −0.471976 1.03348i −0.0191254 0.0418789i
\(610\) 0 0
\(611\) −2.81459 19.5759i −0.113866 0.791956i
\(612\) 0 0
\(613\) −17.4671 + 31.9886i −0.705489 + 1.29201i 0.241393 + 0.970427i \(0.422396\pi\)
−0.946882 + 0.321580i \(0.895786\pi\)
\(614\) 0 0
\(615\) 0.160229 1.06953i 0.00646104 0.0431277i
\(616\) 0 0
\(617\) −2.63934 + 36.9027i −0.106256 + 1.48565i 0.612547 + 0.790434i \(0.290145\pi\)
−0.718803 + 0.695214i \(0.755310\pi\)
\(618\) 0 0
\(619\) 9.25412 20.2637i 0.371954 0.814466i −0.627406 0.778693i \(-0.715883\pi\)
0.999360 0.0357737i \(-0.0113896\pi\)
\(620\) 0 0
\(621\) 0.0702169 + 2.69054i 0.00281771 + 0.107968i
\(622\) 0 0
\(623\) −60.9662 + 22.7392i −2.44256 + 0.911027i
\(624\) 0 0
\(625\) 4.14142 24.6546i 0.165657 0.986183i
\(626\) 0 0
\(627\) 0.0775321 + 1.08404i 0.00309633 + 0.0432924i
\(628\) 0 0
\(629\) −14.5936 49.7011i −0.581884 1.98171i
\(630\) 0 0
\(631\) −16.2403 + 2.33500i −0.646515 + 0.0929548i −0.457769 0.889071i \(-0.651351\pi\)
−0.188746 + 0.982026i \(0.560442\pi\)
\(632\) 0 0
\(633\) 0.0362426 0.0971701i 0.00144051 0.00386216i
\(634\) 0 0
\(635\) −0.0409161 + 6.92768i −0.00162370 + 0.274916i
\(636\) 0 0
\(637\) −26.4004 35.2668i −1.04602 1.39732i
\(638\) 0 0
\(639\) −20.5512 31.9783i −0.812992 1.26504i
\(640\) 0 0
\(641\) −13.0786 + 44.5416i −0.516573 + 1.75929i 0.124930 + 0.992166i \(0.460129\pi\)
−0.641503 + 0.767121i \(0.721689\pi\)
\(642\) 0 0
\(643\) −2.82024 + 2.82024i −0.111220 + 0.111220i −0.760526 0.649307i \(-0.775059\pi\)
0.649307 + 0.760526i \(0.275059\pi\)
\(644\) 0 0
\(645\) 0.0378618 0.169230i 0.00149081 0.00666341i
\(646\) 0 0
\(647\) 7.54383 4.11924i 0.296578 0.161944i −0.324070 0.946033i \(-0.605051\pi\)
0.620648 + 0.784089i \(0.286869\pi\)
\(648\) 0 0
\(649\) −3.50457 + 2.25225i −0.137566 + 0.0884085i
\(650\) 0 0
\(651\) 0.349350 + 0.0502289i 0.0136921 + 0.00196863i
\(652\) 0 0
\(653\) 1.05815 + 4.86422i 0.0414085 + 0.190352i 0.993205 0.116379i \(-0.0371286\pi\)
−0.951796 + 0.306730i \(0.900765\pi\)
\(654\) 0 0
\(655\) −2.87633 + 0.607939i −0.112388 + 0.0237541i
\(656\) 0 0
\(657\) 3.01527 + 2.25720i 0.117637 + 0.0880618i
\(658\) 0 0
\(659\) −16.1318 + 4.73672i −0.628405 + 0.184516i −0.580401 0.814331i \(-0.697104\pi\)
−0.0480038 + 0.998847i \(0.515286\pi\)
\(660\) 0 0
\(661\) 8.96638 + 7.76941i 0.348752 + 0.302195i 0.811567 0.584260i \(-0.198615\pi\)
−0.462815 + 0.886455i \(0.653161\pi\)
\(662\) 0 0
\(663\) 1.26624 + 0.0905633i 0.0491767 + 0.00351719i
\(664\) 0 0
\(665\) −4.99137 36.2336i −0.193557 1.40508i
\(666\) 0 0
\(667\) 6.45439 9.10803i 0.249915 0.352664i
\(668\) 0 0
\(669\) −0.268574 0.122654i −0.0103837 0.00474207i
\(670\) 0 0
\(671\) −12.1728 14.0482i −0.469927 0.542325i
\(672\) 0 0
\(673\) −11.3673 + 0.813003i −0.438176 + 0.0313390i −0.288685 0.957424i \(-0.593218\pi\)
−0.149491 + 0.988763i \(0.547764\pi\)
\(674\) 0 0
\(675\) 2.26605 1.65494i 0.0872205 0.0636988i
\(676\) 0 0
\(677\) −27.2666 + 36.4239i −1.04794 + 1.39988i −0.135452 + 0.990784i \(0.543248\pi\)
−0.912489 + 0.409101i \(0.865842\pi\)
\(678\) 0 0
\(679\) 50.6607 23.1360i 1.94418 0.887877i
\(680\) 0 0
\(681\) −0.0306428 + 0.0476811i −0.00117424 + 0.00182715i
\(682\) 0 0
\(683\) 24.7237 18.5080i 0.946028 0.708188i −0.0104644 0.999945i \(-0.503331\pi\)
0.956492 + 0.291758i \(0.0942401\pi\)
\(684\) 0 0
\(685\) 18.1641 39.1600i 0.694013 1.49623i
\(686\) 0 0
\(687\) −0.182181 0.333639i −0.00695063 0.0127291i
\(688\) 0 0
\(689\) −22.4028 −0.853480
\(690\) 0 0
\(691\) −2.37208 −0.0902382 −0.0451191 0.998982i \(-0.514367\pi\)
−0.0451191 + 0.998982i \(0.514367\pi\)
\(692\) 0 0
\(693\) 27.6099 + 50.5637i 1.04881 + 1.92076i
\(694\) 0 0
\(695\) −29.6202 + 10.8489i −1.12356 + 0.411522i
\(696\) 0 0
\(697\) 25.6258 19.1833i 0.970647 0.726617i
\(698\) 0 0
\(699\) 0.251151 0.390799i 0.00949941 0.0147814i
\(700\) 0 0
\(701\) −46.3864 + 21.1839i −1.75199 + 0.800106i −0.764070 + 0.645133i \(0.776802\pi\)
−0.987919 + 0.154973i \(0.950471\pi\)
\(702\) 0 0
\(703\) −15.7174 + 20.9960i −0.592792 + 0.791877i
\(704\) 0 0
\(705\) 0.124023 + 1.89096i 0.00467099 + 0.0712176i
\(706\) 0 0
\(707\) −10.2910 + 0.736024i −0.387032 + 0.0276810i
\(708\) 0 0
\(709\) 18.0763 + 20.8612i 0.678871 + 0.783459i 0.985737 0.168294i \(-0.0538257\pi\)
−0.306866 + 0.951753i \(0.599280\pi\)
\(710\) 0 0
\(711\) −5.11101 2.33412i −0.191678 0.0875363i
\(712\) 0 0
\(713\) 1.29622 + 3.21641i 0.0485438 + 0.120456i
\(714\) 0 0
\(715\) 17.8975 2.46547i 0.669328 0.0922034i
\(716\) 0 0
\(717\) 1.46684 + 0.104911i 0.0547802 + 0.00391796i
\(718\) 0 0
\(719\) 4.52564 + 3.92149i 0.168778 + 0.146247i 0.735154 0.677900i \(-0.237110\pi\)
−0.566376 + 0.824147i \(0.691655\pi\)
\(720\) 0 0
\(721\) 38.2743 11.2383i 1.42541 0.418538i
\(722\) 0 0
\(723\) 0.111381 + 0.0833787i 0.00414230 + 0.00310089i
\(724\) 0 0
\(725\) −11.6375 0.137472i −0.432208 0.00510557i
\(726\) 0 0
\(727\) −2.98785 13.7349i −0.110813 0.509401i −0.998775 0.0494831i \(-0.984243\pi\)
0.887962 0.459917i \(-0.152121\pi\)
\(728\) 0 0
\(729\) −26.2573 3.77523i −0.972494 0.139823i
\(730\) 0 0
\(731\) 4.31807 2.77506i 0.159710 0.102639i
\(732\) 0 0
\(733\) −6.81559 + 3.72159i −0.251740 + 0.137460i −0.600165 0.799876i \(-0.704898\pi\)
0.348425 + 0.937337i \(0.386717\pi\)
\(734\) 0 0
\(735\) 2.26112 + 3.56448i 0.0834025 + 0.131478i
\(736\) 0 0
\(737\) −9.69049 + 9.69049i −0.356954 + 0.356954i
\(738\) 0 0
\(739\) −0.354436 + 1.20710i −0.0130381 + 0.0444038i −0.965755 0.259455i \(-0.916457\pi\)
0.952717 + 0.303859i \(0.0982752\pi\)
\(740\) 0 0
\(741\) −0.347504 0.540728i −0.0127659 0.0198641i
\(742\) 0 0
\(743\) −2.85694 3.81643i −0.104811 0.140011i 0.745069 0.666987i \(-0.232417\pi\)
−0.849880 + 0.526976i \(0.823326\pi\)
\(744\) 0 0
\(745\) 15.6812 15.4970i 0.574514 0.567767i
\(746\) 0 0
\(747\) 15.0658 40.3930i 0.551229 1.47790i
\(748\) 0 0
\(749\) 88.5328 12.7291i 3.23492 0.465111i
\(750\) 0 0
\(751\) −5.37467 18.3044i −0.196124 0.667938i −0.997557 0.0698536i \(-0.977747\pi\)
0.801433 0.598085i \(-0.204071\pi\)
\(752\) 0 0
\(753\) −0.142048 1.98609i −0.00517652 0.0723772i
\(754\) 0 0
\(755\) −11.1688 + 6.01328i −0.406475 + 0.218846i
\(756\) 0 0
\(757\) −7.89292 + 2.94391i −0.286873 + 0.106998i −0.488781 0.872406i \(-0.662558\pi\)
0.201908 + 0.979404i \(0.435286\pi\)
\(758\) 0 0
\(759\) 0.860942 1.41978i 0.0312502 0.0515346i
\(760\) 0 0
\(761\) 2.69497 5.90117i 0.0976927 0.213917i −0.854475 0.519492i \(-0.826121\pi\)
0.952168 + 0.305575i \(0.0988486\pi\)
\(762\) 0 0
\(763\) −6.12635 + 85.6576i −0.221789 + 3.10101i
\(764\) 0 0
\(765\) 41.0098 + 6.14374i 1.48271 + 0.222127i
\(766\) 0 0
\(767\) 1.18077 2.16243i 0.0426353 0.0780807i
\(768\) 0 0
\(769\) 5.20768 + 36.2202i 0.187794 + 1.30613i 0.837704 + 0.546124i \(0.183897\pi\)
−0.649910 + 0.760011i \(0.725194\pi\)
\(770\) 0 0
\(771\) −0.592213 1.29677i −0.0213280 0.0467019i
\(772\) 0 0
\(773\) 37.7653 8.21535i 1.35833 0.295486i 0.526336 0.850277i \(-0.323566\pi\)
0.831989 + 0.554791i \(0.187202\pi\)
\(774\) 0 0
\(775\) 1.99043 3.01818i 0.0714983 0.108416i
\(776\) 0 0
\(777\) 0.866882 3.98499i 0.0310992 0.142961i
\(778\) 0 0
\(779\) −15.5512 4.56624i −0.557179 0.163602i
\(780\) 0 0
\(781\) 46.9704i 1.68073i
\(782\) 0 0
\(783\) −0.923698 0.923698i −0.0330103 0.0330103i
\(784\) 0 0
\(785\) −30.1357 + 8.65565i −1.07559 + 0.308933i
\(786\) 0 0
\(787\) −39.8085 8.65982i −1.41902 0.308689i −0.563354 0.826216i \(-0.690489\pi\)
−0.855667 + 0.517527i \(0.826853\pi\)
\(788\) 0 0
\(789\) 0.160181 1.11409i 0.00570261 0.0396625i
\(790\) 0 0
\(791\) 15.5923 + 10.0205i 0.554398 + 0.356290i
\(792\) 0 0
\(793\) 10.3005 + 3.84188i 0.365781 + 0.136429i
\(794\) 0 0
\(795\) 2.14019 + 0.165780i 0.0759048 + 0.00587961i
\(796\) 0 0
\(797\) −1.66276 0.907934i −0.0588979 0.0321607i 0.449530 0.893265i \(-0.351591\pi\)
−0.508428 + 0.861104i \(0.669773\pi\)
\(798\) 0 0
\(799\) −36.7319 + 42.3908i −1.29948 + 1.49968i
\(800\) 0 0
\(801\) −28.2287 + 24.4603i −0.997413 + 0.864263i
\(802\) 0 0
\(803\) −1.62645 4.36069i −0.0573962 0.153885i
\(804\) 0 0
\(805\) −25.7851 + 49.5754i −0.908806 + 1.74730i
\(806\) 0 0
\(807\) 0.239208 + 0.641341i 0.00842051 + 0.0225763i
\(808\) 0 0
\(809\) −14.3327 + 12.4194i −0.503912 + 0.436643i −0.869353 0.494192i \(-0.835464\pi\)
0.365440 + 0.930835i \(0.380918\pi\)
\(810\) 0 0
\(811\) −25.9379 + 29.9339i −0.910802 + 1.05112i 0.0876859 + 0.996148i \(0.472053\pi\)
−0.998488 + 0.0549733i \(0.982493\pi\)
\(812\) 0 0
\(813\) 0.542266 + 0.296100i 0.0190181 + 0.0103847i
\(814\) 0 0
\(815\) 29.9171 + 34.9410i 1.04795 + 1.22393i
\(816\) 0 0
\(817\) −2.43504 0.908224i −0.0851914 0.0317747i
\(818\) 0 0
\(819\) −28.6634 18.4209i −1.00158 0.643677i
\(820\) 0 0
\(821\) 1.55883 10.8419i 0.0544035 0.378385i −0.944371 0.328883i \(-0.893328\pi\)
0.998774 0.0495014i \(-0.0157632\pi\)
\(822\) 0 0
\(823\) 4.66453 + 1.01471i 0.162595 + 0.0353704i 0.293126 0.956074i \(-0.405304\pi\)
−0.130531 + 0.991444i \(0.541668\pi\)
\(824\) 0 0
\(825\) −1.72803 + 0.103091i −0.0601623 + 0.00358918i
\(826\) 0 0
\(827\) −30.5587 30.5587i −1.06263 1.06263i −0.997903 0.0647275i \(-0.979382\pi\)
−0.0647275 0.997903i \(-0.520618\pi\)
\(828\) 0 0
\(829\) 9.00927i 0.312905i −0.987686 0.156452i \(-0.949994\pi\)
0.987686 0.156452i \(-0.0500058\pi\)
\(830\) 0 0
\(831\) 1.17752 + 0.345750i 0.0408476 + 0.0119939i
\(832\) 0 0
\(833\) −26.5585 + 122.088i −0.920198 + 4.23008i
\(834\) 0 0
\(835\) 41.6534 18.7259i 1.44147 0.648038i
\(836\) 0 0
\(837\) 0.396525 0.0862588i 0.0137059 0.00298154i
\(838\) 0 0
\(839\) 5.77968 + 12.6557i 0.199537 + 0.436924i 0.982777 0.184794i \(-0.0591619\pi\)
−0.783240 + 0.621719i \(0.786435\pi\)
\(840\) 0 0
\(841\) −3.35606 23.3419i −0.115726 0.804894i
\(842\) 0 0
\(843\) 0.265835 0.486840i 0.00915583 0.0167676i
\(844\) 0 0
\(845\) 14.7819 10.9300i 0.508513 0.376002i
\(846\) 0 0
\(847\) 0.989296 13.8322i 0.0339926 0.475279i
\(848\) 0 0
\(849\) 0.998320 2.18602i 0.0342623 0.0750239i
\(850\) 0 0
\(851\) 38.1389 12.2881i 1.30739 0.421231i
\(852\) 0 0
\(853\) 38.9357 14.5223i 1.33313 0.497232i 0.420974 0.907073i \(-0.361688\pi\)
0.912157 + 0.409840i \(0.134416\pi\)
\(854\) 0 0
\(855\) −9.95325 18.4868i −0.340394 0.632234i
\(856\) 0 0
\(857\) 3.58062 + 50.0636i 0.122312 + 1.71014i 0.574738 + 0.818337i \(0.305104\pi\)
−0.452427 + 0.891801i \(0.649442\pi\)
\(858\) 0 0
\(859\) 6.21934 + 21.1811i 0.212201 + 0.722690i 0.994952 + 0.100355i \(0.0319978\pi\)
−0.782751 + 0.622335i \(0.786184\pi\)
\(860\) 0 0
\(861\) 2.49456 0.358664i 0.0850144 0.0122232i
\(862\) 0 0
\(863\) −1.79314 + 4.80760i −0.0610393 + 0.163653i −0.963889 0.266303i \(-0.914198\pi\)
0.902850 + 0.429955i \(0.141471\pi\)
\(864\) 0 0
\(865\) 9.63326 + 0.0568957i 0.327541 + 0.00193451i
\(866\) 0 0
\(867\) −1.20335 1.60749i −0.0408680 0.0545933i
\(868\) 0 0
\(869\) 3.75359 + 5.84069i 0.127332 + 0.198132i
\(870\) 0 0
\(871\) 2.28347 7.77679i 0.0773725 0.263507i
\(872\) 0 0
\(873\) 22.6064 22.6064i 0.765110 0.765110i
\(874\) 0 0
\(875\) 57.8039 7.26814i 1.95413 0.245708i
\(876\) 0 0
\(877\) −33.0839 + 18.0652i −1.11716 + 0.610017i −0.928243 0.371976i \(-0.878680\pi\)
−0.188920 + 0.981992i \(0.560499\pi\)
\(878\) 0 0
\(879\) −1.13147 + 0.727153i −0.0381636 + 0.0245263i
\(880\) 0 0
\(881\) −3.51891 0.505942i −0.118555 0.0170456i 0.0827819 0.996568i \(-0.473620\pi\)
−0.201337 + 0.979522i \(0.564529\pi\)
\(882\) 0 0
\(883\) −4.17274 19.1818i −0.140424 0.645519i −0.992515 0.122125i \(-0.961029\pi\)
0.852091 0.523394i \(-0.175334\pi\)
\(884\) 0 0
\(885\) −0.128804 + 0.197844i −0.00432970 + 0.00665045i
\(886\) 0 0
\(887\) 13.3501 + 9.99376i 0.448252 + 0.335558i 0.799438 0.600748i \(-0.205131\pi\)
−0.351186 + 0.936306i \(0.614221\pi\)
\(888\) 0 0
\(889\) −15.4903 + 4.54837i −0.519529 + 0.152547i
\(890\) 0 0
\(891\) 24.9197 + 21.5930i 0.834840 + 0.723393i
\(892\) 0 0
\(893\) 28.3279 + 2.02605i 0.947956 + 0.0677991i
\(894\) 0 0
\(895\) −21.8316 + 28.8074i −0.729751 + 0.962926i
\(896\) 0 0
\(897\) −0.0444777 + 0.981001i −0.00148507 + 0.0327547i
\(898\) 0 0
\(899\) −1.53100 0.699184i −0.0510617 0.0233191i
\(900\) 0 0
\(901\) 41.6084 + 48.0187i 1.38618 + 1.59973i
\(902\) 0 0
\(903\) 0.403087 0.0288293i 0.0134139 0.000959380i
\(904\) 0 0
\(905\) −22.4252 + 1.47081i −0.745439 + 0.0488915i
\(906\) 0 0
\(907\) −15.1354 + 20.2185i −0.502561 + 0.671343i −0.978048 0.208380i \(-0.933181\pi\)
0.475487 + 0.879723i \(0.342272\pi\)
\(908\) 0 0
\(909\) −5.38729 + 2.46029i −0.178685 + 0.0816028i
\(910\) 0 0
\(911\) −3.60786 + 5.61394i −0.119534 + 0.185998i −0.895864 0.444328i \(-0.853442\pi\)
0.776330 + 0.630326i \(0.217079\pi\)
\(912\) 0 0
\(913\) −42.6452 + 31.9238i −1.41135 + 1.05652i
\(914\) 0 0
\(915\) −0.955598 0.443246i −0.0315911 0.0146533i
\(916\) 0 0
\(917\) −3.28333 6.01297i −0.108425 0.198566i
\(918\) 0 0
\(919\) 9.30621 0.306984 0.153492 0.988150i \(-0.450948\pi\)
0.153492 + 0.988150i \(0.450948\pi\)
\(920\) 0 0
\(921\) −0.964722 −0.0317887
\(922\) 0 0
\(923\) −13.3132 24.3814i −0.438210 0.802523i
\(924\) 0 0
\(925\) −33.1450 25.4284i −1.08980 0.836081i
\(926\) 0 0
\(927\) 18.3311 13.7225i 0.602073 0.450707i
\(928\) 0 0
\(929\) 13.9736 21.7433i 0.458458 0.713374i −0.532665 0.846326i \(-0.678809\pi\)
0.991122 + 0.132952i \(0.0424457\pi\)
\(930\) 0 0
\(931\) 57.5446 26.2798i 1.88595 0.861284i
\(932\) 0 0
\(933\) −0.396332 + 0.529437i −0.0129753 + 0.0173330i
\(934\) 0 0
\(935\) −38.5252 33.7827i −1.25991 1.10481i
\(936\) 0 0
\(937\) −3.91723 + 0.280166i −0.127970 + 0.00915262i −0.135177 0.990821i \(-0.543160\pi\)
0.00720707 + 0.999974i \(0.497706\pi\)
\(938\) 0 0
\(939\) −1.74791 2.01720i −0.0570409 0.0658287i
\(940\) 0 0
\(941\) 10.6775 + 4.87624i 0.348076 + 0.158961i 0.581778 0.813347i \(-0.302357\pi\)
−0.233703 + 0.972308i \(0.575084\pi\)
\(942\) 0 0
\(943\) 15.3514 + 19.4291i 0.499910 + 0.632698i
\(944\) 0 0
\(945\) 5.21157 + 3.94958i 0.169532 + 0.128480i
\(946\) 0 0
\(947\) 6.98129 + 0.499312i 0.226861 + 0.0162255i 0.184307 0.982869i \(-0.440996\pi\)
0.0425543 + 0.999094i \(0.486450\pi\)
\(948\) 0 0
\(949\) 2.08025 + 1.80254i 0.0675276 + 0.0585130i
\(950\) 0 0
\(951\) −2.06697 + 0.606917i −0.0670261 + 0.0196806i
\(952\) 0 0
\(953\) 8.51151 + 6.37164i 0.275715 + 0.206398i 0.728183 0.685383i \(-0.240365\pi\)
−0.452468 + 0.891781i \(0.649456\pi\)
\(954\) 0 0
\(955\) −6.33054 29.9516i −0.204852 0.969212i
\(956\) 0 0
\(957\) 0.171304 + 0.787472i 0.00553747 + 0.0254553i
\(958\) 0 0
\(959\) 99.5722 + 14.3163i 3.21536 + 0.462298i
\(960\) 0 0
\(961\) −25.6390 + 16.4772i −0.827065 + 0.531522i
\(962\) 0 0
\(963\) 45.0634 24.6065i 1.45215 0.792932i
\(964\) 0 0
\(965\) −46.3405 + 29.3960i −1.49175 + 0.946290i
\(966\) 0 0
\(967\) −28.4658 + 28.4658i −0.915397 + 0.915397i −0.996690 0.0812932i \(-0.974095\pi\)
0.0812932 + 0.996690i \(0.474095\pi\)
\(968\) 0 0
\(969\) −0.513591 + 1.74913i −0.0164989 + 0.0561902i
\(970\) 0 0
\(971\) 31.8548 + 49.5670i 1.02227 + 1.59068i 0.785253 + 0.619175i \(0.212533\pi\)
0.237015 + 0.971506i \(0.423831\pi\)
\(972\) 0 0
\(973\) −44.0529 58.8478i −1.41227 1.88657i
\(974\) 0 0
\(975\) 0.867766 0.543304i 0.0277907 0.0173996i
\(976\) 0 0
\(977\) 17.4786 46.8619i 0.559190 1.49925i −0.282491 0.959270i \(-0.591161\pi\)
0.841681 0.539976i \(-0.181567\pi\)
\(978\) 0 0
\(979\) 45.6843 6.56840i 1.46008 0.209927i
\(980\) 0 0
\(981\) 13.8884 + 47.2995i 0.443422 + 1.51016i
\(982\) 0 0
\(983\) 1.77546 + 24.8242i 0.0566284 + 0.791769i 0.943839 + 0.330405i \(0.107185\pi\)
−0.887211 + 0.461364i \(0.847360\pi\)
\(984\) 0 0
\(985\) 6.79681 22.6520i 0.216565 0.721754i
\(986\) 0 0
\(987\) −4.13765 + 1.54326i −0.131703 + 0.0491226i
\(988\) 0 0
\(989\) 2.23307 + 3.28312i 0.0710075 + 0.104397i
\(990\) 0 0
\(991\) 19.2444 42.1394i 0.611320 1.33860i −0.310348 0.950623i \(-0.600446\pi\)
0.921668 0.387980i \(-0.126827\pi\)
\(992\) 0 0
\(993\) 0.130496 1.82457i 0.00414117 0.0579011i
\(994\) 0 0
\(995\) −6.20116 8.38657i −0.196590 0.265872i
\(996\) 0 0
\(997\) 12.0199 22.0128i 0.380673 0.697151i −0.615154 0.788407i \(-0.710906\pi\)
0.995827 + 0.0912559i \(0.0290881\pi\)
\(998\) 0 0
\(999\) −0.667306 4.64121i −0.0211126 0.146842i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.753.17 yes 720
5.2 odd 4 inner 920.2.bv.a.17.17 720
23.19 odd 22 inner 920.2.bv.a.433.17 yes 720
115.42 even 44 inner 920.2.bv.a.617.17 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.17 720 5.2 odd 4 inner
920.2.bv.a.433.17 yes 720 23.19 odd 22 inner
920.2.bv.a.617.17 yes 720 115.42 even 44 inner
920.2.bv.a.753.17 yes 720 1.1 even 1 trivial