Properties

Label 920.2.bv.a.753.12
Level $920$
Weight $2$
Character 920.753
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 753.12
Character \(\chi\) \(=\) 920.753
Dual form 920.2.bv.a.617.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.663302 - 1.21475i) q^{3} +(-2.23606 + 0.00503036i) q^{5} +(-0.273851 + 0.205002i) q^{7} +(0.586283 - 0.912274i) q^{9} +(0.437876 - 0.199971i) q^{11} +(1.09003 - 1.45611i) q^{13} +(1.48929 + 2.71291i) q^{15} +(-5.99978 + 0.429113i) q^{17} +(-2.24436 - 2.59013i) q^{19} +(0.430671 + 0.196681i) q^{21} +(-0.477794 + 4.77197i) q^{23} +(4.99995 - 0.0224964i) q^{25} +(-5.63862 - 0.403282i) q^{27} +(7.06351 + 6.12056i) q^{29} +(-8.81071 + 2.58706i) q^{31} +(-0.533358 - 0.399267i) q^{33} +(0.611316 - 0.459775i) q^{35} +(-0.982790 - 4.51781i) q^{37} +(-2.49182 - 0.358270i) q^{39} +(-5.19934 + 3.34142i) q^{41} +(-4.89997 + 2.67559i) q^{43} +(-1.30638 + 2.04285i) q^{45} +(-6.66836 + 6.66836i) q^{47} +(-1.93916 + 6.60417i) q^{49} +(4.50093 + 7.00358i) q^{51} +(8.08702 + 10.8030i) q^{53} +(-0.978111 + 0.449350i) q^{55} +(-1.65766 + 4.44437i) q^{57} +(5.21327 - 0.749555i) q^{59} +(-4.23334 - 14.4174i) q^{61} +(0.0264641 + 0.370016i) q^{63} +(-2.43005 + 3.26143i) q^{65} +(-6.31343 + 2.35479i) q^{67} +(6.11366 - 2.58486i) q^{69} +(5.71261 - 12.5089i) q^{71} +(-0.232710 + 3.25371i) q^{73} +(-3.34380 - 6.05875i) q^{75} +(-0.0789181 + 0.144528i) q^{77} +(1.00791 + 7.01019i) q^{79} +(1.89876 + 4.15771i) q^{81} +(-7.55568 + 1.64364i) q^{83} +(13.4137 - 0.989704i) q^{85} +(2.74970 - 12.6402i) q^{87} +(-0.505952 - 0.148561i) q^{89} +0.622215i q^{91} +(8.98678 + 8.98678i) q^{93} +(5.03156 + 5.78041i) q^{95} +(2.54782 + 0.554245i) q^{97} +(0.0742905 - 0.516702i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.663302 1.21475i −0.382957 0.701334i 0.613104 0.790002i \(-0.289921\pi\)
−0.996061 + 0.0886682i \(0.971739\pi\)
\(4\) 0 0
\(5\) −2.23606 + 0.00503036i −0.999997 + 0.00224964i
\(6\) 0 0
\(7\) −0.273851 + 0.205002i −0.103506 + 0.0774835i −0.649777 0.760125i \(-0.725138\pi\)
0.546271 + 0.837608i \(0.316047\pi\)
\(8\) 0 0
\(9\) 0.586283 0.912274i 0.195428 0.304091i
\(10\) 0 0
\(11\) 0.437876 0.199971i 0.132024 0.0602935i −0.348307 0.937380i \(-0.613243\pi\)
0.480332 + 0.877087i \(0.340516\pi\)
\(12\) 0 0
\(13\) 1.09003 1.45611i 0.302320 0.403852i −0.623496 0.781826i \(-0.714288\pi\)
0.925816 + 0.377974i \(0.123379\pi\)
\(14\) 0 0
\(15\) 1.48929 + 2.71291i 0.384534 + 0.700471i
\(16\) 0 0
\(17\) −5.99978 + 0.429113i −1.45516 + 0.104075i −0.776379 0.630266i \(-0.782946\pi\)
−0.678781 + 0.734341i \(0.737491\pi\)
\(18\) 0 0
\(19\) −2.24436 2.59013i −0.514892 0.594217i 0.437452 0.899242i \(-0.355881\pi\)
−0.952345 + 0.305024i \(0.901335\pi\)
\(20\) 0 0
\(21\) 0.430671 + 0.196681i 0.0939802 + 0.0429193i
\(22\) 0 0
\(23\) −0.477794 + 4.77197i −0.0996270 + 0.995025i
\(24\) 0 0
\(25\) 4.99995 0.0224964i 0.999990 0.00449928i
\(26\) 0 0
\(27\) −5.63862 0.403282i −1.08515 0.0776116i
\(28\) 0 0
\(29\) 7.06351 + 6.12056i 1.31166 + 1.13656i 0.981253 + 0.192722i \(0.0617315\pi\)
0.330407 + 0.943838i \(0.392814\pi\)
\(30\) 0 0
\(31\) −8.81071 + 2.58706i −1.58245 + 0.464649i −0.950594 0.310436i \(-0.899525\pi\)
−0.631856 + 0.775086i \(0.717707\pi\)
\(32\) 0 0
\(33\) −0.533358 0.399267i −0.0928457 0.0695034i
\(34\) 0 0
\(35\) 0.611316 0.459775i 0.103331 0.0777162i
\(36\) 0 0
\(37\) −0.982790 4.51781i −0.161570 0.742724i −0.984614 0.174746i \(-0.944090\pi\)
0.823044 0.567978i \(-0.192274\pi\)
\(38\) 0 0
\(39\) −2.49182 0.358270i −0.399011 0.0573691i
\(40\) 0 0
\(41\) −5.19934 + 3.34142i −0.812001 + 0.521841i −0.879512 0.475877i \(-0.842131\pi\)
0.0675106 + 0.997719i \(0.478494\pi\)
\(42\) 0 0
\(43\) −4.89997 + 2.67559i −0.747239 + 0.408023i −0.807277 0.590173i \(-0.799060\pi\)
0.0600382 + 0.998196i \(0.480878\pi\)
\(44\) 0 0
\(45\) −1.30638 + 2.04285i −0.194743 + 0.304530i
\(46\) 0 0
\(47\) −6.66836 + 6.66836i −0.972680 + 0.972680i −0.999637 0.0269569i \(-0.991418\pi\)
0.0269569 + 0.999637i \(0.491418\pi\)
\(48\) 0 0
\(49\) −1.93916 + 6.60417i −0.277023 + 0.943453i
\(50\) 0 0
\(51\) 4.50093 + 7.00358i 0.630256 + 0.980697i
\(52\) 0 0
\(53\) 8.08702 + 10.8030i 1.11084 + 1.48390i 0.856039 + 0.516911i \(0.172918\pi\)
0.254798 + 0.966994i \(0.417991\pi\)
\(54\) 0 0
\(55\) −0.978111 + 0.449350i −0.131888 + 0.0605904i
\(56\) 0 0
\(57\) −1.65766 + 4.44437i −0.219563 + 0.588671i
\(58\) 0 0
\(59\) 5.21327 0.749555i 0.678710 0.0975838i 0.205666 0.978622i \(-0.434064\pi\)
0.473045 + 0.881039i \(0.343155\pi\)
\(60\) 0 0
\(61\) −4.23334 14.4174i −0.542024 1.84596i −0.533177 0.846004i \(-0.679002\pi\)
−0.00884702 0.999961i \(-0.502816\pi\)
\(62\) 0 0
\(63\) 0.0264641 + 0.370016i 0.00333416 + 0.0466177i
\(64\) 0 0
\(65\) −2.43005 + 3.26143i −0.301411 + 0.404531i
\(66\) 0 0
\(67\) −6.31343 + 2.35479i −0.771308 + 0.287683i −0.704143 0.710059i \(-0.748668\pi\)
−0.0671659 + 0.997742i \(0.521396\pi\)
\(68\) 0 0
\(69\) 6.11366 2.58486i 0.735998 0.311180i
\(70\) 0 0
\(71\) 5.71261 12.5089i 0.677962 1.48453i −0.186827 0.982393i \(-0.559820\pi\)
0.864789 0.502136i \(-0.167452\pi\)
\(72\) 0 0
\(73\) −0.232710 + 3.25371i −0.0272367 + 0.380818i 0.965491 + 0.260436i \(0.0838664\pi\)
−0.992728 + 0.120382i \(0.961588\pi\)
\(74\) 0 0
\(75\) −3.34380 6.05875i −0.386109 0.699604i
\(76\) 0 0
\(77\) −0.0789181 + 0.144528i −0.00899355 + 0.0164705i
\(78\) 0 0
\(79\) 1.00791 + 7.01019i 0.113399 + 0.788708i 0.964571 + 0.263822i \(0.0849831\pi\)
−0.851172 + 0.524886i \(0.824108\pi\)
\(80\) 0 0
\(81\) 1.89876 + 4.15771i 0.210974 + 0.461968i
\(82\) 0 0
\(83\) −7.55568 + 1.64364i −0.829344 + 0.180413i −0.607147 0.794589i \(-0.707686\pi\)
−0.222196 + 0.975002i \(0.571323\pi\)
\(84\) 0 0
\(85\) 13.4137 0.989704i 1.45492 0.107348i
\(86\) 0 0
\(87\) 2.74970 12.6402i 0.294798 1.35517i
\(88\) 0 0
\(89\) −0.505952 0.148561i −0.0536308 0.0157474i 0.254807 0.966992i \(-0.417988\pi\)
−0.308438 + 0.951244i \(0.599806\pi\)
\(90\) 0 0
\(91\) 0.622215i 0.0652259i
\(92\) 0 0
\(93\) 8.98678 + 8.98678i 0.931885 + 0.931885i
\(94\) 0 0
\(95\) 5.03156 + 5.78041i 0.516228 + 0.593057i
\(96\) 0 0
\(97\) 2.54782 + 0.554245i 0.258692 + 0.0562750i 0.340041 0.940411i \(-0.389559\pi\)
−0.0813487 + 0.996686i \(0.525923\pi\)
\(98\) 0 0
\(99\) 0.0742905 0.516702i 0.00746648 0.0519305i
\(100\) 0 0
\(101\) 13.8433 + 8.89658i 1.37746 + 0.885243i 0.999182 0.0404471i \(-0.0128782\pi\)
0.378283 + 0.925690i \(0.376515\pi\)
\(102\) 0 0
\(103\) −11.9101 4.44225i −1.17354 0.437708i −0.314321 0.949317i \(-0.601777\pi\)
−0.859218 + 0.511609i \(0.829050\pi\)
\(104\) 0 0
\(105\) −0.963998 0.437625i −0.0940765 0.0427078i
\(106\) 0 0
\(107\) −11.1321 6.07858i −1.07618 0.587638i −0.159474 0.987202i \(-0.550980\pi\)
−0.916705 + 0.399564i \(0.869162\pi\)
\(108\) 0 0
\(109\) 4.75520 5.48779i 0.455465 0.525635i −0.480847 0.876805i \(-0.659671\pi\)
0.936312 + 0.351170i \(0.114216\pi\)
\(110\) 0 0
\(111\) −4.83611 + 4.19051i −0.459023 + 0.397746i
\(112\) 0 0
\(113\) −3.92314 10.5184i −0.369058 0.989483i −0.980208 0.197969i \(-0.936566\pi\)
0.611150 0.791515i \(-0.290707\pi\)
\(114\) 0 0
\(115\) 1.04437 10.6728i 0.0973882 0.995246i
\(116\) 0 0
\(117\) −0.689305 1.84810i −0.0637262 0.170857i
\(118\) 0 0
\(119\) 1.55508 1.34748i 0.142554 0.123523i
\(120\) 0 0
\(121\) −7.05172 + 8.13812i −0.641066 + 0.739829i
\(122\) 0 0
\(123\) 7.50771 + 4.09952i 0.676947 + 0.369641i
\(124\) 0 0
\(125\) −11.1801 + 0.0754549i −0.999977 + 0.00674889i
\(126\) 0 0
\(127\) −10.1810 3.79731i −0.903417 0.336957i −0.145538 0.989353i \(-0.546491\pi\)
−0.757879 + 0.652396i \(0.773764\pi\)
\(128\) 0 0
\(129\) 6.50032 + 4.17750i 0.572321 + 0.367808i
\(130\) 0 0
\(131\) −0.730718 + 5.08226i −0.0638432 + 0.444039i 0.932679 + 0.360708i \(0.117465\pi\)
−0.996522 + 0.0833309i \(0.973444\pi\)
\(132\) 0 0
\(133\) 1.14560 + 0.249211i 0.0993364 + 0.0216093i
\(134\) 0 0
\(135\) 12.6103 + 0.873399i 1.08532 + 0.0751702i
\(136\) 0 0
\(137\) −5.18289 5.18289i −0.442804 0.442804i 0.450149 0.892953i \(-0.351371\pi\)
−0.892953 + 0.450149i \(0.851371\pi\)
\(138\) 0 0
\(139\) 20.3063i 1.72236i −0.508302 0.861179i \(-0.669727\pi\)
0.508302 0.861179i \(-0.330273\pi\)
\(140\) 0 0
\(141\) 12.5235 + 3.67723i 1.05467 + 0.309679i
\(142\) 0 0
\(143\) 0.186118 0.855569i 0.0155639 0.0715463i
\(144\) 0 0
\(145\) −15.8252 13.6504i −1.31421 1.13361i
\(146\) 0 0
\(147\) 9.30864 2.02497i 0.767764 0.167017i
\(148\) 0 0
\(149\) −7.20474 15.7762i −0.590235 1.29243i −0.935300 0.353856i \(-0.884870\pi\)
0.345065 0.938579i \(-0.387857\pi\)
\(150\) 0 0
\(151\) 1.43401 + 9.97378i 0.116698 + 0.811655i 0.961151 + 0.276024i \(0.0890170\pi\)
−0.844452 + 0.535631i \(0.820074\pi\)
\(152\) 0 0
\(153\) −3.12610 + 5.72502i −0.252730 + 0.462841i
\(154\) 0 0
\(155\) 19.6883 5.82914i 1.58140 0.468208i
\(156\) 0 0
\(157\) 0.983567 13.7521i 0.0784972 1.09753i −0.793677 0.608339i \(-0.791836\pi\)
0.872174 0.489195i \(-0.162709\pi\)
\(158\) 0 0
\(159\) 7.75876 16.9893i 0.615310 1.34734i
\(160\) 0 0
\(161\) −0.847420 1.40476i −0.0667861 0.110710i
\(162\) 0 0
\(163\) 1.62553 0.606290i 0.127321 0.0474883i −0.284996 0.958529i \(-0.591992\pi\)
0.412317 + 0.911040i \(0.364720\pi\)
\(164\) 0 0
\(165\) 1.19463 + 0.890102i 0.0930018 + 0.0692944i
\(166\) 0 0
\(167\) 0.679565 + 9.50157i 0.0525863 + 0.735253i 0.953526 + 0.301310i \(0.0974238\pi\)
−0.900940 + 0.433944i \(0.857122\pi\)
\(168\) 0 0
\(169\) 2.73043 + 9.29900i 0.210033 + 0.715308i
\(170\) 0 0
\(171\) −3.67874 + 0.528923i −0.281320 + 0.0404478i
\(172\) 0 0
\(173\) −0.0290287 + 0.0778291i −0.00220701 + 0.00591723i −0.938049 0.346504i \(-0.887369\pi\)
0.935842 + 0.352421i \(0.114641\pi\)
\(174\) 0 0
\(175\) −1.36463 + 1.03116i −0.103156 + 0.0779485i
\(176\) 0 0
\(177\) −4.36849 5.83562i −0.328356 0.438632i
\(178\) 0 0
\(179\) −4.07713 6.34413i −0.304739 0.474183i 0.654783 0.755817i \(-0.272760\pi\)
−0.959522 + 0.281634i \(0.909124\pi\)
\(180\) 0 0
\(181\) 0.155884 0.530891i 0.0115867 0.0394608i −0.953497 0.301403i \(-0.902545\pi\)
0.965083 + 0.261943i \(0.0843631\pi\)
\(182\) 0 0
\(183\) −14.7056 + 14.7056i −1.08707 + 1.08707i
\(184\) 0 0
\(185\) 2.22031 + 10.0972i 0.163240 + 0.742359i
\(186\) 0 0
\(187\) −2.54135 + 1.38768i −0.185842 + 0.101477i
\(188\) 0 0
\(189\) 1.62681 1.04549i 0.118333 0.0760482i
\(190\) 0 0
\(191\) −6.89106 0.990785i −0.498619 0.0716907i −0.111583 0.993755i \(-0.535592\pi\)
−0.387036 + 0.922064i \(0.626501\pi\)
\(192\) 0 0
\(193\) −2.97621 13.6814i −0.214232 0.984808i −0.951127 0.308801i \(-0.900072\pi\)
0.736895 0.676007i \(-0.236291\pi\)
\(194\) 0 0
\(195\) 5.57367 + 0.788579i 0.399139 + 0.0564713i
\(196\) 0 0
\(197\) 7.05460 + 5.28101i 0.502619 + 0.376256i 0.820293 0.571944i \(-0.193811\pi\)
−0.317673 + 0.948200i \(0.602901\pi\)
\(198\) 0 0
\(199\) 16.6566 4.89080i 1.18075 0.346700i 0.368288 0.929712i \(-0.379944\pi\)
0.812464 + 0.583012i \(0.198126\pi\)
\(200\) 0 0
\(201\) 7.04818 + 6.10728i 0.497140 + 0.430775i
\(202\) 0 0
\(203\) −3.18908 0.228087i −0.223829 0.0160086i
\(204\) 0 0
\(205\) 11.6092 7.49777i 0.810825 0.523667i
\(206\) 0 0
\(207\) 4.07322 + 3.23360i 0.283109 + 0.224751i
\(208\) 0 0
\(209\) −1.50070 0.685348i −0.103806 0.0474065i
\(210\) 0 0
\(211\) −4.14939 4.78865i −0.285656 0.329664i 0.594727 0.803927i \(-0.297260\pi\)
−0.880383 + 0.474263i \(0.842715\pi\)
\(212\) 0 0
\(213\) −18.9843 + 1.35778i −1.30078 + 0.0930337i
\(214\) 0 0
\(215\) 10.9432 6.00743i 0.746319 0.409703i
\(216\) 0 0
\(217\) 1.88247 2.51468i 0.127790 0.170708i
\(218\) 0 0
\(219\) 4.10679 1.87551i 0.277511 0.126735i
\(220\) 0 0
\(221\) −5.91510 + 9.20408i −0.397893 + 0.619134i
\(222\) 0 0
\(223\) 11.2501 8.42173i 0.753364 0.563961i −0.152110 0.988364i \(-0.548607\pi\)
0.905474 + 0.424403i \(0.139516\pi\)
\(224\) 0 0
\(225\) 2.91086 4.57451i 0.194057 0.304967i
\(226\) 0 0
\(227\) −3.94905 7.23215i −0.262108 0.480015i 0.713172 0.700989i \(-0.247258\pi\)
−0.975280 + 0.220975i \(0.929076\pi\)
\(228\) 0 0
\(229\) −12.9303 −0.854461 −0.427230 0.904143i \(-0.640511\pi\)
−0.427230 + 0.904143i \(0.640511\pi\)
\(230\) 0 0
\(231\) 0.227911 0.0149954
\(232\) 0 0
\(233\) 0.573767 + 1.05078i 0.0375887 + 0.0688386i 0.895798 0.444461i \(-0.146605\pi\)
−0.858209 + 0.513300i \(0.828423\pi\)
\(234\) 0 0
\(235\) 14.8773 14.9444i 0.970489 0.974865i
\(236\) 0 0
\(237\) 7.84706 5.87423i 0.509721 0.381572i
\(238\) 0 0
\(239\) −6.67177 + 10.3815i −0.431561 + 0.671522i −0.987125 0.159952i \(-0.948866\pi\)
0.555564 + 0.831474i \(0.312503\pi\)
\(240\) 0 0
\(241\) 11.5578 5.27826i 0.744502 0.340003i −0.00678624 0.999977i \(-0.502160\pi\)
0.751288 + 0.659974i \(0.229433\pi\)
\(242\) 0 0
\(243\) −6.37207 + 8.51209i −0.408769 + 0.546051i
\(244\) 0 0
\(245\) 4.30286 14.7771i 0.274900 0.944074i
\(246\) 0 0
\(247\) −6.21794 + 0.444716i −0.395638 + 0.0282966i
\(248\) 0 0
\(249\) 7.00830 + 8.08801i 0.444133 + 0.512557i
\(250\) 0 0
\(251\) 22.1458 + 10.1136i 1.39783 + 0.638366i 0.964793 0.263011i \(-0.0847155\pi\)
0.433035 + 0.901377i \(0.357443\pi\)
\(252\) 0 0
\(253\) 0.745042 + 2.18507i 0.0468404 + 0.137374i
\(254\) 0 0
\(255\) −10.0996 15.6378i −0.632461 0.979277i
\(256\) 0 0
\(257\) 0.735075 + 0.0525736i 0.0458527 + 0.00327945i 0.0942467 0.995549i \(-0.469956\pi\)
−0.0483940 + 0.998828i \(0.515410\pi\)
\(258\) 0 0
\(259\) 1.19530 + 1.03573i 0.0742723 + 0.0643573i
\(260\) 0 0
\(261\) 9.72484 2.85547i 0.601953 0.176749i
\(262\) 0 0
\(263\) 14.6624 + 10.9762i 0.904125 + 0.676820i 0.946646 0.322276i \(-0.104448\pi\)
−0.0425205 + 0.999096i \(0.513539\pi\)
\(264\) 0 0
\(265\) −18.1374 24.1155i −1.11417 1.48140i
\(266\) 0 0
\(267\) 0.155135 + 0.713144i 0.00949410 + 0.0436437i
\(268\) 0 0
\(269\) −16.0708 2.31063i −0.979855 0.140882i −0.366268 0.930509i \(-0.619365\pi\)
−0.613586 + 0.789628i \(0.710274\pi\)
\(270\) 0 0
\(271\) 2.55320 1.64084i 0.155096 0.0996740i −0.460791 0.887509i \(-0.652434\pi\)
0.615887 + 0.787835i \(0.288798\pi\)
\(272\) 0 0
\(273\) 0.755834 0.412717i 0.0457451 0.0249787i
\(274\) 0 0
\(275\) 2.18486 1.00970i 0.131752 0.0608870i
\(276\) 0 0
\(277\) 11.0723 11.0723i 0.665268 0.665268i −0.291349 0.956617i \(-0.594104\pi\)
0.956617 + 0.291349i \(0.0941041\pi\)
\(278\) 0 0
\(279\) −2.80546 + 9.55453i −0.167959 + 0.572015i
\(280\) 0 0
\(281\) 2.41198 + 3.75311i 0.143887 + 0.223892i 0.905715 0.423887i \(-0.139335\pi\)
−0.761829 + 0.647779i \(0.775698\pi\)
\(282\) 0 0
\(283\) 1.28430 + 1.71562i 0.0763435 + 0.101983i 0.837087 0.547069i \(-0.184257\pi\)
−0.760744 + 0.649052i \(0.775166\pi\)
\(284\) 0 0
\(285\) 3.68429 9.94623i 0.218238 0.589164i
\(286\) 0 0
\(287\) 0.738847 1.98093i 0.0436128 0.116930i
\(288\) 0 0
\(289\) 18.9863 2.72981i 1.11684 0.160577i
\(290\) 0 0
\(291\) −1.01671 3.46259i −0.0596005 0.202981i
\(292\) 0 0
\(293\) 0.972299 + 13.5945i 0.0568023 + 0.794200i 0.943400 + 0.331658i \(0.107608\pi\)
−0.886597 + 0.462542i \(0.846937\pi\)
\(294\) 0 0
\(295\) −11.6534 + 1.70228i −0.678489 + 0.0991104i
\(296\) 0 0
\(297\) −2.54966 + 0.950973i −0.147946 + 0.0551811i
\(298\) 0 0
\(299\) 6.42770 + 5.89731i 0.371724 + 0.341050i
\(300\) 0 0
\(301\) 0.793360 1.73722i 0.0457285 0.100131i
\(302\) 0 0
\(303\) 1.62477 22.7173i 0.0933407 1.30507i
\(304\) 0 0
\(305\) 9.53854 + 32.2170i 0.546175 + 1.84474i
\(306\) 0 0
\(307\) −15.6557 + 28.6713i −0.893519 + 1.63636i −0.129108 + 0.991631i \(0.541211\pi\)
−0.764412 + 0.644728i \(0.776971\pi\)
\(308\) 0 0
\(309\) 2.50380 + 17.4143i 0.142436 + 0.990667i
\(310\) 0 0
\(311\) 14.3216 + 31.3600i 0.812105 + 1.77826i 0.598085 + 0.801433i \(0.295929\pi\)
0.214020 + 0.976829i \(0.431344\pi\)
\(312\) 0 0
\(313\) 1.84619 0.401614i 0.104353 0.0227005i −0.160086 0.987103i \(-0.551177\pi\)
0.264438 + 0.964403i \(0.414813\pi\)
\(314\) 0 0
\(315\) −0.0610367 0.827246i −0.00343903 0.0466100i
\(316\) 0 0
\(317\) 6.45016 29.6509i 0.362277 1.66536i −0.330193 0.943913i \(-0.607114\pi\)
0.692470 0.721446i \(-0.256522\pi\)
\(318\) 0 0
\(319\) 4.31687 + 1.26755i 0.241699 + 0.0709691i
\(320\) 0 0
\(321\) 17.5546i 0.979802i
\(322\) 0 0
\(323\) 14.5771 + 14.5771i 0.811094 + 0.811094i
\(324\) 0 0
\(325\) 5.41734 7.30500i 0.300500 0.405208i
\(326\) 0 0
\(327\) −9.82040 2.13630i −0.543069 0.118138i
\(328\) 0 0
\(329\) 0.459107 3.19316i 0.0253114 0.176045i
\(330\) 0 0
\(331\) −11.0838 7.12312i −0.609220 0.391522i 0.199344 0.979930i \(-0.436119\pi\)
−0.808565 + 0.588407i \(0.799755\pi\)
\(332\) 0 0
\(333\) −4.69768 1.75214i −0.257431 0.0960168i
\(334\) 0 0
\(335\) 14.1054 5.29721i 0.770659 0.289418i
\(336\) 0 0
\(337\) −25.4751 13.9104i −1.38772 0.757750i −0.400373 0.916352i \(-0.631119\pi\)
−0.987343 + 0.158602i \(0.949301\pi\)
\(338\) 0 0
\(339\) −10.1749 + 11.7425i −0.552625 + 0.637763i
\(340\) 0 0
\(341\) −3.34066 + 2.89470i −0.180907 + 0.156757i
\(342\) 0 0
\(343\) −1.65965 4.44969i −0.0896125 0.240260i
\(344\) 0 0
\(345\) −13.6575 + 5.81066i −0.735296 + 0.312835i
\(346\) 0 0
\(347\) −7.69921 20.6424i −0.413315 1.10814i −0.962224 0.272258i \(-0.912229\pi\)
0.548909 0.835882i \(-0.315043\pi\)
\(348\) 0 0
\(349\) −9.46026 + 8.19736i −0.506396 + 0.438795i −0.870213 0.492676i \(-0.836019\pi\)
0.363817 + 0.931470i \(0.381473\pi\)
\(350\) 0 0
\(351\) −6.73348 + 7.77085i −0.359407 + 0.414778i
\(352\) 0 0
\(353\) −26.8895 14.6828i −1.43118 0.781485i −0.438104 0.898924i \(-0.644350\pi\)
−0.993080 + 0.117439i \(0.962532\pi\)
\(354\) 0 0
\(355\) −12.7108 + 27.9993i −0.674620 + 1.48605i
\(356\) 0 0
\(357\) −2.66833 0.995236i −0.141223 0.0526735i
\(358\) 0 0
\(359\) −27.5733 17.7203i −1.45526 0.935240i −0.998968 0.0454098i \(-0.985541\pi\)
−0.456293 0.889830i \(-0.650823\pi\)
\(360\) 0 0
\(361\) 1.03236 7.18021i 0.0543347 0.377906i
\(362\) 0 0
\(363\) 14.5632 + 3.16802i 0.764368 + 0.166278i
\(364\) 0 0
\(365\) 0.503987 7.27667i 0.0263799 0.380878i
\(366\) 0 0
\(367\) 16.9996 + 16.9996i 0.887373 + 0.887373i 0.994270 0.106897i \(-0.0340914\pi\)
−0.106897 + 0.994270i \(0.534091\pi\)
\(368\) 0 0
\(369\) 6.70224i 0.348905i
\(370\) 0 0
\(371\) −4.42927 1.30055i −0.229956 0.0675213i
\(372\) 0 0
\(373\) −0.814532 + 3.74434i −0.0421749 + 0.193875i −0.993414 0.114579i \(-0.963448\pi\)
0.951239 + 0.308454i \(0.0998116\pi\)
\(374\) 0 0
\(375\) 7.50743 + 13.5309i 0.387682 + 0.698734i
\(376\) 0 0
\(377\) 16.6116 3.61364i 0.855543 0.186112i
\(378\) 0 0
\(379\) −3.26503 7.14942i −0.167713 0.367241i 0.807050 0.590484i \(-0.201063\pi\)
−0.974763 + 0.223243i \(0.928336\pi\)
\(380\) 0 0
\(381\) 2.14030 + 14.8861i 0.109651 + 0.762637i
\(382\) 0 0
\(383\) 11.0063 20.1566i 0.562398 1.02995i −0.429519 0.903058i \(-0.641317\pi\)
0.991916 0.126896i \(-0.0405015\pi\)
\(384\) 0 0
\(385\) 0.175739 0.323570i 0.00895648 0.0164907i
\(386\) 0 0
\(387\) −0.431901 + 6.03877i −0.0219548 + 0.306968i
\(388\) 0 0
\(389\) −9.91792 + 21.7172i −0.502859 + 1.10111i 0.472671 + 0.881239i \(0.343290\pi\)
−0.975530 + 0.219868i \(0.929437\pi\)
\(390\) 0 0
\(391\) 0.818945 28.8358i 0.0414159 1.45829i
\(392\) 0 0
\(393\) 6.65834 2.48343i 0.335869 0.125273i
\(394\) 0 0
\(395\) −2.28902 15.6702i −0.115173 0.788451i
\(396\) 0 0
\(397\) 2.13857 + 29.9011i 0.107332 + 1.50069i 0.710851 + 0.703343i \(0.248310\pi\)
−0.603519 + 0.797348i \(0.706235\pi\)
\(398\) 0 0
\(399\) −0.457153 1.55692i −0.0228863 0.0779435i
\(400\) 0 0
\(401\) −18.2622 + 2.62571i −0.911971 + 0.131122i −0.582300 0.812974i \(-0.697847\pi\)
−0.329671 + 0.944096i \(0.606938\pi\)
\(402\) 0 0
\(403\) −5.83690 + 15.6493i −0.290757 + 0.779549i
\(404\) 0 0
\(405\) −4.26667 9.28735i −0.212012 0.461492i
\(406\) 0 0
\(407\) −1.33377 1.78171i −0.0661126 0.0883161i
\(408\) 0 0
\(409\) −3.32710 5.17708i −0.164515 0.255990i 0.749202 0.662341i \(-0.230437\pi\)
−0.913717 + 0.406352i \(0.866801\pi\)
\(410\) 0 0
\(411\) −2.85807 + 9.73371i −0.140978 + 0.480128i
\(412\) 0 0
\(413\) −1.27400 + 1.27400i −0.0626894 + 0.0626894i
\(414\) 0 0
\(415\) 16.8867 3.71328i 0.828936 0.182278i
\(416\) 0 0
\(417\) −24.6670 + 13.4692i −1.20795 + 0.659590i
\(418\) 0 0
\(419\) 16.3546 10.5104i 0.798973 0.513469i −0.0763072 0.997084i \(-0.524313\pi\)
0.875281 + 0.483615i \(0.160677\pi\)
\(420\) 0 0
\(421\) 22.8972 + 3.29212i 1.11594 + 0.160448i 0.675520 0.737342i \(-0.263919\pi\)
0.440423 + 0.897790i \(0.354829\pi\)
\(422\) 0 0
\(423\) 2.17382 + 9.99291i 0.105695 + 0.485872i
\(424\) 0 0
\(425\) −29.9889 + 2.28052i −1.45468 + 0.110621i
\(426\) 0 0
\(427\) 4.11491 + 3.08038i 0.199135 + 0.149070i
\(428\) 0 0
\(429\) −1.16275 + 0.341415i −0.0561382 + 0.0164837i
\(430\) 0 0
\(431\) −5.28791 4.58200i −0.254710 0.220707i 0.518141 0.855295i \(-0.326624\pi\)
−0.772851 + 0.634588i \(0.781170\pi\)
\(432\) 0 0
\(433\) −4.97304 0.355679i −0.238989 0.0170928i −0.0486692 0.998815i \(-0.515498\pi\)
−0.190320 + 0.981722i \(0.560953\pi\)
\(434\) 0 0
\(435\) −6.08491 + 28.2780i −0.291749 + 1.35583i
\(436\) 0 0
\(437\) 13.4324 9.47249i 0.642558 0.453130i
\(438\) 0 0
\(439\) 2.42656 + 1.10817i 0.115813 + 0.0528901i 0.472479 0.881342i \(-0.343359\pi\)
−0.356666 + 0.934232i \(0.616087\pi\)
\(440\) 0 0
\(441\) 4.88792 + 5.64096i 0.232758 + 0.268617i
\(442\) 0 0
\(443\) −15.3419 + 1.09727i −0.728916 + 0.0521331i −0.430864 0.902417i \(-0.641791\pi\)
−0.298052 + 0.954550i \(0.596337\pi\)
\(444\) 0 0
\(445\) 1.13209 + 0.329646i 0.0536661 + 0.0156267i
\(446\) 0 0
\(447\) −14.3851 + 19.2163i −0.680394 + 0.908900i
\(448\) 0 0
\(449\) −11.7182 + 5.35152i −0.553016 + 0.252554i −0.672265 0.740311i \(-0.734678\pi\)
0.119249 + 0.992864i \(0.461951\pi\)
\(450\) 0 0
\(451\) −1.60848 + 2.50284i −0.0757403 + 0.117854i
\(452\) 0 0
\(453\) 11.1644 8.35759i 0.524551 0.392674i
\(454\) 0 0
\(455\) −0.00312997 1.39131i −0.000146735 0.0652257i
\(456\) 0 0
\(457\) 3.57426 + 6.54577i 0.167197 + 0.306198i 0.947821 0.318802i \(-0.103281\pi\)
−0.780624 + 0.625000i \(0.785099\pi\)
\(458\) 0 0
\(459\) 34.0035 1.58715
\(460\) 0 0
\(461\) 1.78272 0.0830295 0.0415147 0.999138i \(-0.486782\pi\)
0.0415147 + 0.999138i \(0.486782\pi\)
\(462\) 0 0
\(463\) 8.42465 + 15.4286i 0.391527 + 0.717028i 0.996880 0.0789291i \(-0.0251501\pi\)
−0.605354 + 0.795957i \(0.706968\pi\)
\(464\) 0 0
\(465\) −20.1402 20.0498i −0.933980 0.929787i
\(466\) 0 0
\(467\) −31.3812 + 23.4916i −1.45215 + 1.08706i −0.473671 + 0.880702i \(0.657071\pi\)
−0.978476 + 0.206362i \(0.933838\pi\)
\(468\) 0 0
\(469\) 1.24620 1.93913i 0.0575443 0.0895406i
\(470\) 0 0
\(471\) −17.3577 + 7.92699i −0.799800 + 0.365256i
\(472\) 0 0
\(473\) −1.61054 + 2.15143i −0.0740526 + 0.0989227i
\(474\) 0 0
\(475\) −11.2800 12.9000i −0.517560 0.591895i
\(476\) 0 0
\(477\) 14.5966 1.04397i 0.668331 0.0478000i
\(478\) 0 0
\(479\) −2.50775 2.89410i −0.114582 0.132235i 0.695561 0.718467i \(-0.255156\pi\)
−0.810143 + 0.586232i \(0.800611\pi\)
\(480\) 0 0
\(481\) −7.64970 3.49350i −0.348796 0.159290i
\(482\) 0 0
\(483\) −1.14433 + 1.96118i −0.0520688 + 0.0892367i
\(484\) 0 0
\(485\) −5.69988 1.22651i −0.258818 0.0556929i
\(486\) 0 0
\(487\) −38.1241 2.72669i −1.72757 0.123558i −0.828111 0.560564i \(-0.810584\pi\)
−0.899458 + 0.437006i \(0.856039\pi\)
\(488\) 0 0
\(489\) −1.81470 1.57245i −0.0820638 0.0711087i
\(490\) 0 0
\(491\) −14.5271 + 4.26553i −0.655598 + 0.192501i −0.592580 0.805512i \(-0.701891\pi\)
−0.0630177 + 0.998012i \(0.520072\pi\)
\(492\) 0 0
\(493\) −45.0059 33.6910i −2.02696 1.51737i
\(494\) 0 0
\(495\) −0.163519 + 1.15575i −0.00734964 + 0.0519472i
\(496\) 0 0
\(497\) 0.999942 + 4.59666i 0.0448535 + 0.206188i
\(498\) 0 0
\(499\) 21.1033 + 3.03420i 0.944714 + 0.135829i 0.597422 0.801927i \(-0.296192\pi\)
0.347293 + 0.937757i \(0.387101\pi\)
\(500\) 0 0
\(501\) 11.0912 7.12790i 0.495520 0.318451i
\(502\) 0 0
\(503\) −1.33739 + 0.730270i −0.0596312 + 0.0325611i −0.508788 0.860892i \(-0.669906\pi\)
0.449157 + 0.893453i \(0.351724\pi\)
\(504\) 0 0
\(505\) −30.9993 19.8237i −1.37945 0.882142i
\(506\) 0 0
\(507\) 9.48483 9.48483i 0.421236 0.421236i
\(508\) 0 0
\(509\) −3.13431 + 10.6745i −0.138926 + 0.473138i −0.999335 0.0364663i \(-0.988390\pi\)
0.860409 + 0.509604i \(0.170208\pi\)
\(510\) 0 0
\(511\) −0.603290 0.938738i −0.0266880 0.0415273i
\(512\) 0 0
\(513\) 11.6105 + 15.5099i 0.512618 + 0.684778i
\(514\) 0 0
\(515\) 26.6541 + 9.87323i 1.17452 + 0.435067i
\(516\) 0 0
\(517\) −1.58643 + 4.25339i −0.0697712 + 0.187064i
\(518\) 0 0
\(519\) 0.113797 0.0163616i 0.00499515 0.000718194i
\(520\) 0 0
\(521\) 1.21793 + 4.14789i 0.0533586 + 0.181723i 0.981860 0.189605i \(-0.0607208\pi\)
−0.928502 + 0.371328i \(0.878903\pi\)
\(522\) 0 0
\(523\) −1.00394 14.0370i −0.0438994 0.613793i −0.971015 0.239018i \(-0.923174\pi\)
0.927116 0.374775i \(-0.122280\pi\)
\(524\) 0 0
\(525\) 2.15776 + 0.973707i 0.0941724 + 0.0424960i
\(526\) 0 0
\(527\) 51.7522 19.3026i 2.25436 0.840833i
\(528\) 0 0
\(529\) −22.5434 4.56004i −0.980149 0.198263i
\(530\) 0 0
\(531\) 2.37265 5.19538i 0.102964 0.225460i
\(532\) 0 0
\(533\) −0.801974 + 11.2131i −0.0347373 + 0.485691i
\(534\) 0 0
\(535\) 24.9226 + 13.5361i 1.07750 + 0.585216i
\(536\) 0 0
\(537\) −5.00215 + 9.16075i −0.215859 + 0.395315i
\(538\) 0 0
\(539\) 0.471533 + 3.27958i 0.0203103 + 0.141262i
\(540\) 0 0
\(541\) −15.8761 34.7639i −0.682568 1.49462i −0.859899 0.510465i \(-0.829473\pi\)
0.177330 0.984151i \(-0.443254\pi\)
\(542\) 0 0
\(543\) −0.748296 + 0.162782i −0.0321125 + 0.00698564i
\(544\) 0 0
\(545\) −10.6053 + 12.2950i −0.454282 + 0.526658i
\(546\) 0 0
\(547\) 2.60970 11.9966i 0.111583 0.512937i −0.887098 0.461581i \(-0.847282\pi\)
0.998680 0.0513554i \(-0.0163541\pi\)
\(548\) 0 0
\(549\) −15.6346 4.59073i −0.667268 0.195928i
\(550\) 0 0
\(551\) 32.0322i 1.36462i
\(552\) 0 0
\(553\) −1.71312 1.71312i −0.0728494 0.0728494i
\(554\) 0 0
\(555\) 10.7928 9.39458i 0.458127 0.398778i
\(556\) 0 0
\(557\) −15.8125 3.43979i −0.669995 0.145749i −0.135315 0.990803i \(-0.543204\pi\)
−0.534681 + 0.845054i \(0.679568\pi\)
\(558\) 0 0
\(559\) −1.44517 + 10.0514i −0.0611241 + 0.425127i
\(560\) 0 0
\(561\) 3.37136 + 2.16664i 0.142339 + 0.0914757i
\(562\) 0 0
\(563\) 42.4186 + 15.8213i 1.78773 + 0.666789i 0.998619 + 0.0525413i \(0.0167321\pi\)
0.789113 + 0.614248i \(0.210541\pi\)
\(564\) 0 0
\(565\) 8.82530 + 23.5000i 0.371283 + 0.988651i
\(566\) 0 0
\(567\) −1.37232 0.749342i −0.0576320 0.0314694i
\(568\) 0 0
\(569\) −14.6434 + 16.8994i −0.613883 + 0.708459i −0.974533 0.224242i \(-0.928009\pi\)
0.360650 + 0.932701i \(0.382555\pi\)
\(570\) 0 0
\(571\) −3.23046 + 2.79921i −0.135190 + 0.117143i −0.719831 0.694149i \(-0.755781\pi\)
0.584641 + 0.811292i \(0.301235\pi\)
\(572\) 0 0
\(573\) 3.36730 + 9.02808i 0.140671 + 0.377153i
\(574\) 0 0
\(575\) −2.28159 + 23.8704i −0.0951490 + 0.995463i
\(576\) 0 0
\(577\) −2.60111 6.97385i −0.108286 0.290325i 0.871493 0.490407i \(-0.163152\pi\)
−0.979779 + 0.200082i \(0.935879\pi\)
\(578\) 0 0
\(579\) −14.6453 + 12.6902i −0.608638 + 0.527388i
\(580\) 0 0
\(581\) 1.73218 1.99904i 0.0718629 0.0829343i
\(582\) 0 0
\(583\) 5.70139 + 3.11320i 0.236128 + 0.128935i
\(584\) 0 0
\(585\) 1.55062 + 4.12899i 0.0641105 + 0.170713i
\(586\) 0 0
\(587\) −7.31666 2.72897i −0.301991 0.112637i 0.193901 0.981021i \(-0.437886\pi\)
−0.495892 + 0.868384i \(0.665159\pi\)
\(588\) 0 0
\(589\) 26.4753 + 17.0146i 1.09089 + 0.701075i
\(590\) 0 0
\(591\) 1.73576 12.0725i 0.0713995 0.496594i
\(592\) 0 0
\(593\) 3.36052 + 0.731036i 0.138000 + 0.0300201i 0.281035 0.959698i \(-0.409322\pi\)
−0.143035 + 0.989718i \(0.545686\pi\)
\(594\) 0 0
\(595\) −3.47047 + 3.02087i −0.142275 + 0.123844i
\(596\) 0 0
\(597\) −16.9894 16.9894i −0.695330 0.695330i
\(598\) 0 0
\(599\) 9.17302i 0.374799i −0.982284 0.187400i \(-0.939994\pi\)
0.982284 0.187400i \(-0.0600060\pi\)
\(600\) 0 0
\(601\) −1.24243 0.364811i −0.0506799 0.0148810i 0.256294 0.966599i \(-0.417498\pi\)
−0.306974 + 0.951718i \(0.599317\pi\)
\(602\) 0 0
\(603\) −1.55324 + 7.14015i −0.0632530 + 0.290769i
\(604\) 0 0
\(605\) 15.7272 18.2328i 0.639400 0.741269i
\(606\) 0 0
\(607\) 20.1460 4.38250i 0.817702 0.177880i 0.215787 0.976440i \(-0.430768\pi\)
0.601915 + 0.798560i \(0.294405\pi\)
\(608\) 0 0
\(609\) 1.83825 + 4.02521i 0.0744897 + 0.163110i
\(610\) 0 0
\(611\) 2.44115 + 16.9786i 0.0987583 + 0.686879i
\(612\) 0 0
\(613\) −8.59214 + 15.7353i −0.347033 + 0.635544i −0.991649 0.128962i \(-0.958835\pi\)
0.644616 + 0.764506i \(0.277017\pi\)
\(614\) 0 0
\(615\) −16.8083 9.12901i −0.677777 0.368117i
\(616\) 0 0
\(617\) −1.91170 + 26.7290i −0.0769620 + 1.07607i 0.801417 + 0.598106i \(0.204080\pi\)
−0.878379 + 0.477964i \(0.841375\pi\)
\(618\) 0 0
\(619\) 7.48869 16.3979i 0.300996 0.659089i −0.697341 0.716740i \(-0.745634\pi\)
0.998337 + 0.0576506i \(0.0183609\pi\)
\(620\) 0 0
\(621\) 4.61855 26.7146i 0.185336 1.07202i
\(622\) 0 0
\(623\) 0.169011 0.0630377i 0.00677127 0.00252555i
\(624\) 0 0
\(625\) 24.9990 0.224962i 0.999960 0.00899846i
\(626\) 0 0
\(627\) 0.162895 + 2.27757i 0.00650539 + 0.0909573i
\(628\) 0 0
\(629\) 7.83518 + 26.6842i 0.312409 + 1.06397i
\(630\) 0 0
\(631\) −19.3844 + 2.78705i −0.771680 + 0.110951i −0.516897 0.856048i \(-0.672913\pi\)
−0.254783 + 0.966998i \(0.582004\pi\)
\(632\) 0 0
\(633\) −3.06470 + 8.21678i −0.121811 + 0.326588i
\(634\) 0 0
\(635\) 22.7844 + 8.43982i 0.904173 + 0.334924i
\(636\) 0 0
\(637\) 7.50265 + 10.0224i 0.297266 + 0.397101i
\(638\) 0 0
\(639\) −8.06230 12.5452i −0.318940 0.496280i
\(640\) 0 0
\(641\) −6.91160 + 23.5387i −0.272992 + 0.929724i 0.702867 + 0.711321i \(0.251903\pi\)
−0.975859 + 0.218403i \(0.929915\pi\)
\(642\) 0 0
\(643\) 22.6055 22.6055i 0.891474 0.891474i −0.103188 0.994662i \(-0.532904\pi\)
0.994662 + 0.103188i \(0.0329043\pi\)
\(644\) 0 0
\(645\) −14.5561 9.30845i −0.573147 0.366520i
\(646\) 0 0
\(647\) 31.5544 17.2300i 1.24053 0.677381i 0.281195 0.959651i \(-0.409269\pi\)
0.959335 + 0.282270i \(0.0910873\pi\)
\(648\) 0 0
\(649\) 2.13288 1.37072i 0.0837227 0.0538053i
\(650\) 0 0
\(651\) −4.30335 0.618728i −0.168661 0.0242499i
\(652\) 0 0
\(653\) 1.38923 + 6.38617i 0.0543646 + 0.249910i 0.996307 0.0858650i \(-0.0273654\pi\)
−0.941942 + 0.335775i \(0.891002\pi\)
\(654\) 0 0
\(655\) 1.60837 11.3679i 0.0628441 0.444181i
\(656\) 0 0
\(657\) 2.83184 + 2.11989i 0.110481 + 0.0827048i
\(658\) 0 0
\(659\) −42.0499 + 12.3470i −1.63803 + 0.480970i −0.965782 0.259355i \(-0.916490\pi\)
−0.672250 + 0.740324i \(0.734672\pi\)
\(660\) 0 0
\(661\) 3.70631 + 3.21154i 0.144159 + 0.124914i 0.723955 0.689847i \(-0.242322\pi\)
−0.579796 + 0.814762i \(0.696868\pi\)
\(662\) 0 0
\(663\) 15.1041 + 1.08027i 0.586596 + 0.0419541i
\(664\) 0 0
\(665\) −2.56289 0.551488i −0.0993848 0.0213858i
\(666\) 0 0
\(667\) −32.5821 + 30.7825i −1.26158 + 1.19190i
\(668\) 0 0
\(669\) −17.6925 8.07989i −0.684031 0.312387i
\(670\) 0 0
\(671\) −4.73675 5.46650i −0.182860 0.211032i
\(672\) 0 0
\(673\) 24.3510 1.74162i 0.938661 0.0671344i 0.406382 0.913703i \(-0.366790\pi\)
0.532279 + 0.846569i \(0.321336\pi\)
\(674\) 0 0
\(675\) −28.2019 1.88954i −1.08549 0.0727284i
\(676\) 0 0
\(677\) −12.2056 + 16.3048i −0.469101 + 0.626646i −0.971229 0.238148i \(-0.923460\pi\)
0.502128 + 0.864793i \(0.332551\pi\)
\(678\) 0 0
\(679\) −0.811345 + 0.370529i −0.0311366 + 0.0142196i
\(680\) 0 0
\(681\) −6.16581 + 9.59419i −0.236275 + 0.367650i
\(682\) 0 0
\(683\) −4.23779 + 3.17237i −0.162155 + 0.121387i −0.677274 0.735731i \(-0.736839\pi\)
0.515119 + 0.857119i \(0.327748\pi\)
\(684\) 0 0
\(685\) 11.6153 + 11.5632i 0.443799 + 0.441807i
\(686\) 0 0
\(687\) 8.57672 + 15.7071i 0.327222 + 0.599263i
\(688\) 0 0
\(689\) 24.5454 0.935106
\(690\) 0 0
\(691\) −19.3261 −0.735198 −0.367599 0.929984i \(-0.619820\pi\)
−0.367599 + 0.929984i \(0.619820\pi\)
\(692\) 0 0
\(693\) 0.0855805 + 0.156729i 0.00325094 + 0.00595364i
\(694\) 0 0
\(695\) 0.102148 + 45.4061i 0.00387469 + 1.72235i
\(696\) 0 0
\(697\) 29.7611 22.2789i 1.12728 0.843872i
\(698\) 0 0
\(699\) 0.895845 1.39396i 0.0338840 0.0527245i
\(700\) 0 0
\(701\) −9.11833 + 4.16420i −0.344395 + 0.157280i −0.580101 0.814545i \(-0.696987\pi\)
0.235706 + 0.971824i \(0.424260\pi\)
\(702\) 0 0
\(703\) −9.49600 + 12.6852i −0.358148 + 0.478430i
\(704\) 0 0
\(705\) −28.0218 8.15952i −1.05536 0.307305i
\(706\) 0 0
\(707\) −5.61483 + 0.401581i −0.211167 + 0.0151030i
\(708\) 0 0
\(709\) 9.38474 + 10.8306i 0.352451 + 0.406750i 0.904096 0.427328i \(-0.140545\pi\)
−0.551645 + 0.834079i \(0.686000\pi\)
\(710\) 0 0
\(711\) 6.98614 + 3.19046i 0.262001 + 0.119652i
\(712\) 0 0
\(713\) −8.13566 43.2805i −0.304683 1.62087i
\(714\) 0 0
\(715\) −0.411867 + 1.91404i −0.0154030 + 0.0715811i
\(716\) 0 0
\(717\) 17.0363 + 1.21846i 0.636231 + 0.0455041i
\(718\) 0 0
\(719\) −16.3929 14.2045i −0.611352 0.529739i 0.293229 0.956042i \(-0.405270\pi\)
−0.904580 + 0.426303i \(0.859816\pi\)
\(720\) 0 0
\(721\) 4.17227 1.22509i 0.155383 0.0456247i
\(722\) 0 0
\(723\) −14.0780 10.5387i −0.523568 0.391938i
\(724\) 0 0
\(725\) 35.4549 + 30.4436i 1.31676 + 1.13065i
\(726\) 0 0
\(727\) −2.64100 12.1405i −0.0979494 0.450266i −0.999833 0.0182865i \(-0.994179\pi\)
0.901883 0.431980i \(-0.142185\pi\)
\(728\) 0 0
\(729\) 28.1394 + 4.04583i 1.04220 + 0.149846i
\(730\) 0 0
\(731\) 28.2506 18.1556i 1.04489 0.671508i
\(732\) 0 0
\(733\) −12.6497 + 6.90727i −0.467228 + 0.255126i −0.695574 0.718454i \(-0.744850\pi\)
0.228346 + 0.973580i \(0.426668\pi\)
\(734\) 0 0
\(735\) −20.8045 + 4.57479i −0.767386 + 0.168744i
\(736\) 0 0
\(737\) −2.29361 + 2.29361i −0.0844861 + 0.0844861i
\(738\) 0 0
\(739\) 9.19622 31.3194i 0.338288 1.15210i −0.598183 0.801360i \(-0.704110\pi\)
0.936471 0.350745i \(-0.114071\pi\)
\(740\) 0 0
\(741\) 4.66459 + 7.25824i 0.171358 + 0.266638i
\(742\) 0 0
\(743\) 19.3814 + 25.8905i 0.711035 + 0.949832i 0.999972 0.00751631i \(-0.00239254\pi\)
−0.288936 + 0.957348i \(0.593302\pi\)
\(744\) 0 0
\(745\) 16.1896 + 35.2403i 0.593141 + 1.29110i
\(746\) 0 0
\(747\) −2.93032 + 7.85649i −0.107215 + 0.287454i
\(748\) 0 0
\(749\) 4.29465 0.617478i 0.156923 0.0225622i
\(750\) 0 0
\(751\) −7.87817 26.8306i −0.287479 0.979062i −0.968958 0.247225i \(-0.920481\pi\)
0.681480 0.731837i \(-0.261337\pi\)
\(752\) 0 0
\(753\) −2.40382 33.6099i −0.0876002 1.22481i
\(754\) 0 0
\(755\) −3.25671 22.2948i −0.118524 0.811390i
\(756\) 0 0
\(757\) 23.4398 8.74260i 0.851935 0.317755i 0.114707 0.993399i \(-0.463407\pi\)
0.737228 + 0.675644i \(0.236134\pi\)
\(758\) 0 0
\(759\) 2.16012 2.35440i 0.0784075 0.0854593i
\(760\) 0 0
\(761\) 14.0409 30.7452i 0.508981 1.11451i −0.464464 0.885592i \(-0.653753\pi\)
0.973445 0.228921i \(-0.0735198\pi\)
\(762\) 0 0
\(763\) −0.177206 + 2.47766i −0.00641528 + 0.0896974i
\(764\) 0 0
\(765\) 6.96135 12.8172i 0.251688 0.463408i
\(766\) 0 0
\(767\) 4.59119 8.40813i 0.165778 0.303600i
\(768\) 0 0
\(769\) −3.25665 22.6505i −0.117438 0.816798i −0.960360 0.278762i \(-0.910076\pi\)
0.842922 0.538035i \(-0.180833\pi\)
\(770\) 0 0
\(771\) −0.423713 0.927802i −0.0152597 0.0334140i
\(772\) 0 0
\(773\) 14.4255 3.13807i 0.518848 0.112868i 0.0544868 0.998514i \(-0.482648\pi\)
0.464361 + 0.885646i \(0.346284\pi\)
\(774\) 0 0
\(775\) −43.9949 + 13.1334i −1.58034 + 0.471764i
\(776\) 0 0
\(777\) 0.465309 2.13899i 0.0166929 0.0767358i
\(778\) 0 0
\(779\) 20.3239 + 5.96764i 0.728180 + 0.213813i
\(780\) 0 0
\(781\) 6.61968i 0.236871i
\(782\) 0 0
\(783\) −37.3601 37.3601i −1.33514 1.33514i
\(784\) 0 0
\(785\) −2.13014 + 30.7554i −0.0760280 + 1.09771i
\(786\) 0 0
\(787\) −2.11720 0.460569i −0.0754702 0.0164175i 0.174672 0.984627i \(-0.444114\pi\)
−0.250142 + 0.968209i \(0.580477\pi\)
\(788\) 0 0
\(789\) 3.60764 25.0917i 0.128435 0.893287i
\(790\) 0 0
\(791\) 3.23064 + 2.07621i 0.114868 + 0.0738214i
\(792\) 0 0
\(793\) −25.6078 9.55123i −0.909361 0.339174i
\(794\) 0 0
\(795\) −17.2636 + 38.0282i −0.612277 + 1.34872i
\(796\) 0 0
\(797\) −31.2174 17.0460i −1.10578 0.603800i −0.180684 0.983541i \(-0.557831\pi\)
−0.925093 + 0.379741i \(0.876013\pi\)
\(798\) 0 0
\(799\) 37.1472 42.8701i 1.31417 1.51664i
\(800\) 0 0
\(801\) −0.432159 + 0.374468i −0.0152696 + 0.0132312i
\(802\) 0 0
\(803\) 0.548750 + 1.47126i 0.0193650 + 0.0519195i
\(804\) 0 0
\(805\) 1.90195 + 3.13686i 0.0670350 + 0.110560i
\(806\) 0 0
\(807\) 7.85296 + 21.0546i 0.276437 + 0.741157i
\(808\) 0 0
\(809\) −8.63341 + 7.48089i −0.303535 + 0.263014i −0.793288 0.608847i \(-0.791632\pi\)
0.489753 + 0.871861i \(0.337087\pi\)
\(810\) 0 0
\(811\) 5.12440 5.91387i 0.179942 0.207664i −0.658612 0.752483i \(-0.728856\pi\)
0.838554 + 0.544819i \(0.183402\pi\)
\(812\) 0 0
\(813\) −3.68675 2.01312i −0.129300 0.0706031i
\(814\) 0 0
\(815\) −3.63173 + 1.36388i −0.127214 + 0.0477746i
\(816\) 0 0
\(817\) 17.9274 + 6.68659i 0.627202 + 0.233934i
\(818\) 0 0
\(819\) 0.567631 + 0.364794i 0.0198346 + 0.0127469i
\(820\) 0 0
\(821\) 5.49638 38.2282i 0.191825 1.33417i −0.635349 0.772225i \(-0.719144\pi\)
0.827174 0.561946i \(-0.189947\pi\)
\(822\) 0 0
\(823\) −17.5392 3.81542i −0.611377 0.132997i −0.103793 0.994599i \(-0.533098\pi\)
−0.507585 + 0.861602i \(0.669462\pi\)
\(824\) 0 0
\(825\) −2.67574 1.98431i −0.0931574 0.0690850i
\(826\) 0 0
\(827\) 21.8354 + 21.8354i 0.759291 + 0.759291i 0.976193 0.216902i \(-0.0695953\pi\)
−0.216902 + 0.976193i \(0.569595\pi\)
\(828\) 0 0
\(829\) 37.2747i 1.29460i 0.762234 + 0.647302i \(0.224103\pi\)
−0.762234 + 0.647302i \(0.775897\pi\)
\(830\) 0 0
\(831\) −20.7942 6.10574i −0.721344 0.211806i
\(832\) 0 0
\(833\) 8.80060 40.4557i 0.304923 1.40171i
\(834\) 0 0
\(835\) −1.56735 21.2427i −0.0542403 0.735133i
\(836\) 0 0
\(837\) 50.7235 11.0342i 1.75326 0.381399i
\(838\) 0 0
\(839\) −3.22273 7.05680i −0.111261 0.243628i 0.845808 0.533487i \(-0.179119\pi\)
−0.957069 + 0.289859i \(0.906391\pi\)
\(840\) 0 0
\(841\) 8.30471 + 57.7605i 0.286369 + 1.99174i
\(842\) 0 0
\(843\) 2.95921 5.41939i 0.101921 0.186654i
\(844\) 0 0
\(845\) −6.15220 20.7794i −0.211642 0.714834i
\(846\) 0 0
\(847\) 0.262788 3.67425i 0.00902949 0.126249i
\(848\) 0 0
\(849\) 1.23217 2.69807i 0.0422878 0.0925974i
\(850\) 0 0
\(851\) 22.0284 2.53126i 0.755126 0.0867706i
\(852\) 0 0
\(853\) 9.64922 3.59897i 0.330383 0.123226i −0.178798 0.983886i \(-0.557221\pi\)
0.509181 + 0.860659i \(0.329948\pi\)
\(854\) 0 0
\(855\) 8.22323 1.20121i 0.281229 0.0410805i
\(856\) 0 0
\(857\) 2.46588 + 34.4775i 0.0842329 + 1.17773i 0.847193 + 0.531284i \(0.178290\pi\)
−0.762961 + 0.646445i \(0.776255\pi\)
\(858\) 0 0
\(859\) −5.50305 18.7417i −0.187762 0.639458i −0.998536 0.0540983i \(-0.982772\pi\)
0.810774 0.585360i \(-0.199047\pi\)
\(860\) 0 0
\(861\) −2.89640 + 0.416440i −0.0987091 + 0.0141922i
\(862\) 0 0
\(863\) 0.361310 0.968710i 0.0122991 0.0329753i −0.930655 0.365898i \(-0.880762\pi\)
0.942954 + 0.332922i \(0.108035\pi\)
\(864\) 0 0
\(865\) 0.0645186 0.174177i 0.00219370 0.00592218i
\(866\) 0 0
\(867\) −15.9096 21.2528i −0.540320 0.721783i
\(868\) 0 0
\(869\) 1.84318 + 2.86804i 0.0625255 + 0.0972916i
\(870\) 0 0
\(871\) −3.45300 + 11.7598i −0.117000 + 0.398467i
\(872\) 0 0
\(873\) 1.99937 1.99937i 0.0676683 0.0676683i
\(874\) 0 0
\(875\) 3.04621 2.31261i 0.102981 0.0781803i
\(876\) 0 0
\(877\) 28.6705 15.6553i 0.968134 0.528641i 0.0842994 0.996440i \(-0.473135\pi\)
0.883835 + 0.467799i \(0.154953\pi\)
\(878\) 0 0
\(879\) 15.8690 10.1984i 0.535247 0.343982i
\(880\) 0 0
\(881\) 16.4824 + 2.36981i 0.555306 + 0.0798410i 0.414254 0.910161i \(-0.364042\pi\)
0.141052 + 0.990002i \(0.454952\pi\)
\(882\) 0 0
\(883\) 5.62741 + 25.8688i 0.189377 + 0.870554i 0.969532 + 0.244967i \(0.0787770\pi\)
−0.780154 + 0.625587i \(0.784859\pi\)
\(884\) 0 0
\(885\) 9.79758 + 13.0268i 0.329342 + 0.437892i
\(886\) 0 0
\(887\) −1.90218 1.42395i −0.0638688 0.0478116i 0.566866 0.823810i \(-0.308156\pi\)
−0.630735 + 0.775998i \(0.717247\pi\)
\(888\) 0 0
\(889\) 3.56653 1.04723i 0.119618 0.0351229i
\(890\) 0 0
\(891\) 1.66284 + 1.44086i 0.0557074 + 0.0482707i
\(892\) 0 0
\(893\) 32.2381 + 2.30572i 1.07881 + 0.0771579i
\(894\) 0 0
\(895\) 9.14862 + 14.1654i 0.305805 + 0.473496i
\(896\) 0 0
\(897\) 2.90023 11.7197i 0.0968359 0.391310i
\(898\) 0 0
\(899\) −78.0688 35.6528i −2.60374 1.18909i
\(900\) 0 0
\(901\) −53.1560 61.3453i −1.77088 2.04371i
\(902\) 0 0
\(903\) −2.63651 + 0.188567i −0.0877377 + 0.00627513i
\(904\) 0 0
\(905\) −0.345895 + 1.18789i −0.0114979 + 0.0394868i
\(906\) 0 0
\(907\) 8.36505 11.1744i 0.277757 0.371040i −0.639870 0.768483i \(-0.721012\pi\)
0.917627 + 0.397444i \(0.130103\pi\)
\(908\) 0 0
\(909\) 16.2322 7.41301i 0.538389 0.245874i
\(910\) 0 0
\(911\) −4.12898 + 6.42481i −0.136799 + 0.212864i −0.902893 0.429865i \(-0.858561\pi\)
0.766094 + 0.642728i \(0.222198\pi\)
\(912\) 0 0
\(913\) −2.97977 + 2.23063i −0.0986159 + 0.0738230i
\(914\) 0 0
\(915\) 32.8086 32.9565i 1.08462 1.08951i
\(916\) 0 0
\(917\) −0.841766 1.54158i −0.0277976 0.0509074i
\(918\) 0 0
\(919\) −19.5874 −0.646130 −0.323065 0.946377i \(-0.604713\pi\)
−0.323065 + 0.946377i \(0.604713\pi\)
\(920\) 0 0
\(921\) 45.2129 1.48981
\(922\) 0 0
\(923\) −11.9874 21.9532i −0.394569 0.722599i
\(924\) 0 0
\(925\) −5.01554 22.5667i −0.164910 0.741989i
\(926\) 0 0
\(927\) −11.0352 + 8.26088i −0.362445 + 0.271323i
\(928\) 0 0
\(929\) 17.0422 26.5181i 0.559135 0.870031i −0.440480 0.897762i \(-0.645192\pi\)
0.999615 + 0.0277309i \(0.00882815\pi\)
\(930\) 0 0
\(931\) 21.4579 9.79947i 0.703253 0.321165i
\(932\) 0 0
\(933\) 28.5949 38.1983i 0.936154 1.25056i
\(934\) 0 0
\(935\) 5.67563 3.11572i 0.185613 0.101895i
\(936\) 0 0
\(937\) −17.9541 + 1.28410i −0.586535 + 0.0419498i −0.361453 0.932390i \(-0.617719\pi\)
−0.225081 + 0.974340i \(0.572265\pi\)
\(938\) 0 0
\(939\) −1.71244 1.97626i −0.0558833 0.0644928i
\(940\) 0 0
\(941\) 45.7808 + 20.9074i 1.49241 + 0.681562i 0.983773 0.179418i \(-0.0574214\pi\)
0.508639 + 0.860980i \(0.330149\pi\)
\(942\) 0 0
\(943\) −13.4609 26.4076i −0.438348 0.859951i
\(944\) 0 0
\(945\) −3.63240 + 2.34596i −0.118162 + 0.0763142i
\(946\) 0 0
\(947\) 42.1691 + 3.01599i 1.37031 + 0.0980065i 0.737001 0.675892i \(-0.236241\pi\)
0.633310 + 0.773898i \(0.281696\pi\)
\(948\) 0 0
\(949\) 4.48410 + 3.88549i 0.145560 + 0.126128i
\(950\) 0 0
\(951\) −40.2967 + 11.8322i −1.30671 + 0.383685i
\(952\) 0 0
\(953\) −7.28903 5.45650i −0.236115 0.176753i 0.474668 0.880165i \(-0.342568\pi\)
−0.710783 + 0.703412i \(0.751659\pi\)
\(954\) 0 0
\(955\) 15.4138 + 2.18079i 0.498779 + 0.0705688i
\(956\) 0 0
\(957\) −1.32364 6.08467i −0.0427872 0.196690i
\(958\) 0 0
\(959\) 2.48184 + 0.356835i 0.0801428 + 0.0115228i
\(960\) 0 0
\(961\) 44.8569 28.8278i 1.44700 0.929928i
\(962\) 0 0
\(963\) −12.0719 + 6.59174i −0.389011 + 0.212416i
\(964\) 0 0
\(965\) 6.72380 + 30.5775i 0.216447 + 0.984324i
\(966\) 0 0
\(967\) 38.9774 38.9774i 1.25343 1.25343i 0.299254 0.954174i \(-0.403262\pi\)
0.954174 0.299254i \(-0.0967376\pi\)
\(968\) 0 0
\(969\) 8.03849 27.3766i 0.258233 0.879462i
\(970\) 0 0
\(971\) −26.1330 40.6638i −0.838649 1.30496i −0.950338 0.311219i \(-0.899263\pi\)
0.111689 0.993743i \(-0.464374\pi\)
\(972\) 0 0
\(973\) 4.16284 + 5.56090i 0.133454 + 0.178274i
\(974\) 0 0
\(975\) −12.4670 1.73527i −0.399265 0.0555733i
\(976\) 0 0
\(977\) −3.09764 + 8.30510i −0.0991023 + 0.265704i −0.977034 0.213082i \(-0.931650\pi\)
0.877932 + 0.478785i \(0.158923\pi\)
\(978\) 0 0
\(979\) −0.251252 + 0.0361245i −0.00803004 + 0.00115455i
\(980\) 0 0
\(981\) −2.21848 7.55544i −0.0708305 0.241227i
\(982\) 0 0
\(983\) 2.80039 + 39.1545i 0.0893184 + 1.24883i 0.822486 + 0.568786i \(0.192587\pi\)
−0.733167 + 0.680049i \(0.761959\pi\)
\(984\) 0 0
\(985\) −15.8011 11.7732i −0.503465 0.375125i
\(986\) 0 0
\(987\) −4.18341 + 1.56033i −0.133159 + 0.0496659i
\(988\) 0 0
\(989\) −10.4266 24.6609i −0.331548 0.784171i
\(990\) 0 0
\(991\) 16.1771 35.4229i 0.513883 1.12525i −0.457821 0.889044i \(-0.651370\pi\)
0.971704 0.236202i \(-0.0759028\pi\)
\(992\) 0 0
\(993\) −1.30089 + 18.1888i −0.0412824 + 0.577203i
\(994\) 0 0
\(995\) −37.2205 + 11.0199i −1.17997 + 0.349355i
\(996\) 0 0
\(997\) 15.9122 29.1410i 0.503944 0.922905i −0.494608 0.869116i \(-0.664688\pi\)
0.998552 0.0537891i \(-0.0171299\pi\)
\(998\) 0 0
\(999\) 3.71963 + 25.8706i 0.117684 + 0.818508i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.753.12 yes 720
5.2 odd 4 inner 920.2.bv.a.17.12 720
23.19 odd 22 inner 920.2.bv.a.433.12 yes 720
115.42 even 44 inner 920.2.bv.a.617.12 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.12 720 5.2 odd 4 inner
920.2.bv.a.433.12 yes 720 23.19 odd 22 inner
920.2.bv.a.617.12 yes 720 115.42 even 44 inner
920.2.bv.a.753.12 yes 720 1.1 even 1 trivial