Properties

Label 920.2.bv.a.617.2
Level $920$
Weight $2$
Character 920.617
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [920,2,Mod(17,920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(920, base_ring=CyclotomicField(44)) chi = DirichletCharacter(H, H._module([0, 0, 11, 14])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("920.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 617.2
Character \(\chi\) \(=\) 920.617
Dual form 920.2.bv.a.753.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.54911 + 2.83699i) q^{3} +(-2.23313 + 0.114500i) q^{5} +(-3.34466 - 2.50378i) q^{7} +(-4.02684 - 6.26588i) q^{9} +(-2.09151 - 0.955162i) q^{11} +(2.95328 + 3.94512i) q^{13} +(3.13454 - 6.51275i) q^{15} +(4.28157 + 0.306224i) q^{17} +(-3.62640 + 4.18509i) q^{19} +(12.2844 - 5.61012i) q^{21} +(3.03456 - 3.71368i) q^{23} +(4.97378 - 0.511389i) q^{25} +(14.3418 - 1.02575i) q^{27} +(-4.00107 + 3.46695i) q^{29} +(-7.20387 - 2.11525i) q^{31} +(5.94977 - 4.45395i) q^{33} +(7.75575 + 5.20831i) q^{35} +(1.29686 - 5.96155i) q^{37} +(-15.7673 + 2.26699i) q^{39} +(2.67857 + 1.72141i) q^{41} +(0.928072 + 0.506766i) q^{43} +(9.70992 + 13.5315i) q^{45} +(1.89883 + 1.89883i) q^{47} +(2.94569 + 10.0321i) q^{49} +(-7.50139 + 11.6724i) q^{51} +(-2.79232 + 3.73011i) q^{53} +(4.77999 + 1.89353i) q^{55} +(-6.25535 - 16.7712i) q^{57} +(8.23557 + 1.18410i) q^{59} +(3.86637 - 13.1677i) q^{61} +(-2.21999 + 31.0395i) q^{63} +(-7.04680 - 8.47184i) q^{65} +(2.31104 + 0.861972i) q^{67} +(5.83481 + 14.3619i) q^{69} +(0.667794 + 1.46227i) q^{71} +(-0.504447 - 7.05309i) q^{73} +(-6.25414 + 14.9028i) q^{75} +(4.60388 + 8.43137i) q^{77} +(1.31624 - 9.15465i) q^{79} +(-10.0247 + 21.9511i) q^{81} +(-4.48476 - 0.975600i) q^{83} +(-9.59638 - 0.193598i) q^{85} +(-3.63758 - 16.7217i) q^{87} +(5.18455 - 1.52232i) q^{89} -20.5895i q^{91} +(17.1606 - 17.1606i) q^{93} +(7.61905 - 9.76109i) q^{95} +(11.5013 - 2.50196i) q^{97} +(2.43725 + 16.9514i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{15}{22}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.54911 + 2.83699i −0.894381 + 1.63794i −0.131579 + 0.991306i \(0.542005\pi\)
−0.762803 + 0.646631i \(0.776177\pi\)
\(4\) 0 0
\(5\) −2.23313 + 0.114500i −0.998688 + 0.0512061i
\(6\) 0 0
\(7\) −3.34466 2.50378i −1.26416 0.946339i −0.264325 0.964434i \(-0.585149\pi\)
−0.999836 + 0.0180943i \(0.994240\pi\)
\(8\) 0 0
\(9\) −4.02684 6.26588i −1.34228 2.08863i
\(10\) 0 0
\(11\) −2.09151 0.955162i −0.630615 0.287992i 0.0743525 0.997232i \(-0.476311\pi\)
−0.704967 + 0.709240i \(0.749038\pi\)
\(12\) 0 0
\(13\) 2.95328 + 3.94512i 0.819093 + 1.09418i 0.993977 + 0.109591i \(0.0349542\pi\)
−0.174883 + 0.984589i \(0.555955\pi\)
\(14\) 0 0
\(15\) 3.13454 6.51275i 0.809336 1.68159i
\(16\) 0 0
\(17\) 4.28157 + 0.306224i 1.03843 + 0.0742702i 0.580128 0.814525i \(-0.303002\pi\)
0.458305 + 0.888795i \(0.348457\pi\)
\(18\) 0 0
\(19\) −3.62640 + 4.18509i −0.831953 + 0.960125i −0.999669 0.0257099i \(-0.991815\pi\)
0.167716 + 0.985835i \(0.446361\pi\)
\(20\) 0 0
\(21\) 12.2844 5.61012i 2.68069 1.22423i
\(22\) 0 0
\(23\) 3.03456 3.71368i 0.632749 0.774357i
\(24\) 0 0
\(25\) 4.97378 0.511389i 0.994756 0.102278i
\(26\) 0 0
\(27\) 14.3418 1.02575i 2.76009 0.197406i
\(28\) 0 0
\(29\) −4.00107 + 3.46695i −0.742980 + 0.643796i −0.941774 0.336246i \(-0.890843\pi\)
0.198795 + 0.980041i \(0.436297\pi\)
\(30\) 0 0
\(31\) −7.20387 2.11525i −1.29385 0.379910i −0.438864 0.898554i \(-0.644619\pi\)
−0.854990 + 0.518644i \(0.826437\pi\)
\(32\) 0 0
\(33\) 5.94977 4.45395i 1.03572 0.775332i
\(34\) 0 0
\(35\) 7.75575 + 5.20831i 1.31096 + 0.880365i
\(36\) 0 0
\(37\) 1.29686 5.96155i 0.213202 0.980073i −0.738787 0.673939i \(-0.764601\pi\)
0.951989 0.306133i \(-0.0990354\pi\)
\(38\) 0 0
\(39\) −15.7673 + 2.26699i −2.52478 + 0.363009i
\(40\) 0 0
\(41\) 2.67857 + 1.72141i 0.418322 + 0.268839i 0.732825 0.680417i \(-0.238201\pi\)
−0.314503 + 0.949256i \(0.601838\pi\)
\(42\) 0 0
\(43\) 0.928072 + 0.506766i 0.141530 + 0.0772811i 0.548454 0.836181i \(-0.315217\pi\)
−0.406924 + 0.913462i \(0.633399\pi\)
\(44\) 0 0
\(45\) 9.70992 + 13.5315i 1.44747 + 2.01715i
\(46\) 0 0
\(47\) 1.89883 + 1.89883i 0.276973 + 0.276973i 0.831899 0.554926i \(-0.187254\pi\)
−0.554926 + 0.831899i \(0.687254\pi\)
\(48\) 0 0
\(49\) 2.94569 + 10.0321i 0.420813 + 1.43316i
\(50\) 0 0
\(51\) −7.50139 + 11.6724i −1.05041 + 1.63446i
\(52\) 0 0
\(53\) −2.79232 + 3.73011i −0.383555 + 0.512369i −0.950220 0.311579i \(-0.899142\pi\)
0.566665 + 0.823948i \(0.308233\pi\)
\(54\) 0 0
\(55\) 4.77999 + 1.89353i 0.644534 + 0.255323i
\(56\) 0 0
\(57\) −6.25535 16.7712i −0.828542 2.22141i
\(58\) 0 0
\(59\) 8.23557 + 1.18410i 1.07218 + 0.154156i 0.655725 0.755000i \(-0.272363\pi\)
0.416455 + 0.909156i \(0.363272\pi\)
\(60\) 0 0
\(61\) 3.86637 13.1677i 0.495038 1.68595i −0.210764 0.977537i \(-0.567595\pi\)
0.705802 0.708409i \(-0.250587\pi\)
\(62\) 0 0
\(63\) −2.21999 + 31.0395i −0.279693 + 3.91061i
\(64\) 0 0
\(65\) −7.04680 8.47184i −0.874047 1.05080i
\(66\) 0 0
\(67\) 2.31104 + 0.861972i 0.282338 + 0.105307i 0.486644 0.873601i \(-0.338221\pi\)
−0.204306 + 0.978907i \(0.565494\pi\)
\(68\) 0 0
\(69\) 5.83481 + 14.3619i 0.702429 + 1.72897i
\(70\) 0 0
\(71\) 0.667794 + 1.46227i 0.0792526 + 0.173539i 0.945110 0.326751i \(-0.105954\pi\)
−0.865858 + 0.500290i \(0.833227\pi\)
\(72\) 0 0
\(73\) −0.504447 7.05309i −0.0590410 0.825502i −0.937566 0.347806i \(-0.886927\pi\)
0.878525 0.477696i \(-0.158528\pi\)
\(74\) 0 0
\(75\) −6.25414 + 14.9028i −0.722166 + 1.72082i
\(76\) 0 0
\(77\) 4.60388 + 8.43137i 0.524660 + 0.960844i
\(78\) 0 0
\(79\) 1.31624 9.15465i 0.148089 1.02998i −0.771256 0.636525i \(-0.780371\pi\)
0.919344 0.393454i \(-0.128720\pi\)
\(80\) 0 0
\(81\) −10.0247 + 21.9511i −1.11386 + 2.43902i
\(82\) 0 0
\(83\) −4.48476 0.975600i −0.492266 0.107086i −0.0404218 0.999183i \(-0.512870\pi\)
−0.451844 + 0.892097i \(0.649234\pi\)
\(84\) 0 0
\(85\) −9.59638 0.193598i −1.04087 0.0209986i
\(86\) 0 0
\(87\) −3.63758 16.7217i −0.389989 1.79275i
\(88\) 0 0
\(89\) 5.18455 1.52232i 0.549561 0.161366i 0.00484811 0.999988i \(-0.498457\pi\)
0.544713 + 0.838623i \(0.316639\pi\)
\(90\) 0 0
\(91\) 20.5895i 2.15836i
\(92\) 0 0
\(93\) 17.1606 17.1606i 1.77947 1.77947i
\(94\) 0 0
\(95\) 7.61905 9.76109i 0.781698 1.00147i
\(96\) 0 0
\(97\) 11.5013 2.50196i 1.16778 0.254036i 0.413450 0.910527i \(-0.364324\pi\)
0.754334 + 0.656491i \(0.227960\pi\)
\(98\) 0 0
\(99\) 2.43725 + 16.9514i 0.244953 + 1.70368i
\(100\) 0 0
\(101\) 5.13105 3.29752i 0.510558 0.328116i −0.259869 0.965644i \(-0.583679\pi\)
0.770427 + 0.637528i \(0.220043\pi\)
\(102\) 0 0
\(103\) 14.4838 5.40218i 1.42713 0.532293i 0.487091 0.873351i \(-0.338058\pi\)
0.940042 + 0.341058i \(0.110785\pi\)
\(104\) 0 0
\(105\) −26.7905 + 13.9347i −2.61448 + 1.35989i
\(106\) 0 0
\(107\) 5.00008 2.73025i 0.483376 0.263943i −0.219032 0.975718i \(-0.570290\pi\)
0.702408 + 0.711774i \(0.252108\pi\)
\(108\) 0 0
\(109\) −8.99848 10.3848i −0.861898 0.994683i −0.999991 0.00426394i \(-0.998643\pi\)
0.138093 0.990419i \(-0.455903\pi\)
\(110\) 0 0
\(111\) 14.9039 + 12.9143i 1.41461 + 1.22577i
\(112\) 0 0
\(113\) −5.30620 + 14.2265i −0.499165 + 1.33831i 0.406240 + 0.913766i \(0.366840\pi\)
−0.905406 + 0.424548i \(0.860433\pi\)
\(114\) 0 0
\(115\) −6.35136 + 8.64062i −0.592267 + 0.805742i
\(116\) 0 0
\(117\) 12.8273 34.3913i 1.18588 3.17948i
\(118\) 0 0
\(119\) −13.5537 11.7443i −1.24246 1.07660i
\(120\) 0 0
\(121\) −3.74138 4.31778i −0.340125 0.392526i
\(122\) 0 0
\(123\) −9.03303 + 4.93241i −0.814481 + 0.444740i
\(124\) 0 0
\(125\) −11.0486 + 1.71150i −0.988214 + 0.153081i
\(126\) 0 0
\(127\) 14.1918 5.29327i 1.25932 0.469702i 0.370873 0.928684i \(-0.379059\pi\)
0.888446 + 0.458982i \(0.151786\pi\)
\(128\) 0 0
\(129\) −2.87538 + 1.84789i −0.253163 + 0.162698i
\(130\) 0 0
\(131\) −0.00349255 0.0242912i −0.000305145 0.00212233i 0.989668 0.143376i \(-0.0457958\pi\)
−0.989973 + 0.141254i \(0.954887\pi\)
\(132\) 0 0
\(133\) 22.6076 4.91798i 1.96033 0.426443i
\(134\) 0 0
\(135\) −31.9098 + 3.93278i −2.74636 + 0.338480i
\(136\) 0 0
\(137\) −0.503236 + 0.503236i −0.0429944 + 0.0429944i −0.728277 0.685283i \(-0.759679\pi\)
0.685283 + 0.728277i \(0.259679\pi\)
\(138\) 0 0
\(139\) 6.91548i 0.586564i 0.956026 + 0.293282i \(0.0947474\pi\)
−0.956026 + 0.293282i \(0.905253\pi\)
\(140\) 0 0
\(141\) −8.32847 + 2.44546i −0.701384 + 0.205945i
\(142\) 0 0
\(143\) −2.40860 11.0721i −0.201417 0.925899i
\(144\) 0 0
\(145\) 8.53796 8.20028i 0.709039 0.680996i
\(146\) 0 0
\(147\) −33.0242 7.18398i −2.72379 0.592524i
\(148\) 0 0
\(149\) 3.47939 7.61881i 0.285043 0.624157i −0.711901 0.702280i \(-0.752165\pi\)
0.996944 + 0.0781229i \(0.0248927\pi\)
\(150\) 0 0
\(151\) −0.590028 + 4.10373i −0.0480158 + 0.333957i 0.951628 + 0.307254i \(0.0994100\pi\)
−0.999643 + 0.0267033i \(0.991499\pi\)
\(152\) 0 0
\(153\) −15.3224 28.0609i −1.23874 2.26859i
\(154\) 0 0
\(155\) 16.3294 + 3.89879i 1.31161 + 0.313158i
\(156\) 0 0
\(157\) 0.517217 + 7.23164i 0.0412784 + 0.577148i 0.975435 + 0.220286i \(0.0706989\pi\)
−0.934157 + 0.356862i \(0.883847\pi\)
\(158\) 0 0
\(159\) −6.25665 13.7002i −0.496185 1.08649i
\(160\) 0 0
\(161\) −19.4478 + 4.82314i −1.53270 + 0.380116i
\(162\) 0 0
\(163\) −12.0433 4.49192i −0.943304 0.351834i −0.169694 0.985497i \(-0.554278\pi\)
−0.773610 + 0.633663i \(0.781551\pi\)
\(164\) 0 0
\(165\) −12.7767 + 10.6275i −0.994662 + 0.827351i
\(166\) 0 0
\(167\) −1.12674 + 15.7539i −0.0871900 + 1.21907i 0.745946 + 0.666007i \(0.231998\pi\)
−0.833136 + 0.553068i \(0.813457\pi\)
\(168\) 0 0
\(169\) −3.17960 + 10.8287i −0.244585 + 0.832979i
\(170\) 0 0
\(171\) 40.8262 + 5.86992i 3.12206 + 0.448884i
\(172\) 0 0
\(173\) 1.57308 + 4.21759i 0.119599 + 0.320657i 0.982930 0.183981i \(-0.0588985\pi\)
−0.863331 + 0.504639i \(0.831626\pi\)
\(174\) 0 0
\(175\) −17.9160 10.7428i −1.35432 0.812081i
\(176\) 0 0
\(177\) −16.1171 + 21.5299i −1.21144 + 1.61829i
\(178\) 0 0
\(179\) 5.09858 7.93355i 0.381086 0.592981i −0.596731 0.802441i \(-0.703534\pi\)
0.977817 + 0.209460i \(0.0671706\pi\)
\(180\) 0 0
\(181\) −5.76781 19.6434i −0.428718 1.46008i −0.836990 0.547219i \(-0.815687\pi\)
0.408272 0.912861i \(-0.366132\pi\)
\(182\) 0 0
\(183\) 31.3671 + 31.3671i 2.31872 + 2.31872i
\(184\) 0 0
\(185\) −2.21345 + 13.4614i −0.162736 + 0.989704i
\(186\) 0 0
\(187\) −8.66246 4.73006i −0.633462 0.345896i
\(188\) 0 0
\(189\) −50.5368 32.4780i −3.67601 2.36243i
\(190\) 0 0
\(191\) 4.56066 0.655723i 0.329997 0.0474465i 0.0246751 0.999696i \(-0.492145\pi\)
0.305322 + 0.952249i \(0.401236\pi\)
\(192\) 0 0
\(193\) 0.615808 2.83082i 0.0443268 0.203767i −0.949657 0.313290i \(-0.898569\pi\)
0.993984 + 0.109523i \(0.0349324\pi\)
\(194\) 0 0
\(195\) 34.9508 6.86785i 2.50288 0.491817i
\(196\) 0 0
\(197\) 11.6904 8.75134i 0.832908 0.623507i −0.0953500 0.995444i \(-0.530397\pi\)
0.928258 + 0.371937i \(0.121306\pi\)
\(198\) 0 0
\(199\) 2.62762 + 0.771540i 0.186267 + 0.0546930i 0.373536 0.927616i \(-0.378145\pi\)
−0.187269 + 0.982309i \(0.559963\pi\)
\(200\) 0 0
\(201\) −6.02546 + 5.22109i −0.425003 + 0.368267i
\(202\) 0 0
\(203\) 22.0627 1.57795i 1.54850 0.110751i
\(204\) 0 0
\(205\) −6.17870 3.53744i −0.431539 0.247066i
\(206\) 0 0
\(207\) −35.4892 4.05978i −2.46667 0.282174i
\(208\) 0 0
\(209\) 11.5821 5.28937i 0.801151 0.365873i
\(210\) 0 0
\(211\) 7.34378 8.47517i 0.505567 0.583455i −0.444391 0.895833i \(-0.646580\pi\)
0.949958 + 0.312378i \(0.101125\pi\)
\(212\) 0 0
\(213\) −5.18292 0.370690i −0.355128 0.0253992i
\(214\) 0 0
\(215\) −2.13054 1.02541i −0.145301 0.0699325i
\(216\) 0 0
\(217\) 18.7984 + 25.1117i 1.27612 + 1.70469i
\(218\) 0 0
\(219\) 20.7910 + 9.49493i 1.40492 + 0.641608i
\(220\) 0 0
\(221\) 11.4366 + 17.7957i 0.769309 + 1.19707i
\(222\) 0 0
\(223\) −11.5674 8.65924i −0.774610 0.579866i 0.137169 0.990548i \(-0.456200\pi\)
−0.911779 + 0.410682i \(0.865291\pi\)
\(224\) 0 0
\(225\) −23.2329 29.1058i −1.54886 1.94039i
\(226\) 0 0
\(227\) 2.69021 4.92676i 0.178556 0.327000i −0.773038 0.634360i \(-0.781264\pi\)
0.951593 + 0.307360i \(0.0994455\pi\)
\(228\) 0 0
\(229\) −19.0327 −1.25771 −0.628857 0.777521i \(-0.716477\pi\)
−0.628857 + 0.777521i \(0.716477\pi\)
\(230\) 0 0
\(231\) −31.0516 −2.04305
\(232\) 0 0
\(233\) −6.92611 + 12.6842i −0.453744 + 0.830971i −0.999978 0.00666235i \(-0.997879\pi\)
0.546234 + 0.837633i \(0.316061\pi\)
\(234\) 0 0
\(235\) −4.45776 4.02293i −0.290792 0.262427i
\(236\) 0 0
\(237\) 23.9327 + 17.9158i 1.55459 + 1.16375i
\(238\) 0 0
\(239\) −6.95690 10.8251i −0.450004 0.700221i 0.539936 0.841706i \(-0.318448\pi\)
−0.989940 + 0.141486i \(0.954812\pi\)
\(240\) 0 0
\(241\) −2.91855 1.33286i −0.188000 0.0858568i 0.319191 0.947690i \(-0.396589\pi\)
−0.507191 + 0.861834i \(0.669316\pi\)
\(242\) 0 0
\(243\) −20.8956 27.9132i −1.34045 1.79063i
\(244\) 0 0
\(245\) −7.72681 22.0658i −0.493648 1.40973i
\(246\) 0 0
\(247\) −27.2205 1.94685i −1.73200 0.123875i
\(248\) 0 0
\(249\) 9.71517 11.2119i 0.615674 0.710526i
\(250\) 0 0
\(251\) 2.58110 1.17875i 0.162918 0.0744021i −0.332287 0.943178i \(-0.607820\pi\)
0.495205 + 0.868776i \(0.335093\pi\)
\(252\) 0 0
\(253\) −9.89398 + 4.86872i −0.622029 + 0.306094i
\(254\) 0 0
\(255\) 15.4151 26.9249i 0.965333 1.68611i
\(256\) 0 0
\(257\) −10.4576 + 0.747940i −0.652325 + 0.0466552i −0.393580 0.919290i \(-0.628764\pi\)
−0.258745 + 0.965946i \(0.583309\pi\)
\(258\) 0 0
\(259\) −19.2639 + 16.6923i −1.19700 + 1.03721i
\(260\) 0 0
\(261\) 37.8351 + 11.1094i 2.34194 + 0.687654i
\(262\) 0 0
\(263\) −5.61971 + 4.20686i −0.346526 + 0.259406i −0.758336 0.651864i \(-0.773987\pi\)
0.411810 + 0.911270i \(0.364897\pi\)
\(264\) 0 0
\(265\) 5.80853 8.64955i 0.356815 0.531338i
\(266\) 0 0
\(267\) −3.71265 + 17.0668i −0.227210 + 1.04447i
\(268\) 0 0
\(269\) 28.2928 4.06789i 1.72504 0.248024i 0.792703 0.609608i \(-0.208673\pi\)
0.932339 + 0.361584i \(0.117764\pi\)
\(270\) 0 0
\(271\) −17.5599 11.2851i −1.06669 0.685518i −0.115242 0.993337i \(-0.536764\pi\)
−0.951445 + 0.307819i \(0.900401\pi\)
\(272\) 0 0
\(273\) 58.4121 + 31.8954i 3.53526 + 1.93040i
\(274\) 0 0
\(275\) −10.8912 3.68119i −0.656763 0.221984i
\(276\) 0 0
\(277\) 3.14698 + 3.14698i 0.189084 + 0.189084i 0.795300 0.606216i \(-0.207313\pi\)
−0.606216 + 0.795300i \(0.707313\pi\)
\(278\) 0 0
\(279\) 15.7549 + 53.6564i 0.943223 + 3.21232i
\(280\) 0 0
\(281\) −11.4871 + 17.8743i −0.685265 + 1.06629i 0.308108 + 0.951351i \(0.400304\pi\)
−0.993372 + 0.114941i \(0.963332\pi\)
\(282\) 0 0
\(283\) −6.04173 + 8.07081i −0.359144 + 0.479760i −0.943328 0.331861i \(-0.892324\pi\)
0.584185 + 0.811621i \(0.301414\pi\)
\(284\) 0 0
\(285\) 15.8894 + 36.7362i 0.941204 + 2.17607i
\(286\) 0 0
\(287\) −4.64885 12.4641i −0.274413 0.735730i
\(288\) 0 0
\(289\) 1.41110 + 0.202885i 0.0830058 + 0.0119344i
\(290\) 0 0
\(291\) −10.7188 + 36.5050i −0.628349 + 2.13996i
\(292\) 0 0
\(293\) 0.522794 7.30962i 0.0305420 0.427033i −0.959060 0.283202i \(-0.908603\pi\)
0.989602 0.143831i \(-0.0459421\pi\)
\(294\) 0 0
\(295\) −18.5267 1.70127i −1.07867 0.0990518i
\(296\) 0 0
\(297\) −30.9759 11.5534i −1.79740 0.670397i
\(298\) 0 0
\(299\) 23.6129 + 1.00415i 1.36557 + 0.0580715i
\(300\) 0 0
\(301\) −1.83525 4.01865i −0.105782 0.231631i
\(302\) 0 0
\(303\) 1.40647 + 19.6650i 0.0807994 + 1.12972i
\(304\) 0 0
\(305\) −7.12643 + 29.8479i −0.408058 + 1.70908i
\(306\) 0 0
\(307\) −11.7449 21.5092i −0.670317 1.22759i −0.962513 0.271236i \(-0.912568\pi\)
0.292196 0.956358i \(-0.405614\pi\)
\(308\) 0 0
\(309\) −7.11114 + 49.4590i −0.404538 + 2.81363i
\(310\) 0 0
\(311\) −3.86753 + 8.46870i −0.219307 + 0.480216i −0.987024 0.160574i \(-0.948666\pi\)
0.767717 + 0.640790i \(0.221393\pi\)
\(312\) 0 0
\(313\) 13.2222 + 2.87631i 0.747363 + 0.162579i 0.570089 0.821583i \(-0.306909\pi\)
0.177274 + 0.984162i \(0.443272\pi\)
\(314\) 0 0
\(315\) 1.40350 69.5696i 0.0790783 3.91980i
\(316\) 0 0
\(317\) −2.87438 13.2133i −0.161441 0.742133i −0.984671 0.174424i \(-0.944194\pi\)
0.823230 0.567709i \(-0.192170\pi\)
\(318\) 0 0
\(319\) 11.6798 3.42949i 0.653942 0.192015i
\(320\) 0 0
\(321\) 18.4147i 1.02781i
\(322\) 0 0
\(323\) −16.8083 + 16.8083i −0.935237 + 0.935237i
\(324\) 0 0
\(325\) 16.7065 + 18.1119i 0.926708 + 1.00467i
\(326\) 0 0
\(327\) 43.4012 9.44136i 2.40009 0.522108i
\(328\) 0 0
\(329\) −1.59669 11.1052i −0.0880281 0.612249i
\(330\) 0 0
\(331\) −23.5800 + 15.1540i −1.29608 + 0.832938i −0.992779 0.119959i \(-0.961724\pi\)
−0.303297 + 0.952896i \(0.598087\pi\)
\(332\) 0 0
\(333\) −42.5766 + 15.8802i −2.33318 + 0.870232i
\(334\) 0 0
\(335\) −5.25955 1.66028i −0.287360 0.0907110i
\(336\) 0 0
\(337\) 17.2431 9.41546i 0.939293 0.512893i 0.0647826 0.997899i \(-0.479365\pi\)
0.874511 + 0.485007i \(0.161183\pi\)
\(338\) 0 0
\(339\) −32.1405 37.0921i −1.74563 2.01456i
\(340\) 0 0
\(341\) 13.0466 + 11.3049i 0.706512 + 0.612196i
\(342\) 0 0
\(343\) 5.04543 13.5273i 0.272428 0.730407i
\(344\) 0 0
\(345\) −14.6744 31.4040i −0.790041 1.69074i
\(346\) 0 0
\(347\) −7.30108 + 19.5750i −0.391943 + 1.05084i 0.579792 + 0.814764i \(0.303134\pi\)
−0.971735 + 0.236075i \(0.924139\pi\)
\(348\) 0 0
\(349\) 12.6493 + 10.9607i 0.677100 + 0.586711i 0.924029 0.382323i \(-0.124876\pi\)
−0.246928 + 0.969034i \(0.579421\pi\)
\(350\) 0 0
\(351\) 46.4022 + 53.5510i 2.47677 + 2.85834i
\(352\) 0 0
\(353\) 11.8496 6.47038i 0.630691 0.344383i −0.131901 0.991263i \(-0.542108\pi\)
0.762592 + 0.646880i \(0.223926\pi\)
\(354\) 0 0
\(355\) −1.65870 3.18897i −0.0880349 0.169253i
\(356\) 0 0
\(357\) 54.3147 20.2583i 2.87464 1.07218i
\(358\) 0 0
\(359\) 19.7419 12.6873i 1.04194 0.669611i 0.0964707 0.995336i \(-0.469245\pi\)
0.945465 + 0.325725i \(0.105608\pi\)
\(360\) 0 0
\(361\) −1.66021 11.5470i −0.0873795 0.607738i
\(362\) 0 0
\(363\) 18.0453 3.92552i 0.947134 0.206036i
\(364\) 0 0
\(365\) 1.93408 + 15.6927i 0.101234 + 0.821395i
\(366\) 0 0
\(367\) 6.54247 6.54247i 0.341514 0.341514i −0.515422 0.856936i \(-0.672365\pi\)
0.856936 + 0.515422i \(0.172365\pi\)
\(368\) 0 0
\(369\) 23.7154i 1.23458i
\(370\) 0 0
\(371\) 18.6787 5.48457i 0.969751 0.284745i
\(372\) 0 0
\(373\) −1.14513 5.26408i −0.0592926 0.272564i 0.937950 0.346770i \(-0.112721\pi\)
−0.997243 + 0.0742059i \(0.976358\pi\)
\(374\) 0 0
\(375\) 12.2600 33.9960i 0.633102 1.75554i
\(376\) 0 0
\(377\) −25.4938 5.54584i −1.31300 0.285625i
\(378\) 0 0
\(379\) 12.7747 27.9727i 0.656193 1.43686i −0.229834 0.973230i \(-0.573818\pi\)
0.886027 0.463633i \(-0.153454\pi\)
\(380\) 0 0
\(381\) −6.96776 + 48.4619i −0.356969 + 2.48278i
\(382\) 0 0
\(383\) −0.693322 1.26972i −0.0354271 0.0648799i 0.859366 0.511361i \(-0.170859\pi\)
−0.894793 + 0.446482i \(0.852677\pi\)
\(384\) 0 0
\(385\) −11.2465 18.3012i −0.573173 0.932717i
\(386\) 0 0
\(387\) −0.561862 7.85586i −0.0285610 0.399336i
\(388\) 0 0
\(389\) −14.7804 32.3645i −0.749394 1.64094i −0.767452 0.641107i \(-0.778476\pi\)
0.0180581 0.999837i \(-0.494252\pi\)
\(390\) 0 0
\(391\) 14.1299 14.9711i 0.714579 0.757123i
\(392\) 0 0
\(393\) 0.0743242 + 0.0277215i 0.00374916 + 0.00139836i
\(394\) 0 0
\(395\) −1.89113 + 20.5943i −0.0951531 + 1.03621i
\(396\) 0 0
\(397\) 0.798620 11.1662i 0.0400816 0.560414i −0.937244 0.348673i \(-0.886632\pi\)
0.977326 0.211741i \(-0.0679132\pi\)
\(398\) 0 0
\(399\) −21.0695 + 71.7561i −1.05479 + 3.59230i
\(400\) 0 0
\(401\) 2.59697 + 0.373389i 0.129687 + 0.0186461i 0.206852 0.978372i \(-0.433678\pi\)
−0.0771658 + 0.997018i \(0.524587\pi\)
\(402\) 0 0
\(403\) −12.9302 34.6671i −0.644097 1.72689i
\(404\) 0 0
\(405\) 19.8732 50.1677i 0.987507 2.49285i
\(406\) 0 0
\(407\) −8.40663 + 11.2299i −0.416701 + 0.556648i
\(408\) 0 0
\(409\) −20.8619 + 32.4618i −1.03156 + 1.60513i −0.263600 + 0.964632i \(0.584910\pi\)
−0.767957 + 0.640502i \(0.778726\pi\)
\(410\) 0 0
\(411\) −0.648106 2.20725i −0.0319687 0.108875i
\(412\) 0 0
\(413\) −24.5804 24.5804i −1.20952 1.20952i
\(414\) 0 0
\(415\) 10.1268 + 1.66514i 0.497104 + 0.0817385i
\(416\) 0 0
\(417\) −19.6192 10.7129i −0.960755 0.524612i
\(418\) 0 0
\(419\) −2.57092 1.65223i −0.125598 0.0807167i 0.476334 0.879265i \(-0.341965\pi\)
−0.601931 + 0.798548i \(0.705602\pi\)
\(420\) 0 0
\(421\) −3.89707 + 0.560315i −0.189932 + 0.0273081i −0.236624 0.971601i \(-0.576041\pi\)
0.0466924 + 0.998909i \(0.485132\pi\)
\(422\) 0 0
\(423\) 4.25157 19.5441i 0.206718 0.950268i
\(424\) 0 0
\(425\) 21.4522 0.666459i 1.04058 0.0323280i
\(426\) 0 0
\(427\) −45.9006 + 34.3608i −2.22129 + 1.66283i
\(428\) 0 0
\(429\) 35.1427 + 10.3188i 1.69671 + 0.498198i
\(430\) 0 0
\(431\) 1.14882 0.995462i 0.0553369 0.0479497i −0.626753 0.779218i \(-0.715617\pi\)
0.682090 + 0.731268i \(0.261071\pi\)
\(432\) 0 0
\(433\) −15.9372 + 1.13985i −0.765893 + 0.0547777i −0.448818 0.893623i \(-0.648155\pi\)
−0.317074 + 0.948401i \(0.602700\pi\)
\(434\) 0 0
\(435\) 10.0378 + 36.9253i 0.481278 + 1.77043i
\(436\) 0 0
\(437\) 4.53758 + 26.1672i 0.217062 + 1.25175i
\(438\) 0 0
\(439\) 13.7224 6.26682i 0.654935 0.299099i −0.0600948 0.998193i \(-0.519140\pi\)
0.715030 + 0.699094i \(0.246413\pi\)
\(440\) 0 0
\(441\) 50.9982 58.8550i 2.42848 2.80262i
\(442\) 0 0
\(443\) −9.86767 0.705750i −0.468827 0.0335312i −0.165073 0.986281i \(-0.552786\pi\)
−0.303755 + 0.952750i \(0.598240\pi\)
\(444\) 0 0
\(445\) −11.4035 + 3.99318i −0.540577 + 0.189295i
\(446\) 0 0
\(447\) 16.2245 + 21.6734i 0.767393 + 1.02512i
\(448\) 0 0
\(449\) 18.7693 + 8.57166i 0.885779 + 0.404522i 0.805740 0.592270i \(-0.201768\pi\)
0.0800395 + 0.996792i \(0.474495\pi\)
\(450\) 0 0
\(451\) −3.95803 6.15881i −0.186376 0.290007i
\(452\) 0 0
\(453\) −10.7282 8.03105i −0.504056 0.377332i
\(454\) 0 0
\(455\) 2.35750 + 45.9790i 0.110521 + 2.15553i
\(456\) 0 0
\(457\) 4.75963 8.71660i 0.222646 0.407745i −0.742349 0.670013i \(-0.766288\pi\)
0.964995 + 0.262268i \(0.0844703\pi\)
\(458\) 0 0
\(459\) 61.7197 2.88083
\(460\) 0 0
\(461\) −14.3758 −0.669549 −0.334775 0.942298i \(-0.608660\pi\)
−0.334775 + 0.942298i \(0.608660\pi\)
\(462\) 0 0
\(463\) 17.9326 32.8411i 0.833399 1.52626i −0.0168394 0.999858i \(-0.505360\pi\)
0.850238 0.526398i \(-0.176458\pi\)
\(464\) 0 0
\(465\) −36.3569 + 40.2867i −1.68601 + 1.86825i
\(466\) 0 0
\(467\) 23.1387 + 17.3214i 1.07073 + 0.801538i 0.980918 0.194421i \(-0.0622828\pi\)
0.0898110 + 0.995959i \(0.471374\pi\)
\(468\) 0 0
\(469\) −5.57143 8.66932i −0.257265 0.400312i
\(470\) 0 0
\(471\) −21.3173 9.73530i −0.982250 0.448579i
\(472\) 0 0
\(473\) −1.45703 1.94637i −0.0669944 0.0894940i
\(474\) 0 0
\(475\) −15.8967 + 22.6702i −0.729391 + 1.04018i
\(476\) 0 0
\(477\) 34.6166 + 2.47583i 1.58499 + 0.113360i
\(478\) 0 0
\(479\) 22.9239 26.4556i 1.04742 1.20879i 0.0699870 0.997548i \(-0.477704\pi\)
0.977434 0.211241i \(-0.0677503\pi\)
\(480\) 0 0
\(481\) 27.3490 12.4899i 1.24701 0.569490i
\(482\) 0 0
\(483\) 16.4437 62.6448i 0.748213 2.85044i
\(484\) 0 0
\(485\) −25.3976 + 6.90413i −1.15324 + 0.313500i
\(486\) 0 0
\(487\) 33.9184 2.42589i 1.53699 0.109928i 0.723017 0.690830i \(-0.242755\pi\)
0.813973 + 0.580903i \(0.197300\pi\)
\(488\) 0 0
\(489\) 31.4000 27.2082i 1.41996 1.23040i
\(490\) 0 0
\(491\) 0.209759 + 0.0615907i 0.00946627 + 0.00277955i 0.286462 0.958092i \(-0.407521\pi\)
−0.276996 + 0.960871i \(0.589339\pi\)
\(492\) 0 0
\(493\) −18.1925 + 13.6187i −0.819350 + 0.613357i
\(494\) 0 0
\(495\) −7.38365 37.5758i −0.331871 1.68891i
\(496\) 0 0
\(497\) 1.42765 6.56278i 0.0640387 0.294381i
\(498\) 0 0
\(499\) 34.2383 4.92272i 1.53271 0.220371i 0.676287 0.736638i \(-0.263588\pi\)
0.856428 + 0.516267i \(0.172679\pi\)
\(500\) 0 0
\(501\) −42.9483 27.6012i −1.91879 1.23313i
\(502\) 0 0
\(503\) 5.51113 + 3.00930i 0.245729 + 0.134178i 0.597394 0.801948i \(-0.296203\pi\)
−0.351665 + 0.936126i \(0.614384\pi\)
\(504\) 0 0
\(505\) −11.0807 + 7.95132i −0.493087 + 0.353829i
\(506\) 0 0
\(507\) −25.7954 25.7954i −1.14562 1.14562i
\(508\) 0 0
\(509\) 11.0233 + 37.5420i 0.488600 + 1.66402i 0.722198 + 0.691687i \(0.243132\pi\)
−0.233597 + 0.972333i \(0.575050\pi\)
\(510\) 0 0
\(511\) −15.9722 + 24.8532i −0.706567 + 1.09944i
\(512\) 0 0
\(513\) −47.7164 + 63.7417i −2.10673 + 2.81426i
\(514\) 0 0
\(515\) −31.7258 + 13.7222i −1.39800 + 0.604673i
\(516\) 0 0
\(517\) −2.15774 5.78512i −0.0948972 0.254429i
\(518\) 0 0
\(519\) −14.4021 2.07072i −0.632184 0.0908943i
\(520\) 0 0
\(521\) 5.72139 19.4853i 0.250659 0.853666i −0.733996 0.679154i \(-0.762347\pi\)
0.984655 0.174512i \(-0.0558348\pi\)
\(522\) 0 0
\(523\) −0.313672 + 4.38571i −0.0137159 + 0.191774i 0.985975 + 0.166896i \(0.0533743\pi\)
−0.999690 + 0.0248781i \(0.992080\pi\)
\(524\) 0 0
\(525\) 58.2312 34.1856i 2.54142 1.49198i
\(526\) 0 0
\(527\) −30.1961 11.2626i −1.31536 0.490606i
\(528\) 0 0
\(529\) −4.58291 22.5388i −0.199257 0.979947i
\(530\) 0 0
\(531\) −25.7439 56.3713i −1.11719 2.44631i
\(532\) 0 0
\(533\) 1.11939 + 15.6511i 0.0484861 + 0.677924i
\(534\) 0 0
\(535\) −10.8532 + 6.66953i −0.469227 + 0.288349i
\(536\) 0 0
\(537\) 14.6091 + 26.7546i 0.630430 + 1.15455i
\(538\) 0 0
\(539\) 3.42133 23.7959i 0.147367 1.02496i
\(540\) 0 0
\(541\) −10.5234 + 23.0431i −0.452437 + 0.990699i 0.536710 + 0.843767i \(0.319667\pi\)
−0.989147 + 0.146932i \(0.953060\pi\)
\(542\) 0 0
\(543\) 64.6630 + 14.0666i 2.77496 + 0.603655i
\(544\) 0 0
\(545\) 21.2839 + 22.1603i 0.911701 + 0.949244i
\(546\) 0 0
\(547\) −4.11046 18.8955i −0.175751 0.807912i −0.977614 0.210405i \(-0.932522\pi\)
0.801864 0.597507i \(-0.203842\pi\)
\(548\) 0 0
\(549\) −98.0763 + 28.7978i −4.18579 + 1.22906i
\(550\) 0 0
\(551\) 29.3174i 1.24896i
\(552\) 0 0
\(553\) −27.3236 + 27.3236i −1.16192 + 1.16192i
\(554\) 0 0
\(555\) −34.7611 27.1328i −1.47552 1.15172i
\(556\) 0 0
\(557\) −9.37056 + 2.03844i −0.397043 + 0.0863715i −0.406654 0.913582i \(-0.633305\pi\)
0.00961040 + 0.999954i \(0.496941\pi\)
\(558\) 0 0
\(559\) 0.741606 + 5.15798i 0.0313666 + 0.218159i
\(560\) 0 0
\(561\) 26.8383 17.2479i 1.13311 0.728207i
\(562\) 0 0
\(563\) 20.6166 7.68958i 0.868884 0.324077i 0.124815 0.992180i \(-0.460166\pi\)
0.744069 + 0.668103i \(0.232893\pi\)
\(564\) 0 0
\(565\) 10.2205 32.3772i 0.429981 1.36212i
\(566\) 0 0
\(567\) 88.4901 48.3193i 3.71624 2.02922i
\(568\) 0 0
\(569\) −25.7436 29.7097i −1.07923 1.24549i −0.967799 0.251722i \(-0.919003\pi\)
−0.111428 0.993773i \(-0.535542\pi\)
\(570\) 0 0
\(571\) 14.2793 + 12.3731i 0.597570 + 0.517798i 0.900295 0.435280i \(-0.143351\pi\)
−0.302725 + 0.953078i \(0.597896\pi\)
\(572\) 0 0
\(573\) −5.20469 + 13.9543i −0.217429 + 0.582950i
\(574\) 0 0
\(575\) 13.1941 20.0229i 0.550231 0.835012i
\(576\) 0 0
\(577\) −0.774082 + 2.07540i −0.0322255 + 0.0863998i −0.952066 0.305893i \(-0.901045\pi\)
0.919841 + 0.392292i \(0.128318\pi\)
\(578\) 0 0
\(579\) 7.07706 + 6.13231i 0.294113 + 0.254850i
\(580\) 0 0
\(581\) 12.5573 + 14.4919i 0.520964 + 0.601225i
\(582\) 0 0
\(583\) 9.40303 5.13444i 0.389434 0.212647i
\(584\) 0 0
\(585\) −24.7072 + 78.2691i −1.02152 + 3.23603i
\(586\) 0 0
\(587\) 0.128928 0.0480875i 0.00532141 0.00198478i −0.346802 0.937938i \(-0.612732\pi\)
0.352123 + 0.935954i \(0.385460\pi\)
\(588\) 0 0
\(589\) 34.9766 22.4781i 1.44119 0.926195i
\(590\) 0 0
\(591\) 6.71767 + 46.7224i 0.276328 + 1.92190i
\(592\) 0 0
\(593\) 38.2479 8.32032i 1.57065 0.341675i 0.658841 0.752282i \(-0.271047\pi\)
0.911812 + 0.410607i \(0.134683\pi\)
\(594\) 0 0
\(595\) 31.6119 + 24.6747i 1.29596 + 1.01157i
\(596\) 0 0
\(597\) −6.25934 + 6.25934i −0.256178 + 0.256178i
\(598\) 0 0
\(599\) 39.1031i 1.59771i 0.601524 + 0.798855i \(0.294561\pi\)
−0.601524 + 0.798855i \(0.705439\pi\)
\(600\) 0 0
\(601\) −25.6764 + 7.53926i −1.04736 + 0.307533i −0.759751 0.650215i \(-0.774679\pi\)
−0.287610 + 0.957748i \(0.592861\pi\)
\(602\) 0 0
\(603\) −3.90515 17.9517i −0.159030 0.731049i
\(604\) 0 0
\(605\) 8.84939 + 9.21380i 0.359779 + 0.374594i
\(606\) 0 0
\(607\) 38.1582 + 8.30081i 1.54879 + 0.336919i 0.904032 0.427464i \(-0.140593\pi\)
0.644761 + 0.764384i \(0.276957\pi\)
\(608\) 0 0
\(609\) −29.7009 + 65.0360i −1.20354 + 2.63539i
\(610\) 0 0
\(611\) −1.88334 + 13.0989i −0.0761917 + 0.529925i
\(612\) 0 0
\(613\) 10.2815 + 18.8292i 0.415266 + 0.760503i 0.998664 0.0516836i \(-0.0164587\pi\)
−0.583397 + 0.812187i \(0.698277\pi\)
\(614\) 0 0
\(615\) 19.6072 12.0490i 0.790639 0.485863i
\(616\) 0 0
\(617\) −0.324597 4.53845i −0.0130678 0.182711i −0.999794 0.0203163i \(-0.993533\pi\)
0.986726 0.162395i \(-0.0519219\pi\)
\(618\) 0 0
\(619\) 10.0698 + 22.0498i 0.404740 + 0.886256i 0.996768 + 0.0803389i \(0.0256003\pi\)
−0.592028 + 0.805917i \(0.701672\pi\)
\(620\) 0 0
\(621\) 39.7119 56.3738i 1.59358 2.26220i
\(622\) 0 0
\(623\) −21.1521 7.88932i −0.847441 0.316079i
\(624\) 0 0
\(625\) 24.4770 5.08708i 0.979078 0.203483i
\(626\) 0 0
\(627\) −2.93611 + 41.0521i −0.117257 + 1.63946i
\(628\) 0 0
\(629\) 7.37815 25.1277i 0.294186 1.00191i
\(630\) 0 0
\(631\) 22.1266 + 3.18133i 0.880847 + 0.126647i 0.567874 0.823115i \(-0.307766\pi\)
0.312973 + 0.949762i \(0.398675\pi\)
\(632\) 0 0
\(633\) 12.6676 + 33.9632i 0.503493 + 1.34992i
\(634\) 0 0
\(635\) −31.0861 + 13.4455i −1.23361 + 0.533570i
\(636\) 0 0
\(637\) −30.8784 + 41.2488i −1.22345 + 1.63434i
\(638\) 0 0
\(639\) 6.47328 10.0726i 0.256079 0.398467i
\(640\) 0 0
\(641\) −8.14988 27.7559i −0.321901 1.09629i −0.948454 0.316915i \(-0.897353\pi\)
0.626553 0.779379i \(-0.284465\pi\)
\(642\) 0 0
\(643\) −18.1303 18.1303i −0.714991 0.714991i 0.252584 0.967575i \(-0.418720\pi\)
−0.967575 + 0.252584i \(0.918720\pi\)
\(644\) 0 0
\(645\) 6.20952 4.45583i 0.244500 0.175448i
\(646\) 0 0
\(647\) −9.88940 5.40002i −0.388792 0.212297i 0.272950 0.962028i \(-0.412001\pi\)
−0.661742 + 0.749732i \(0.730183\pi\)
\(648\) 0 0
\(649\) −16.0938 10.3429i −0.631737 0.405993i
\(650\) 0 0
\(651\) −100.362 + 14.4299i −3.93351 + 0.565554i
\(652\) 0 0
\(653\) −7.86005 + 36.1320i −0.307587 + 1.41396i 0.520742 + 0.853714i \(0.325655\pi\)
−0.828329 + 0.560242i \(0.810708\pi\)
\(654\) 0 0
\(655\) 0.0105807 + 0.0538456i 0.000413421 + 0.00210392i
\(656\) 0 0
\(657\) −42.1625 + 31.5624i −1.64492 + 1.23137i
\(658\) 0 0
\(659\) 34.0520 + 9.99856i 1.32648 + 0.389489i 0.866826 0.498611i \(-0.166156\pi\)
0.459651 + 0.888100i \(0.347975\pi\)
\(660\) 0 0
\(661\) 2.19716 1.90385i 0.0854598 0.0740513i −0.611083 0.791566i \(-0.709266\pi\)
0.696543 + 0.717515i \(0.254721\pi\)
\(662\) 0 0
\(663\) −68.2028 + 4.87796i −2.64878 + 0.189444i
\(664\) 0 0
\(665\) −49.9227 + 13.5711i −1.93592 + 0.526265i
\(666\) 0 0
\(667\) 0.733665 + 25.3794i 0.0284076 + 0.982693i
\(668\) 0 0
\(669\) 42.4854 19.4024i 1.64258 0.750141i
\(670\) 0 0
\(671\) −20.6638 + 23.8473i −0.797718 + 0.920615i
\(672\) 0 0
\(673\) 17.2311 + 1.23239i 0.664210 + 0.0475052i 0.399374 0.916788i \(-0.369228\pi\)
0.264836 + 0.964293i \(0.414682\pi\)
\(674\) 0 0
\(675\) 70.8086 12.4361i 2.72543 0.478666i
\(676\) 0 0
\(677\) −22.4257 29.9572i −0.861890 1.15135i −0.987240 0.159238i \(-0.949096\pi\)
0.125350 0.992113i \(-0.459994\pi\)
\(678\) 0 0
\(679\) −44.7324 20.4286i −1.71667 0.783978i
\(680\) 0 0
\(681\) 9.80972 + 15.2642i 0.375909 + 0.584926i
\(682\) 0 0
\(683\) 25.1699 + 18.8420i 0.963100 + 0.720968i 0.960283 0.279028i \(-0.0900124\pi\)
0.00281712 + 0.999996i \(0.499103\pi\)
\(684\) 0 0
\(685\) 1.06617 1.18141i 0.0407364 0.0451395i
\(686\) 0 0
\(687\) 29.4838 53.9955i 1.12488 2.06006i
\(688\) 0 0
\(689\) −22.9623 −0.874792
\(690\) 0 0
\(691\) 28.8391 1.09709 0.548546 0.836120i \(-0.315182\pi\)
0.548546 + 0.836120i \(0.315182\pi\)
\(692\) 0 0
\(693\) 34.2909 62.7991i 1.30260 2.38554i
\(694\) 0 0
\(695\) −0.791825 15.4432i −0.0300357 0.585794i
\(696\) 0 0
\(697\) 10.9413 + 8.19058i 0.414432 + 0.310240i
\(698\) 0 0
\(699\) −25.2557 39.2986i −0.955257 1.48641i
\(700\) 0 0
\(701\) 8.28667 + 3.78439i 0.312983 + 0.142935i 0.565713 0.824602i \(-0.308601\pi\)
−0.252730 + 0.967537i \(0.581328\pi\)
\(702\) 0 0
\(703\) 20.2467 + 27.0464i 0.763619 + 1.02008i
\(704\) 0 0
\(705\) 18.3186 6.41465i 0.689918 0.241590i
\(706\) 0 0
\(707\) −25.4179 1.81792i −0.955937 0.0683699i
\(708\) 0 0
\(709\) −14.7992 + 17.0792i −0.555795 + 0.641422i −0.962223 0.272261i \(-0.912229\pi\)
0.406428 + 0.913683i \(0.366774\pi\)
\(710\) 0 0
\(711\) −62.6623 + 28.6169i −2.35002 + 1.07322i
\(712\) 0 0
\(713\) −29.7159 + 20.3341i −1.11287 + 0.761517i
\(714\) 0 0
\(715\) 6.64648 + 24.4498i 0.248564 + 0.914370i
\(716\) 0 0
\(717\) 41.4879 2.96727i 1.54939 0.110815i
\(718\) 0 0
\(719\) −31.2180 + 27.0506i −1.16424 + 1.00882i −0.164487 + 0.986379i \(0.552597\pi\)
−0.999748 + 0.0224362i \(0.992858\pi\)
\(720\) 0 0
\(721\) −61.9693 18.1958i −2.30786 0.677648i
\(722\) 0 0
\(723\) 8.30246 6.21514i 0.308772 0.231144i
\(724\) 0 0
\(725\) −18.1275 + 19.2899i −0.673237 + 0.716410i
\(726\) 0 0
\(727\) −1.91054 + 8.78260i −0.0708579 + 0.325728i −0.998908 0.0467277i \(-0.985121\pi\)
0.928050 + 0.372456i \(0.121484\pi\)
\(728\) 0 0
\(729\) 39.9004 5.73681i 1.47779 0.212474i
\(730\) 0 0
\(731\) 3.81842 + 2.45395i 0.141229 + 0.0907627i
\(732\) 0 0
\(733\) 24.9032 + 13.5982i 0.919820 + 0.502260i 0.868093 0.496401i \(-0.165346\pi\)
0.0517271 + 0.998661i \(0.483527\pi\)
\(734\) 0 0
\(735\) 74.5701 + 12.2615i 2.75056 + 0.452272i
\(736\) 0 0
\(737\) −4.01024 4.01024i −0.147719 0.147719i
\(738\) 0 0
\(739\) 14.1334 + 48.1338i 0.519904 + 1.77063i 0.629876 + 0.776696i \(0.283106\pi\)
−0.109972 + 0.993935i \(0.535076\pi\)
\(740\) 0 0
\(741\) 47.6908 74.2084i 1.75197 2.72611i
\(742\) 0 0
\(743\) 8.32714 11.1238i 0.305493 0.408091i −0.621354 0.783530i \(-0.713417\pi\)
0.926847 + 0.375439i \(0.122508\pi\)
\(744\) 0 0
\(745\) −6.89760 + 17.4122i −0.252708 + 0.637934i
\(746\) 0 0
\(747\) 11.9464 + 32.0296i 0.437096 + 1.17190i
\(748\) 0 0
\(749\) −23.5595 3.38735i −0.860845 0.123771i
\(750\) 0 0
\(751\) 6.66147 22.6869i 0.243080 0.827856i −0.744076 0.668096i \(-0.767110\pi\)
0.987156 0.159760i \(-0.0510721\pi\)
\(752\) 0 0
\(753\) −0.654320 + 9.14859i −0.0238447 + 0.333393i
\(754\) 0 0
\(755\) 0.847732 9.23175i 0.0308521 0.335978i
\(756\) 0 0
\(757\) 3.83338 + 1.42978i 0.139327 + 0.0519661i 0.418160 0.908373i \(-0.362675\pi\)
−0.278834 + 0.960339i \(0.589948\pi\)
\(758\) 0 0
\(759\) 1.51439 35.6113i 0.0549689 1.29261i
\(760\) 0 0
\(761\) −15.7521 34.4922i −0.571012 1.25034i −0.946257 0.323417i \(-0.895168\pi\)
0.375244 0.926926i \(-0.377559\pi\)
\(762\) 0 0
\(763\) 4.09559 + 57.2638i 0.148270 + 2.07309i
\(764\) 0 0
\(765\) 37.4300 + 60.9094i 1.35329 + 2.20218i
\(766\) 0 0
\(767\) 19.6506 + 35.9873i 0.709541 + 1.29943i
\(768\) 0 0
\(769\) 0.722968 5.02835i 0.0260709 0.181327i −0.972625 0.232380i \(-0.925349\pi\)
0.998696 + 0.0510530i \(0.0162578\pi\)
\(770\) 0 0
\(771\) 14.0781 30.8267i 0.507009 1.11020i
\(772\) 0 0
\(773\) 10.7096 + 2.32974i 0.385199 + 0.0837950i 0.400995 0.916080i \(-0.368664\pi\)
−0.0157957 + 0.999875i \(0.505028\pi\)
\(774\) 0 0
\(775\) −36.9122 6.83679i −1.32593 0.245585i
\(776\) 0 0
\(777\) −17.5138 80.5099i −0.628306 2.88828i
\(778\) 0 0
\(779\) −16.9178 + 4.96752i −0.606144 + 0.177980i
\(780\) 0 0
\(781\) 3.69620i 0.132260i
\(782\) 0 0
\(783\) −53.8265 + 53.8265i −1.92360 + 1.92360i
\(784\) 0 0
\(785\) −1.98304 16.0900i −0.0707778 0.574277i
\(786\) 0 0
\(787\) −24.7543 + 5.38497i −0.882396 + 0.191953i −0.630862 0.775895i \(-0.717299\pi\)
−0.251534 + 0.967848i \(0.580935\pi\)
\(788\) 0 0
\(789\) −3.22925 22.4600i −0.114964 0.799596i
\(790\) 0 0
\(791\) 53.3673 34.2971i 1.89752 1.21946i
\(792\) 0 0
\(793\) 63.3665 23.6345i 2.25021 0.839286i
\(794\) 0 0
\(795\) 15.5406 + 29.8779i 0.551169 + 1.05966i
\(796\) 0 0
\(797\) −18.2752 + 9.97904i −0.647342 + 0.353476i −0.769141 0.639079i \(-0.779316\pi\)
0.121799 + 0.992555i \(0.461134\pi\)
\(798\) 0 0
\(799\) 7.54851 + 8.71145i 0.267047 + 0.308189i
\(800\) 0 0
\(801\) −30.4160 26.3556i −1.07470 0.931230i
\(802\) 0 0
\(803\) −5.68178 + 15.2334i −0.200506 + 0.537577i
\(804\) 0 0
\(805\) 42.8773 12.9975i 1.51123 0.458101i
\(806\) 0 0
\(807\) −32.2882 + 86.5680i −1.13660 + 3.04734i
\(808\) 0 0
\(809\) −4.58736 3.97497i −0.161283 0.139753i 0.570480 0.821311i \(-0.306757\pi\)
−0.731764 + 0.681559i \(0.761302\pi\)
\(810\) 0 0
\(811\) −33.2168 38.3343i −1.16640 1.34610i −0.926948 0.375190i \(-0.877577\pi\)
−0.239453 0.970908i \(-0.576968\pi\)
\(812\) 0 0
\(813\) 59.2179 32.3354i 2.07686 1.13405i
\(814\) 0 0
\(815\) 27.4086 + 8.65210i 0.960083 + 0.303070i
\(816\) 0 0
\(817\) −5.48642 + 2.04633i −0.191946 + 0.0715920i
\(818\) 0 0
\(819\) −129.011 + 82.9104i −4.50801 + 2.89712i
\(820\) 0 0
\(821\) 1.76169 + 12.2528i 0.0614835 + 0.427627i 0.997194 + 0.0748585i \(0.0238505\pi\)
−0.935711 + 0.352768i \(0.885240\pi\)
\(822\) 0 0
\(823\) −13.4731 + 2.93089i −0.469642 + 0.102164i −0.441157 0.897430i \(-0.645432\pi\)
−0.0284846 + 0.999594i \(0.509068\pi\)
\(824\) 0 0
\(825\) 27.3152 25.1956i 0.950992 0.877198i
\(826\) 0 0
\(827\) −7.11232 + 7.11232i −0.247320 + 0.247320i −0.819870 0.572550i \(-0.805954\pi\)
0.572550 + 0.819870i \(0.305954\pi\)
\(828\) 0 0
\(829\) 42.7316i 1.48413i −0.670329 0.742064i \(-0.733847\pi\)
0.670329 0.742064i \(-0.266153\pi\)
\(830\) 0 0
\(831\) −13.8030 + 4.05292i −0.478820 + 0.140594i
\(832\) 0 0
\(833\) 9.54012 + 43.8552i 0.330545 + 1.51949i
\(834\) 0 0
\(835\) 0.712338 35.3096i 0.0246515 1.22194i
\(836\) 0 0
\(837\) −105.487 22.9472i −3.64615 0.793171i
\(838\) 0 0
\(839\) −14.6209 + 32.0152i −0.504769 + 1.10529i 0.470121 + 0.882602i \(0.344210\pi\)
−0.974890 + 0.222687i \(0.928517\pi\)
\(840\) 0 0
\(841\) −0.138294 + 0.961854i −0.00476875 + 0.0331674i
\(842\) 0 0
\(843\) −32.9144 60.2782i −1.13363 2.07609i
\(844\) 0 0
\(845\) 5.86058 24.5461i 0.201610 0.844410i
\(846\) 0 0
\(847\) 1.70286 + 23.8091i 0.0585109 + 0.818090i
\(848\) 0 0
\(849\) −13.5375 29.6429i −0.464605 1.01734i
\(850\) 0 0
\(851\) −18.2039 22.9068i −0.624023 0.785234i
\(852\) 0 0
\(853\) −45.7228 17.0537i −1.56552 0.583909i −0.590698 0.806893i \(-0.701147\pi\)
−0.974822 + 0.222985i \(0.928420\pi\)
\(854\) 0 0
\(855\) −91.8425 8.43371i −3.14095 0.288427i
\(856\) 0 0
\(857\) 1.83633 25.6752i 0.0627278 0.877049i −0.864519 0.502600i \(-0.832377\pi\)
0.927247 0.374450i \(-0.122168\pi\)
\(858\) 0 0
\(859\) 13.3715 45.5390i 0.456228 1.55377i −0.334980 0.942225i \(-0.608730\pi\)
0.791209 0.611546i \(-0.209452\pi\)
\(860\) 0 0
\(861\) 42.5620 + 6.11950i 1.45051 + 0.208552i
\(862\) 0 0
\(863\) 0.0330663 + 0.0886542i 0.00112559 + 0.00301782i 0.937511 0.347955i \(-0.113124\pi\)
−0.936386 + 0.350973i \(0.885851\pi\)
\(864\) 0 0
\(865\) −3.99581 9.23833i −0.135862 0.314113i
\(866\) 0 0
\(867\) −2.76154 + 3.68898i −0.0937867 + 0.125284i
\(868\) 0 0
\(869\) −11.4971 + 17.8898i −0.390013 + 0.606871i
\(870\) 0 0
\(871\) 3.42456 + 11.6630i 0.116037 + 0.395185i
\(872\) 0 0
\(873\) −61.9910 61.9910i −2.09808 2.09808i
\(874\) 0 0
\(875\) 41.2389 + 21.9388i 1.39413 + 0.741666i
\(876\) 0 0
\(877\) −24.2848 13.2605i −0.820041 0.447776i 0.0137174 0.999906i \(-0.495633\pi\)
−0.833758 + 0.552130i \(0.813815\pi\)
\(878\) 0 0
\(879\) 19.9275 + 12.8066i 0.672136 + 0.431956i
\(880\) 0 0
\(881\) 17.6335 2.53531i 0.594088 0.0854169i 0.161288 0.986907i \(-0.448435\pi\)
0.432799 + 0.901490i \(0.357526\pi\)
\(882\) 0 0
\(883\) 4.86128 22.3469i 0.163595 0.752034i −0.820104 0.572214i \(-0.806085\pi\)
0.983699 0.179820i \(-0.0575516\pi\)
\(884\) 0 0
\(885\) 33.5265 49.9247i 1.12698 1.67820i
\(886\) 0 0
\(887\) 40.1788 30.0775i 1.34907 1.00990i 0.351803 0.936074i \(-0.385569\pi\)
0.997271 0.0738299i \(-0.0235222\pi\)
\(888\) 0 0
\(889\) −60.7199 17.8290i −2.03648 0.597964i
\(890\) 0 0
\(891\) 41.9338 36.3358i 1.40483 1.21730i
\(892\) 0 0
\(893\) −14.8327 + 1.06086i −0.496357 + 0.0355002i
\(894\) 0 0
\(895\) −10.4774 + 18.3005i −0.350222 + 0.611717i
\(896\) 0 0
\(897\) −39.4278 + 65.4339i −1.31645 + 2.18477i
\(898\) 0 0
\(899\) 36.1566 16.5122i 1.20589 0.550712i
\(900\) 0 0
\(901\) −13.0978 + 15.1156i −0.436350 + 0.503575i
\(902\) 0 0
\(903\) 14.2439 + 1.01874i 0.474006 + 0.0339016i
\(904\) 0 0
\(905\) 15.1295 + 43.2058i 0.502921 + 1.43621i
\(906\) 0 0
\(907\) −9.35076 12.4912i −0.310487 0.414762i 0.617970 0.786202i \(-0.287955\pi\)
−0.928457 + 0.371439i \(0.878864\pi\)
\(908\) 0 0
\(909\) −41.3238 18.8719i −1.37062 0.625943i
\(910\) 0 0
\(911\) −11.0404 17.1791i −0.365783 0.569170i 0.608764 0.793351i \(-0.291666\pi\)
−0.974547 + 0.224181i \(0.928029\pi\)
\(912\) 0 0
\(913\) 8.44807 + 6.32415i 0.279590 + 0.209299i
\(914\) 0 0
\(915\) −73.6384 66.4553i −2.43441 2.19695i
\(916\) 0 0
\(917\) −0.0491384 + 0.0899903i −0.00162269 + 0.00297174i
\(918\) 0 0
\(919\) −22.4132 −0.739343 −0.369671 0.929163i \(-0.620530\pi\)
−0.369671 + 0.929163i \(0.620530\pi\)
\(920\) 0 0
\(921\) 79.2155 2.61024
\(922\) 0 0
\(923\) −3.79663 + 6.95301i −0.124968 + 0.228861i
\(924\) 0 0
\(925\) 3.40160 30.3146i 0.111844 0.996739i
\(926\) 0 0
\(927\) −92.1734 69.0002i −3.02737 2.26626i
\(928\) 0 0
\(929\) 11.0398 + 17.1783i 0.362204 + 0.563600i 0.973753 0.227606i \(-0.0730898\pi\)
−0.611549 + 0.791206i \(0.709453\pi\)
\(930\) 0 0
\(931\) −52.6675 24.0525i −1.72611 0.788287i
\(932\) 0 0
\(933\) −18.0344 24.0911i −0.590419 0.788708i
\(934\) 0 0
\(935\) 19.8860 + 9.57101i 0.650343 + 0.313005i
\(936\) 0 0
\(937\) 16.1300 + 1.15364i 0.526946 + 0.0376879i 0.332278 0.943181i \(-0.392183\pi\)
0.194667 + 0.980869i \(0.437637\pi\)
\(938\) 0 0
\(939\) −28.6428 + 33.0555i −0.934721 + 1.07873i
\(940\) 0 0
\(941\) −51.1471 + 23.3581i −1.66735 + 0.761452i −0.667488 + 0.744620i \(0.732631\pi\)
−0.999858 + 0.0168314i \(0.994642\pi\)
\(942\) 0 0
\(943\) 14.5210 4.72363i 0.472870 0.153823i
\(944\) 0 0
\(945\) 116.574 + 66.7413i 3.79216 + 2.17110i
\(946\) 0 0
\(947\) 13.4467 0.961725i 0.436958 0.0312519i 0.148872 0.988856i \(-0.452436\pi\)
0.288086 + 0.957605i \(0.406981\pi\)
\(948\) 0 0
\(949\) 26.3355 22.8199i 0.854888 0.740764i
\(950\) 0 0
\(951\) 41.9387 + 12.3143i 1.35996 + 0.399319i
\(952\) 0 0
\(953\) 41.1618 30.8133i 1.33336 0.998142i 0.334925 0.942245i \(-0.391289\pi\)
0.998437 0.0558973i \(-0.0178019\pi\)
\(954\) 0 0
\(955\) −10.1095 + 1.98651i −0.327135 + 0.0642821i
\(956\) 0 0
\(957\) −8.36387 + 38.4481i −0.270365 + 1.24285i
\(958\) 0 0
\(959\) 2.94314 0.423160i 0.0950391 0.0136646i
\(960\) 0 0
\(961\) 21.3427 + 13.7161i 0.688473 + 0.442455i
\(962\) 0 0
\(963\) −37.2419 20.3356i −1.20011 0.655307i
\(964\) 0 0
\(965\) −1.05105 + 6.39212i −0.0338345 + 0.205770i
\(966\) 0 0
\(967\) −28.5701 28.5701i −0.918753 0.918753i 0.0781856 0.996939i \(-0.475087\pi\)
−0.996939 + 0.0781856i \(0.975087\pi\)
\(968\) 0 0
\(969\) −21.6470 73.7228i −0.695401 2.36832i
\(970\) 0 0
\(971\) 15.9668 24.8448i 0.512399 0.797308i −0.484599 0.874736i \(-0.661034\pi\)
0.996998 + 0.0774281i \(0.0246708\pi\)
\(972\) 0 0
\(973\) 17.3148 23.1299i 0.555088 0.741511i
\(974\) 0 0
\(975\) −77.2635 + 19.3387i −2.47441 + 0.619334i
\(976\) 0 0
\(977\) 20.9997 + 56.3025i 0.671841 + 1.80128i 0.594233 + 0.804293i \(0.297456\pi\)
0.0776081 + 0.996984i \(0.475272\pi\)
\(978\) 0 0
\(979\) −12.2976 1.76813i −0.393033 0.0565097i
\(980\) 0 0
\(981\) −28.8345 + 98.2013i −0.920615 + 3.13533i
\(982\) 0 0
\(983\) −0.616629 + 8.62160i −0.0196674 + 0.274986i 0.978097 + 0.208151i \(0.0667446\pi\)
−0.997764 + 0.0668350i \(0.978710\pi\)
\(984\) 0 0
\(985\) −25.1043 + 20.8815i −0.799888 + 0.665339i
\(986\) 0 0
\(987\) 33.9788 + 12.6734i 1.08156 + 0.403400i
\(988\) 0 0
\(989\) 4.69826 1.90876i 0.149396 0.0606950i
\(990\) 0 0
\(991\) −18.4846 40.4757i −0.587184 1.28575i −0.937129 0.348983i \(-0.886527\pi\)
0.349945 0.936770i \(-0.386200\pi\)
\(992\) 0 0
\(993\) −6.46350 90.3716i −0.205113 2.86785i
\(994\) 0 0
\(995\) −5.95618 1.42209i −0.188824 0.0450832i
\(996\) 0 0
\(997\) 22.2631 + 40.7718i 0.705080 + 1.29126i 0.947085 + 0.320982i \(0.104013\pi\)
−0.242006 + 0.970275i \(0.577805\pi\)
\(998\) 0 0
\(999\) 12.4843 86.8299i 0.394984 2.74718i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.617.2 yes 720
5.3 odd 4 inner 920.2.bv.a.433.2 yes 720
23.17 odd 22 inner 920.2.bv.a.17.2 720
115.63 even 44 inner 920.2.bv.a.753.2 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.2 720 23.17 odd 22 inner
920.2.bv.a.433.2 yes 720 5.3 odd 4 inner
920.2.bv.a.617.2 yes 720 1.1 even 1 trivial
920.2.bv.a.753.2 yes 720 115.63 even 44 inner