Properties

Label 920.2.bv.a.617.18
Level $920$
Weight $2$
Character 920.617
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 617.18
Character \(\chi\) \(=\) 920.617
Dual form 920.2.bv.a.753.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0224040 + 0.0410298i) q^{3} +(2.13690 - 0.658540i) q^{5} +(2.31180 + 1.73059i) q^{7} +(1.62074 + 2.52192i) q^{9} +(0.565611 + 0.258306i) q^{11} +(0.666316 + 0.890094i) q^{13} +(-0.0208552 + 0.102430i) q^{15} +(-2.08532 - 0.149145i) q^{17} +(-1.43969 + 1.66149i) q^{19} +(-0.122799 + 0.0560805i) q^{21} +(-2.25231 + 4.23404i) q^{23} +(4.13265 - 2.81446i) q^{25} +(-0.279672 + 0.0200025i) q^{27} +(1.86944 - 1.61988i) q^{29} +(-8.11526 - 2.38286i) q^{31} +(-0.0232702 + 0.0174198i) q^{33} +(6.07973 + 2.17568i) q^{35} +(0.190749 - 0.876858i) q^{37} +(-0.0514485 + 0.00739718i) q^{39} +(6.19326 + 3.98017i) q^{41} +(-5.01600 - 2.73894i) q^{43} +(5.12414 + 4.32176i) q^{45} +(1.83333 + 1.83333i) q^{47} +(0.377336 + 1.28509i) q^{49} +(0.0528390 - 0.0822190i) q^{51} +(1.91884 - 2.56327i) q^{53} +(1.37876 + 0.179495i) q^{55} +(-0.0359158 - 0.0962940i) q^{57} +(6.13247 + 0.881716i) q^{59} +(3.88373 - 13.2268i) q^{61} +(-0.617588 + 8.63501i) q^{63} +(2.01001 + 1.46324i) q^{65} +(12.7829 + 4.76778i) q^{67} +(-0.123261 - 0.187271i) q^{69} +(-0.404054 - 0.884756i) q^{71} +(-0.272310 - 3.80740i) q^{73} +(0.0228892 + 0.232617i) q^{75} +(0.860556 + 1.57599i) q^{77} +(-0.310067 + 2.15657i) q^{79} +(-3.73057 + 8.16880i) q^{81} +(-10.2708 - 2.23428i) q^{83} +(-4.55434 + 1.05456i) q^{85} +(0.0245804 + 0.112994i) q^{87} +(9.66802 - 2.83879i) q^{89} +3.21083i q^{91} +(0.279582 - 0.279582i) q^{93} +(-1.98230 + 4.49852i) q^{95} +(-10.7495 + 2.33842i) q^{97} +(0.265282 + 1.84507i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{15}{22}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0224040 + 0.0410298i −0.0129349 + 0.0236886i −0.884067 0.467361i \(-0.845205\pi\)
0.871132 + 0.491050i \(0.163387\pi\)
\(4\) 0 0
\(5\) 2.13690 0.658540i 0.955649 0.294508i
\(6\) 0 0
\(7\) 2.31180 + 1.73059i 0.873777 + 0.654101i 0.939055 0.343766i \(-0.111703\pi\)
−0.0652785 + 0.997867i \(0.520794\pi\)
\(8\) 0 0
\(9\) 1.62074 + 2.52192i 0.540247 + 0.840641i
\(10\) 0 0
\(11\) 0.565611 + 0.258306i 0.170538 + 0.0778822i 0.498855 0.866686i \(-0.333754\pi\)
−0.328317 + 0.944568i \(0.606481\pi\)
\(12\) 0 0
\(13\) 0.666316 + 0.890094i 0.184803 + 0.246868i 0.883369 0.468677i \(-0.155269\pi\)
−0.698567 + 0.715545i \(0.746178\pi\)
\(14\) 0 0
\(15\) −0.0208552 + 0.102430i −0.00538479 + 0.0264474i
\(16\) 0 0
\(17\) −2.08532 0.149145i −0.505765 0.0361730i −0.183874 0.982950i \(-0.558864\pi\)
−0.321891 + 0.946777i \(0.604318\pi\)
\(18\) 0 0
\(19\) −1.43969 + 1.66149i −0.330287 + 0.381171i −0.896467 0.443110i \(-0.853875\pi\)
0.566180 + 0.824281i \(0.308421\pi\)
\(20\) 0 0
\(21\) −0.122799 + 0.0560805i −0.0267970 + 0.0122378i
\(22\) 0 0
\(23\) −2.25231 + 4.23404i −0.469639 + 0.882859i
\(24\) 0 0
\(25\) 4.13265 2.81446i 0.826530 0.562893i
\(26\) 0 0
\(27\) −0.279672 + 0.0200025i −0.0538229 + 0.00384949i
\(28\) 0 0
\(29\) 1.86944 1.61988i 0.347145 0.300803i −0.463783 0.885949i \(-0.653508\pi\)
0.810928 + 0.585146i \(0.198963\pi\)
\(30\) 0 0
\(31\) −8.11526 2.38286i −1.45754 0.427974i −0.545516 0.838101i \(-0.683666\pi\)
−0.912028 + 0.410127i \(0.865484\pi\)
\(32\) 0 0
\(33\) −0.0232702 + 0.0174198i −0.00405082 + 0.00303241i
\(34\) 0 0
\(35\) 6.07973 + 2.17568i 1.02766 + 0.367757i
\(36\) 0 0
\(37\) 0.190749 0.876858i 0.0313589 0.144155i −0.958805 0.284064i \(-0.908317\pi\)
0.990164 + 0.139909i \(0.0446810\pi\)
\(38\) 0 0
\(39\) −0.0514485 + 0.00739718i −0.00823836 + 0.00118450i
\(40\) 0 0
\(41\) 6.19326 + 3.98017i 0.967225 + 0.621597i 0.925988 0.377552i \(-0.123234\pi\)
0.0412362 + 0.999149i \(0.486870\pi\)
\(42\) 0 0
\(43\) −5.01600 2.73894i −0.764933 0.417685i 0.0488854 0.998804i \(-0.484433\pi\)
−0.813818 + 0.581119i \(0.802615\pi\)
\(44\) 0 0
\(45\) 5.12414 + 4.32176i 0.763862 + 0.644250i
\(46\) 0 0
\(47\) 1.83333 + 1.83333i 0.267418 + 0.267418i 0.828059 0.560641i \(-0.189445\pi\)
−0.560641 + 0.828059i \(0.689445\pi\)
\(48\) 0 0
\(49\) 0.377336 + 1.28509i 0.0539051 + 0.183584i
\(50\) 0 0
\(51\) 0.0528390 0.0822190i 0.00739893 0.0115130i
\(52\) 0 0
\(53\) 1.91884 2.56327i 0.263573 0.352092i −0.649158 0.760654i \(-0.724879\pi\)
0.912731 + 0.408561i \(0.133969\pi\)
\(54\) 0 0
\(55\) 1.37876 + 0.179495i 0.185912 + 0.0242031i
\(56\) 0 0
\(57\) −0.0359158 0.0962940i −0.00475717 0.0127545i
\(58\) 0 0
\(59\) 6.13247 + 0.881716i 0.798379 + 0.114790i 0.529418 0.848361i \(-0.322410\pi\)
0.268962 + 0.963151i \(0.413320\pi\)
\(60\) 0 0
\(61\) 3.88373 13.2268i 0.497260 1.69351i −0.202624 0.979257i \(-0.564947\pi\)
0.699884 0.714256i \(-0.253235\pi\)
\(62\) 0 0
\(63\) −0.617588 + 8.63501i −0.0778088 + 1.08791i
\(64\) 0 0
\(65\) 2.01001 + 1.46324i 0.249311 + 0.181493i
\(66\) 0 0
\(67\) 12.7829 + 4.76778i 1.56168 + 0.582477i 0.973987 0.226605i \(-0.0727627\pi\)
0.587695 + 0.809082i \(0.300035\pi\)
\(68\) 0 0
\(69\) −0.123261 0.187271i −0.0148389 0.0225448i
\(70\) 0 0
\(71\) −0.404054 0.884756i −0.0479524 0.105001i 0.884139 0.467223i \(-0.154746\pi\)
−0.932092 + 0.362222i \(0.882018\pi\)
\(72\) 0 0
\(73\) −0.272310 3.80740i −0.0318715 0.445622i −0.988184 0.153275i \(-0.951018\pi\)
0.956312 0.292348i \(-0.0944364\pi\)
\(74\) 0 0
\(75\) 0.0228892 + 0.232617i 0.00264301 + 0.0268603i
\(76\) 0 0
\(77\) 0.860556 + 1.57599i 0.0980695 + 0.179601i
\(78\) 0 0
\(79\) −0.310067 + 2.15657i −0.0348853 + 0.242633i −0.999801 0.0199256i \(-0.993657\pi\)
0.964916 + 0.262558i \(0.0845662\pi\)
\(80\) 0 0
\(81\) −3.73057 + 8.16880i −0.414507 + 0.907645i
\(82\) 0 0
\(83\) −10.2708 2.23428i −1.12737 0.245244i −0.390053 0.920792i \(-0.627543\pi\)
−0.737316 + 0.675548i \(0.763907\pi\)
\(84\) 0 0
\(85\) −4.55434 + 1.05456i −0.493987 + 0.114383i
\(86\) 0 0
\(87\) 0.0245804 + 0.112994i 0.00263530 + 0.0121143i
\(88\) 0 0
\(89\) 9.66802 2.83879i 1.02481 0.300911i 0.274210 0.961670i \(-0.411584\pi\)
0.750598 + 0.660759i \(0.229765\pi\)
\(90\) 0 0
\(91\) 3.21083i 0.336587i
\(92\) 0 0
\(93\) 0.279582 0.279582i 0.0289913 0.0289913i
\(94\) 0 0
\(95\) −1.98230 + 4.49852i −0.203380 + 0.461538i
\(96\) 0 0
\(97\) −10.7495 + 2.33842i −1.09145 + 0.237430i −0.722050 0.691841i \(-0.756800\pi\)
−0.369399 + 0.929271i \(0.620436\pi\)
\(98\) 0 0
\(99\) 0.265282 + 1.84507i 0.0266618 + 0.185437i
\(100\) 0 0
\(101\) 3.59659 2.31139i 0.357874 0.229991i −0.349332 0.936999i \(-0.613592\pi\)
0.707206 + 0.707007i \(0.249955\pi\)
\(102\) 0 0
\(103\) 3.53500 1.31849i 0.348314 0.129915i −0.169217 0.985579i \(-0.554124\pi\)
0.517531 + 0.855664i \(0.326851\pi\)
\(104\) 0 0
\(105\) −0.225478 + 0.200706i −0.0220044 + 0.0195869i
\(106\) 0 0
\(107\) −7.23107 + 3.94846i −0.699054 + 0.381712i −0.789133 0.614222i \(-0.789470\pi\)
0.0900793 + 0.995935i \(0.471288\pi\)
\(108\) 0 0
\(109\) 9.46629 + 10.9247i 0.906706 + 1.04639i 0.998717 + 0.0506366i \(0.0161250\pi\)
−0.0920111 + 0.995758i \(0.529330\pi\)
\(110\) 0 0
\(111\) 0.0317038 + 0.0274715i 0.00300919 + 0.00260748i
\(112\) 0 0
\(113\) 4.63290 12.4213i 0.435826 1.16850i −0.514569 0.857449i \(-0.672048\pi\)
0.950395 0.311046i \(-0.100679\pi\)
\(114\) 0 0
\(115\) −2.02466 + 10.5309i −0.188801 + 0.982015i
\(116\) 0 0
\(117\) −1.16482 + 3.12301i −0.107688 + 0.288722i
\(118\) 0 0
\(119\) −4.56273 3.95363i −0.418265 0.362429i
\(120\) 0 0
\(121\) −6.95027 8.02104i −0.631843 0.729186i
\(122\) 0 0
\(123\) −0.302059 + 0.164937i −0.0272358 + 0.0148719i
\(124\) 0 0
\(125\) 6.97760 8.73573i 0.624096 0.781348i
\(126\) 0 0
\(127\) −6.24728 + 2.33011i −0.554356 + 0.206764i −0.611000 0.791630i \(-0.709233\pi\)
0.0566443 + 0.998394i \(0.481960\pi\)
\(128\) 0 0
\(129\) 0.224757 0.144442i 0.0197887 0.0127174i
\(130\) 0 0
\(131\) −1.65287 11.4959i −0.144412 1.00440i −0.925165 0.379565i \(-0.876074\pi\)
0.780753 0.624839i \(-0.214836\pi\)
\(132\) 0 0
\(133\) −6.20361 + 1.34951i −0.537921 + 0.117018i
\(134\) 0 0
\(135\) −0.584458 + 0.226919i −0.0503021 + 0.0195301i
\(136\) 0 0
\(137\) −13.8908 + 13.8908i −1.18677 + 1.18677i −0.208819 + 0.977954i \(0.566962\pi\)
−0.977954 + 0.208819i \(0.933038\pi\)
\(138\) 0 0
\(139\) 12.3148i 1.04453i −0.852784 0.522264i \(-0.825088\pi\)
0.852784 0.522264i \(-0.174912\pi\)
\(140\) 0 0
\(141\) −0.116295 + 0.0341473i −0.00979380 + 0.00287572i
\(142\) 0 0
\(143\) 0.146959 + 0.675560i 0.0122893 + 0.0564932i
\(144\) 0 0
\(145\) 2.92804 4.69260i 0.243160 0.389699i
\(146\) 0 0
\(147\) −0.0611807 0.0133091i −0.00504610 0.00109771i
\(148\) 0 0
\(149\) 3.32109 7.27217i 0.272074 0.595759i −0.723439 0.690389i \(-0.757439\pi\)
0.995513 + 0.0946298i \(0.0301667\pi\)
\(150\) 0 0
\(151\) 3.34577 23.2704i 0.272275 1.89372i −0.152318 0.988332i \(-0.548674\pi\)
0.424593 0.905384i \(-0.360417\pi\)
\(152\) 0 0
\(153\) −3.00364 5.50075i −0.242830 0.444709i
\(154\) 0 0
\(155\) −18.9107 + 0.252311i −1.51894 + 0.0202661i
\(156\) 0 0
\(157\) 0.434190 + 6.07076i 0.0346521 + 0.484500i 0.984914 + 0.173047i \(0.0553611\pi\)
−0.950262 + 0.311453i \(0.899184\pi\)
\(158\) 0 0
\(159\) 0.0621809 + 0.136157i 0.00493127 + 0.0107980i
\(160\) 0 0
\(161\) −12.5343 + 5.89042i −0.987838 + 0.464230i
\(162\) 0 0
\(163\) −7.57095 2.82382i −0.593003 0.221179i 0.0350031 0.999387i \(-0.488856\pi\)
−0.628006 + 0.778209i \(0.716129\pi\)
\(164\) 0 0
\(165\) −0.0382543 + 0.0525488i −0.00297809 + 0.00409092i
\(166\) 0 0
\(167\) −0.592237 + 8.28055i −0.0458287 + 0.640768i 0.921683 + 0.387943i \(0.126814\pi\)
−0.967512 + 0.252825i \(0.918640\pi\)
\(168\) 0 0
\(169\) 3.31423 11.2872i 0.254941 0.868249i
\(170\) 0 0
\(171\) −6.52350 0.937938i −0.498864 0.0717259i
\(172\) 0 0
\(173\) 0.906895 + 2.43148i 0.0689499 + 0.184862i 0.966854 0.255329i \(-0.0821836\pi\)
−0.897904 + 0.440190i \(0.854911\pi\)
\(174\) 0 0
\(175\) 14.4245 + 0.645451i 1.09039 + 0.0487915i
\(176\) 0 0
\(177\) −0.173568 + 0.231860i −0.0130462 + 0.0174277i
\(178\) 0 0
\(179\) 0.0260598 0.0405498i 0.00194780 0.00303084i −0.840278 0.542155i \(-0.817608\pi\)
0.842226 + 0.539125i \(0.181245\pi\)
\(180\) 0 0
\(181\) −1.62901 5.54788i −0.121083 0.412371i 0.876536 0.481336i \(-0.159848\pi\)
−0.997619 + 0.0689653i \(0.978030\pi\)
\(182\) 0 0
\(183\) 0.455681 + 0.455681i 0.0336849 + 0.0336849i
\(184\) 0 0
\(185\) −0.169836 1.99937i −0.0124866 0.146997i
\(186\) 0 0
\(187\) −1.14096 0.623010i −0.0834350 0.0455590i
\(188\) 0 0
\(189\) −0.681161 0.437756i −0.0495472 0.0318420i
\(190\) 0 0
\(191\) 8.15000 1.17179i 0.589713 0.0847880i 0.159003 0.987278i \(-0.449172\pi\)
0.430710 + 0.902490i \(0.358263\pi\)
\(192\) 0 0
\(193\) 3.29926 15.1665i 0.237486 1.09171i −0.691726 0.722160i \(-0.743149\pi\)
0.929212 0.369546i \(-0.120487\pi\)
\(194\) 0 0
\(195\) −0.105069 + 0.0496879i −0.00752414 + 0.00355823i
\(196\) 0 0
\(197\) −2.21376 + 1.65720i −0.157724 + 0.118070i −0.675225 0.737612i \(-0.735953\pi\)
0.517501 + 0.855683i \(0.326862\pi\)
\(198\) 0 0
\(199\) −18.4366 5.41346i −1.30693 0.383750i −0.447173 0.894448i \(-0.647569\pi\)
−0.859760 + 0.510698i \(0.829387\pi\)
\(200\) 0 0
\(201\) −0.482010 + 0.417664i −0.0339983 + 0.0294597i
\(202\) 0 0
\(203\) 7.12509 0.509597i 0.500083 0.0357667i
\(204\) 0 0
\(205\) 15.8555 + 4.42669i 1.10739 + 0.309173i
\(206\) 0 0
\(207\) −14.3283 + 1.18214i −0.995888 + 0.0821641i
\(208\) 0 0
\(209\) −1.24347 + 0.567876i −0.0860129 + 0.0392808i
\(210\) 0 0
\(211\) 1.83738 2.12045i 0.126490 0.145978i −0.688972 0.724788i \(-0.741938\pi\)
0.815462 + 0.578811i \(0.196483\pi\)
\(212\) 0 0
\(213\) 0.0453538 + 0.00324377i 0.00310759 + 0.000222259i
\(214\) 0 0
\(215\) −12.5224 2.54960i −0.854019 0.173881i
\(216\) 0 0
\(217\) −14.6371 19.5529i −0.993630 1.32733i
\(218\) 0 0
\(219\) 0.162318 + 0.0741280i 0.0109684 + 0.00500911i
\(220\) 0 0
\(221\) −1.25673 1.95551i −0.0845369 0.131542i
\(222\) 0 0
\(223\) −12.6841 9.49522i −0.849392 0.635847i 0.0832984 0.996525i \(-0.473455\pi\)
−0.932691 + 0.360678i \(0.882545\pi\)
\(224\) 0 0
\(225\) 13.7958 + 5.86070i 0.919721 + 0.390714i
\(226\) 0 0
\(227\) −6.23822 + 11.4244i −0.414045 + 0.758267i −0.998589 0.0530949i \(-0.983091\pi\)
0.584544 + 0.811362i \(0.301273\pi\)
\(228\) 0 0
\(229\) −1.27982 −0.0845730 −0.0422865 0.999106i \(-0.513464\pi\)
−0.0422865 + 0.999106i \(0.513464\pi\)
\(230\) 0 0
\(231\) −0.0839425 −0.00552301
\(232\) 0 0
\(233\) −7.58228 + 13.8859i −0.496731 + 0.909696i 0.502257 + 0.864719i \(0.332503\pi\)
−0.998988 + 0.0449770i \(0.985679\pi\)
\(234\) 0 0
\(235\) 5.12495 + 2.71031i 0.334315 + 0.176801i
\(236\) 0 0
\(237\) −0.0815368 0.0610377i −0.00529638 0.00396482i
\(238\) 0 0
\(239\) 4.50993 + 7.01758i 0.291723 + 0.453930i 0.955920 0.293628i \(-0.0948627\pi\)
−0.664197 + 0.747558i \(0.731226\pi\)
\(240\) 0 0
\(241\) −13.2858 6.06744i −0.855816 0.390838i −0.0613278 0.998118i \(-0.519534\pi\)
−0.794488 + 0.607280i \(0.792261\pi\)
\(242\) 0 0
\(243\) −0.755673 1.00946i −0.0484765 0.0647570i
\(244\) 0 0
\(245\) 1.65261 + 2.49761i 0.105581 + 0.159566i
\(246\) 0 0
\(247\) −2.43817 0.174381i −0.155137 0.0110956i
\(248\) 0 0
\(249\) 0.321779 0.371353i 0.0203919 0.0235335i
\(250\) 0 0
\(251\) 7.92879 3.62096i 0.500461 0.228553i −0.149157 0.988813i \(-0.547656\pi\)
0.649618 + 0.760261i \(0.274929\pi\)
\(252\) 0 0
\(253\) −2.36761 + 1.81304i −0.148850 + 0.113985i
\(254\) 0 0
\(255\) 0.0587668 0.210490i 0.00368012 0.0131814i
\(256\) 0 0
\(257\) −20.5547 + 1.47010i −1.28217 + 0.0917025i −0.695737 0.718297i \(-0.744922\pi\)
−0.586431 + 0.809999i \(0.699467\pi\)
\(258\) 0 0
\(259\) 1.95845 1.69701i 0.121692 0.105447i
\(260\) 0 0
\(261\) 7.11507 + 2.08917i 0.440412 + 0.129317i
\(262\) 0 0
\(263\) 4.58938 3.43557i 0.282993 0.211846i −0.448346 0.893860i \(-0.647987\pi\)
0.731339 + 0.682014i \(0.238896\pi\)
\(264\) 0 0
\(265\) 2.41235 6.74108i 0.148189 0.414101i
\(266\) 0 0
\(267\) −0.100127 + 0.460277i −0.00612769 + 0.0281685i
\(268\) 0 0
\(269\) −5.04128 + 0.724827i −0.307373 + 0.0441935i −0.294275 0.955721i \(-0.595078\pi\)
−0.0130973 + 0.999914i \(0.504169\pi\)
\(270\) 0 0
\(271\) 17.3028 + 11.1198i 1.05107 + 0.675481i 0.947700 0.319162i \(-0.103401\pi\)
0.103369 + 0.994643i \(0.467038\pi\)
\(272\) 0 0
\(273\) −0.131740 0.0719355i −0.00797327 0.00435373i
\(274\) 0 0
\(275\) 3.06447 0.524404i 0.184794 0.0316228i
\(276\) 0 0
\(277\) 19.5001 + 19.5001i 1.17165 + 1.17165i 0.981817 + 0.189831i \(0.0607940\pi\)
0.189831 + 0.981817i \(0.439206\pi\)
\(278\) 0 0
\(279\) −7.14336 24.3280i −0.427662 1.45648i
\(280\) 0 0
\(281\) −15.2584 + 23.7425i −0.910239 + 1.41636i −0.00103862 + 0.999999i \(0.500331\pi\)
−0.909200 + 0.416360i \(0.863306\pi\)
\(282\) 0 0
\(283\) −7.93155 + 10.5953i −0.471482 + 0.629826i −0.971741 0.236050i \(-0.924147\pi\)
0.500259 + 0.865876i \(0.333238\pi\)
\(284\) 0 0
\(285\) −0.140162 0.182118i −0.00830247 0.0107878i
\(286\) 0 0
\(287\) 7.42952 + 19.9193i 0.438551 + 1.17580i
\(288\) 0 0
\(289\) −12.5006 1.79732i −0.735331 0.105725i
\(290\) 0 0
\(291\) 0.144887 0.493441i 0.00849345 0.0289260i
\(292\) 0 0
\(293\) 1.13358 15.8495i 0.0662245 0.925940i −0.850386 0.526159i \(-0.823632\pi\)
0.916611 0.399781i \(-0.130914\pi\)
\(294\) 0 0
\(295\) 13.6851 2.15434i 0.796777 0.125431i
\(296\) 0 0
\(297\) −0.163352 0.0609273i −0.00947867 0.00353536i
\(298\) 0 0
\(299\) −5.26944 + 0.816442i −0.304740 + 0.0472161i
\(300\) 0 0
\(301\) −6.85599 15.0125i −0.395172 0.865307i
\(302\) 0 0
\(303\) 0.0142579 + 0.199352i 0.000819095 + 0.0114524i
\(304\) 0 0
\(305\) −0.411232 30.8218i −0.0235471 1.76485i
\(306\) 0 0
\(307\) −5.46708 10.0122i −0.312023 0.571427i 0.673861 0.738858i \(-0.264635\pi\)
−0.985884 + 0.167431i \(0.946453\pi\)
\(308\) 0 0
\(309\) −0.0251008 + 0.174580i −0.00142794 + 0.00993151i
\(310\) 0 0
\(311\) 4.59387 10.0592i 0.260494 0.570403i −0.733518 0.679670i \(-0.762123\pi\)
0.994012 + 0.109267i \(0.0348503\pi\)
\(312\) 0 0
\(313\) −15.0197 3.26733i −0.848963 0.184681i −0.233021 0.972472i \(-0.574861\pi\)
−0.615942 + 0.787791i \(0.711225\pi\)
\(314\) 0 0
\(315\) 4.36678 + 18.8588i 0.246040 + 1.06257i
\(316\) 0 0
\(317\) 5.03014 + 23.1232i 0.282521 + 1.29873i 0.871426 + 0.490526i \(0.163195\pi\)
−0.588905 + 0.808202i \(0.700441\pi\)
\(318\) 0 0
\(319\) 1.47580 0.433333i 0.0826288 0.0242620i
\(320\) 0 0
\(321\) 0.385151i 0.0214970i
\(322\) 0 0
\(323\) 3.25002 3.25002i 0.180836 0.180836i
\(324\) 0 0
\(325\) 5.25879 + 1.80312i 0.291705 + 0.100019i
\(326\) 0 0
\(327\) −0.660320 + 0.143644i −0.0365158 + 0.00794353i
\(328\) 0 0
\(329\) 1.06554 + 7.41101i 0.0587453 + 0.408582i
\(330\) 0 0
\(331\) 0.748852 0.481258i 0.0411606 0.0264523i −0.519899 0.854228i \(-0.674030\pi\)
0.561059 + 0.827776i \(0.310394\pi\)
\(332\) 0 0
\(333\) 2.52052 0.940106i 0.138124 0.0515175i
\(334\) 0 0
\(335\) 30.4555 + 1.77019i 1.66396 + 0.0967158i
\(336\) 0 0
\(337\) −9.68813 + 5.29012i −0.527746 + 0.288171i −0.720950 0.692987i \(-0.756294\pi\)
0.193203 + 0.981159i \(0.438112\pi\)
\(338\) 0 0
\(339\) 0.405847 + 0.468373i 0.0220426 + 0.0254385i
\(340\) 0 0
\(341\) −3.97458 3.44399i −0.215235 0.186503i
\(342\) 0 0
\(343\) 5.71262 15.3161i 0.308453 0.826994i
\(344\) 0 0
\(345\) −0.386722 0.319007i −0.0208204 0.0171747i
\(346\) 0 0
\(347\) −2.81036 + 7.53487i −0.150868 + 0.404493i −0.990295 0.138979i \(-0.955618\pi\)
0.839427 + 0.543472i \(0.182891\pi\)
\(348\) 0 0
\(349\) 19.0865 + 16.5386i 1.02168 + 0.885289i 0.993445 0.114313i \(-0.0364666\pi\)
0.0282326 + 0.999601i \(0.491012\pi\)
\(350\) 0 0
\(351\) −0.204154 0.235606i −0.0108969 0.0125757i
\(352\) 0 0
\(353\) −24.4128 + 13.3304i −1.29936 + 0.709507i −0.971908 0.235360i \(-0.924373\pi\)
−0.327456 + 0.944866i \(0.606191\pi\)
\(354\) 0 0
\(355\) −1.44607 1.62454i −0.0767494 0.0862219i
\(356\) 0 0
\(357\) 0.264440 0.0986311i 0.0139957 0.00522011i
\(358\) 0 0
\(359\) 15.5908 10.0196i 0.822853 0.528816i −0.0601462 0.998190i \(-0.519157\pi\)
0.883000 + 0.469374i \(0.155520\pi\)
\(360\) 0 0
\(361\) 2.01614 + 14.0226i 0.106113 + 0.738030i
\(362\) 0 0
\(363\) 0.484816 0.105465i 0.0254462 0.00553549i
\(364\) 0 0
\(365\) −3.08922 7.95669i −0.161697 0.416472i
\(366\) 0 0
\(367\) 14.6761 14.6761i 0.766085 0.766085i −0.211330 0.977415i \(-0.567779\pi\)
0.977415 + 0.211330i \(0.0677793\pi\)
\(368\) 0 0
\(369\) 22.0697i 1.14890i
\(370\) 0 0
\(371\) 8.87194 2.60504i 0.460608 0.135247i
\(372\) 0 0
\(373\) −2.13339 9.80702i −0.110463 0.507788i −0.998817 0.0486298i \(-0.984515\pi\)
0.888354 0.459159i \(-0.151849\pi\)
\(374\) 0 0
\(375\) 0.202100 + 0.482005i 0.0104364 + 0.0248906i
\(376\) 0 0
\(377\) 2.68748 + 0.584625i 0.138412 + 0.0301097i
\(378\) 0 0
\(379\) 9.57218 20.9601i 0.491690 1.07665i −0.487392 0.873183i \(-0.662052\pi\)
0.979082 0.203467i \(-0.0652210\pi\)
\(380\) 0 0
\(381\) 0.0443597 0.308529i 0.00227262 0.0158064i
\(382\) 0 0
\(383\) 11.7921 + 21.5957i 0.602549 + 1.10349i 0.983843 + 0.179032i \(0.0572967\pi\)
−0.381294 + 0.924454i \(0.624521\pi\)
\(384\) 0 0
\(385\) 2.87677 + 2.80102i 0.146614 + 0.142753i
\(386\) 0 0
\(387\) −1.22224 17.0891i −0.0621297 0.868687i
\(388\) 0 0
\(389\) 5.42505 + 11.8792i 0.275061 + 0.602300i 0.995866 0.0908387i \(-0.0289548\pi\)
−0.720805 + 0.693138i \(0.756227\pi\)
\(390\) 0 0
\(391\) 5.32828 8.49342i 0.269463 0.429531i
\(392\) 0 0
\(393\) 0.508707 + 0.189738i 0.0256609 + 0.00957101i
\(394\) 0 0
\(395\) 0.757604 + 4.81255i 0.0381192 + 0.242146i
\(396\) 0 0
\(397\) 0.516506 7.22169i 0.0259227 0.362446i −0.967890 0.251375i \(-0.919117\pi\)
0.993812 0.111071i \(-0.0354282\pi\)
\(398\) 0 0
\(399\) 0.0836153 0.284768i 0.00418600 0.0142562i
\(400\) 0 0
\(401\) −37.5899 5.40462i −1.87715 0.269894i −0.893377 0.449307i \(-0.851671\pi\)
−0.983774 + 0.179413i \(0.942580\pi\)
\(402\) 0 0
\(403\) −3.28636 8.81108i −0.163705 0.438911i
\(404\) 0 0
\(405\) −2.59235 + 19.9126i −0.128815 + 0.989465i
\(406\) 0 0
\(407\) 0.334387 0.446689i 0.0165750 0.0221416i
\(408\) 0 0
\(409\) −8.61194 + 13.4004i −0.425833 + 0.662609i −0.986185 0.165645i \(-0.947029\pi\)
0.560352 + 0.828254i \(0.310666\pi\)
\(410\) 0 0
\(411\) −0.258728 0.881148i −0.0127621 0.0434638i
\(412\) 0 0
\(413\) 12.6511 + 12.6511i 0.622521 + 0.622521i
\(414\) 0 0
\(415\) −23.4190 + 1.98932i −1.14959 + 0.0976520i
\(416\) 0 0
\(417\) 0.505274 + 0.275901i 0.0247434 + 0.0135109i
\(418\) 0 0
\(419\) −10.2159 6.56534i −0.499078 0.320738i 0.266770 0.963760i \(-0.414044\pi\)
−0.765847 + 0.643023i \(0.777680\pi\)
\(420\) 0 0
\(421\) 24.3000 3.49382i 1.18431 0.170278i 0.478117 0.878296i \(-0.341320\pi\)
0.706194 + 0.708018i \(0.250410\pi\)
\(422\) 0 0
\(423\) −1.65216 + 7.59485i −0.0803307 + 0.369274i
\(424\) 0 0
\(425\) −9.03767 + 5.25270i −0.438392 + 0.254793i
\(426\) 0 0
\(427\) 31.8685 23.8564i 1.54222 1.15449i
\(428\) 0 0
\(429\) −0.0310106 0.00910553i −0.00149721 0.000439619i
\(430\) 0 0
\(431\) −4.43914 + 3.84653i −0.213826 + 0.185281i −0.755188 0.655509i \(-0.772454\pi\)
0.541362 + 0.840790i \(0.317909\pi\)
\(432\) 0 0
\(433\) −16.3463 + 1.16911i −0.785555 + 0.0561840i −0.458353 0.888770i \(-0.651560\pi\)
−0.327202 + 0.944954i \(0.606106\pi\)
\(434\) 0 0
\(435\) 0.126937 + 0.225270i 0.00608617 + 0.0108009i
\(436\) 0 0
\(437\) −3.79218 9.83787i −0.181405 0.470609i
\(438\) 0 0
\(439\) −8.36448 + 3.81993i −0.399215 + 0.182315i −0.604897 0.796303i \(-0.706786\pi\)
0.205682 + 0.978619i \(0.434059\pi\)
\(440\) 0 0
\(441\) −2.62933 + 3.03440i −0.125206 + 0.144495i
\(442\) 0 0
\(443\) 27.1784 + 1.94384i 1.29129 + 0.0923546i 0.700021 0.714122i \(-0.253174\pi\)
0.591265 + 0.806477i \(0.298629\pi\)
\(444\) 0 0
\(445\) 18.7901 12.4330i 0.890736 0.589380i
\(446\) 0 0
\(447\) 0.223970 + 0.299189i 0.0105934 + 0.0141512i
\(448\) 0 0
\(449\) 9.78375 + 4.46809i 0.461724 + 0.210862i 0.632675 0.774417i \(-0.281957\pi\)
−0.170951 + 0.985279i \(0.554684\pi\)
\(450\) 0 0
\(451\) 2.47488 + 3.85098i 0.116537 + 0.181336i
\(452\) 0 0
\(453\) 0.879821 + 0.658626i 0.0413376 + 0.0309449i
\(454\) 0 0
\(455\) 2.11446 + 6.86122i 0.0991276 + 0.321659i
\(456\) 0 0
\(457\) 10.5034 19.2356i 0.491330 0.899804i −0.507932 0.861397i \(-0.669590\pi\)
0.999262 0.0384067i \(-0.0122282\pi\)
\(458\) 0 0
\(459\) 0.586190 0.0273610
\(460\) 0 0
\(461\) 5.44735 0.253709 0.126854 0.991921i \(-0.459512\pi\)
0.126854 + 0.991921i \(0.459512\pi\)
\(462\) 0 0
\(463\) −7.65647 + 14.0218i −0.355826 + 0.651647i −0.992873 0.119178i \(-0.961974\pi\)
0.637046 + 0.770825i \(0.280156\pi\)
\(464\) 0 0
\(465\) 0.413322 0.781555i 0.0191674 0.0362437i
\(466\) 0 0
\(467\) 27.3138 + 20.4468i 1.26393 + 0.946166i 0.999832 0.0183300i \(-0.00583496\pi\)
0.264098 + 0.964496i \(0.414926\pi\)
\(468\) 0 0
\(469\) 21.3004 + 33.1441i 0.983562 + 1.53045i
\(470\) 0 0
\(471\) −0.258810 0.118195i −0.0119253 0.00544612i
\(472\) 0 0
\(473\) −2.12962 2.84484i −0.0979200 0.130806i
\(474\) 0 0
\(475\) −1.27353 + 10.9183i −0.0584333 + 0.500965i
\(476\) 0 0
\(477\) 9.57431 + 0.684768i 0.438378 + 0.0313534i
\(478\) 0 0
\(479\) 7.08995 8.18224i 0.323948 0.373856i −0.570293 0.821441i \(-0.693170\pi\)
0.894241 + 0.447585i \(0.147716\pi\)
\(480\) 0 0
\(481\) 0.907585 0.414480i 0.0413823 0.0188987i
\(482\) 0 0
\(483\) 0.0391346 0.646248i 0.00178068 0.0294053i
\(484\) 0 0
\(485\) −21.4307 + 12.0759i −0.973117 + 0.548341i
\(486\) 0 0
\(487\) −17.3804 + 1.24307i −0.787581 + 0.0563289i −0.459335 0.888263i \(-0.651912\pi\)
−0.328246 + 0.944592i \(0.606458\pi\)
\(488\) 0 0
\(489\) 0.285480 0.247370i 0.0129099 0.0111865i
\(490\) 0 0
\(491\) 8.92733 + 2.62130i 0.402885 + 0.118298i 0.476896 0.878960i \(-0.341762\pi\)
−0.0740112 + 0.997257i \(0.523580\pi\)
\(492\) 0 0
\(493\) −4.13997 + 3.09915i −0.186455 + 0.139579i
\(494\) 0 0
\(495\) 1.78193 + 3.76803i 0.0800920 + 0.169360i
\(496\) 0 0
\(497\) 0.597057 2.74463i 0.0267817 0.123113i
\(498\) 0 0
\(499\) 8.96005 1.28826i 0.401107 0.0576705i 0.0611905 0.998126i \(-0.480510\pi\)
0.339916 + 0.940456i \(0.389601\pi\)
\(500\) 0 0
\(501\) −0.326481 0.209817i −0.0145861 0.00937392i
\(502\) 0 0
\(503\) −4.76877 2.60394i −0.212629 0.116104i 0.369406 0.929268i \(-0.379561\pi\)
−0.582034 + 0.813164i \(0.697743\pi\)
\(504\) 0 0
\(505\) 6.16339 7.30769i 0.274267 0.325188i
\(506\) 0 0
\(507\) 0.388862 + 0.388862i 0.0172699 + 0.0172699i
\(508\) 0 0
\(509\) 7.09233 + 24.1543i 0.314362 + 1.07062i 0.953466 + 0.301499i \(0.0974870\pi\)
−0.639104 + 0.769120i \(0.720695\pi\)
\(510\) 0 0
\(511\) 5.95951 9.27318i 0.263633 0.410222i
\(512\) 0 0
\(513\) 0.369406 0.493469i 0.0163097 0.0217872i
\(514\) 0 0
\(515\) 6.68566 5.14541i 0.294605 0.226734i
\(516\) 0 0
\(517\) 0.563391 + 1.51051i 0.0247779 + 0.0664321i
\(518\) 0 0
\(519\) −0.120081 0.0172651i −0.00527098 0.000757853i
\(520\) 0 0
\(521\) −10.1091 + 34.4283i −0.442886 + 1.50833i 0.371735 + 0.928339i \(0.378763\pi\)
−0.814621 + 0.579994i \(0.803055\pi\)
\(522\) 0 0
\(523\) 2.87793 40.2388i 0.125843 1.75952i −0.407115 0.913377i \(-0.633465\pi\)
0.532958 0.846142i \(-0.321080\pi\)
\(524\) 0 0
\(525\) −0.349650 + 0.577375i −0.0152600 + 0.0251987i
\(526\) 0 0
\(527\) 16.5676 + 6.17938i 0.721694 + 0.269178i
\(528\) 0 0
\(529\) −12.8542 19.0727i −0.558879 0.829250i
\(530\) 0 0
\(531\) 7.71552 + 16.8946i 0.334825 + 0.733165i
\(532\) 0 0
\(533\) 0.583946 + 8.16463i 0.0252935 + 0.353649i
\(534\) 0 0
\(535\) −12.8518 + 13.1994i −0.555633 + 0.570660i
\(536\) 0 0
\(537\) 0.00107991 + 0.00197771i 4.66015e−5 + 8.53444e-5i
\(538\) 0 0
\(539\) −0.118520 + 0.824327i −0.00510503 + 0.0355063i
\(540\) 0 0
\(541\) 9.00737 19.7234i 0.387257 0.847975i −0.611148 0.791516i \(-0.709292\pi\)
0.998405 0.0564583i \(-0.0179808\pi\)
\(542\) 0 0
\(543\) 0.264125 + 0.0574569i 0.0113347 + 0.00246571i
\(544\) 0 0
\(545\) 27.4228 + 17.1110i 1.17466 + 0.732954i
\(546\) 0 0
\(547\) 2.31948 + 10.6625i 0.0991738 + 0.455895i 0.999774 + 0.0212467i \(0.00676354\pi\)
−0.900600 + 0.434648i \(0.856873\pi\)
\(548\) 0 0
\(549\) 39.6514 11.6427i 1.69228 0.496898i
\(550\) 0 0
\(551\) 5.43816i 0.231673i
\(552\) 0 0
\(553\) −4.44894 + 4.44894i −0.189188 + 0.189188i
\(554\) 0 0
\(555\) 0.0858388 + 0.0378255i 0.00364366 + 0.00160560i
\(556\) 0 0
\(557\) −10.1142 + 2.20022i −0.428554 + 0.0932263i −0.421669 0.906750i \(-0.638555\pi\)
−0.00688568 + 0.999976i \(0.502192\pi\)
\(558\) 0 0
\(559\) −0.904324 6.28971i −0.0382488 0.266027i
\(560\) 0 0
\(561\) 0.0511240 0.0328554i 0.00215846 0.00138716i
\(562\) 0 0
\(563\) −15.4906 + 5.77770i −0.652851 + 0.243501i −0.653996 0.756498i \(-0.726908\pi\)
0.00114429 + 0.999999i \(0.499636\pi\)
\(564\) 0 0
\(565\) 1.72011 29.5939i 0.0723655 1.24503i
\(566\) 0 0
\(567\) −22.7611 + 12.4285i −0.955878 + 0.521949i
\(568\) 0 0
\(569\) 3.37859 + 3.89910i 0.141638 + 0.163459i 0.822136 0.569291i \(-0.192782\pi\)
−0.680498 + 0.732750i \(0.738237\pi\)
\(570\) 0 0
\(571\) −13.9138 12.0564i −0.582275 0.504544i 0.313182 0.949693i \(-0.398605\pi\)
−0.895456 + 0.445149i \(0.853151\pi\)
\(572\) 0 0
\(573\) −0.134514 + 0.360646i −0.00561940 + 0.0150662i
\(574\) 0 0
\(575\) 2.60855 + 23.8369i 0.108784 + 0.994065i
\(576\) 0 0
\(577\) −11.0657 + 29.6682i −0.460670 + 1.23510i 0.474296 + 0.880365i \(0.342703\pi\)
−0.934966 + 0.354738i \(0.884570\pi\)
\(578\) 0 0
\(579\) 0.548361 + 0.475158i 0.0227891 + 0.0197469i
\(580\) 0 0
\(581\) −19.8774 22.9398i −0.824654 0.951702i
\(582\) 0 0
\(583\) 1.74743 0.954166i 0.0723710 0.0395175i
\(584\) 0 0
\(585\) −0.432477 + 7.44063i −0.0178807 + 0.307632i
\(586\) 0 0
\(587\) 16.4230 6.12545i 0.677848 0.252824i 0.0131249 0.999914i \(-0.495822\pi\)
0.664723 + 0.747089i \(0.268549\pi\)
\(588\) 0 0
\(589\) 15.6425 10.0528i 0.644539 0.414220i
\(590\) 0 0
\(591\) −0.0183976 0.127958i −0.000756775 0.00526349i
\(592\) 0 0
\(593\) −0.0623474 + 0.0135628i −0.00256030 + 0.000556959i −0.213845 0.976868i \(-0.568599\pi\)
0.211285 + 0.977425i \(0.432235\pi\)
\(594\) 0 0
\(595\) −12.3537 5.44376i −0.506453 0.223172i
\(596\) 0 0
\(597\) 0.635166 0.635166i 0.0259956 0.0259956i
\(598\) 0 0
\(599\) 22.7964i 0.931437i 0.884933 + 0.465719i \(0.154204\pi\)
−0.884933 + 0.465719i \(0.845796\pi\)
\(600\) 0 0
\(601\) 35.2693 10.3560i 1.43867 0.422430i 0.532888 0.846186i \(-0.321107\pi\)
0.905777 + 0.423755i \(0.139288\pi\)
\(602\) 0 0
\(603\) 8.69382 + 39.9649i 0.354040 + 1.62749i
\(604\) 0 0
\(605\) −20.1342 12.5631i −0.818571 0.510763i
\(606\) 0 0
\(607\) 28.8501 + 6.27596i 1.17099 + 0.254733i 0.755676 0.654945i \(-0.227308\pi\)
0.415313 + 0.909678i \(0.363672\pi\)
\(608\) 0 0
\(609\) −0.138722 + 0.303758i −0.00562129 + 0.0123089i
\(610\) 0 0
\(611\) −0.410258 + 2.85341i −0.0165973 + 0.115437i
\(612\) 0 0
\(613\) 12.2521 + 22.4381i 0.494859 + 0.906267i 0.999088 + 0.0426970i \(0.0135950\pi\)
−0.504229 + 0.863570i \(0.668223\pi\)
\(614\) 0 0
\(615\) −0.536852 + 0.551371i −0.0216479 + 0.0222334i
\(616\) 0 0
\(617\) −2.14810 30.0344i −0.0864793 1.20914i −0.836591 0.547828i \(-0.815455\pi\)
0.750112 0.661311i \(-0.230000\pi\)
\(618\) 0 0
\(619\) 14.7832 + 32.3707i 0.594188 + 1.30109i 0.932878 + 0.360192i \(0.117289\pi\)
−0.338691 + 0.940898i \(0.609984\pi\)
\(620\) 0 0
\(621\) 0.545216 1.22920i 0.0218788 0.0493259i
\(622\) 0 0
\(623\) 27.2633 + 10.1687i 1.09228 + 0.407399i
\(624\) 0 0
\(625\) 9.15759 23.2624i 0.366303 0.930495i
\(626\) 0 0
\(627\) 0.00455893 0.0637422i 0.000182066 0.00254562i
\(628\) 0 0
\(629\) −0.528552 + 1.80008i −0.0210748 + 0.0717740i
\(630\) 0 0
\(631\) −44.0286 6.33036i −1.75275 0.252008i −0.810220 0.586125i \(-0.800653\pi\)
−0.942531 + 0.334118i \(0.891562\pi\)
\(632\) 0 0
\(633\) 0.0458371 + 0.122894i 0.00182186 + 0.00488459i
\(634\) 0 0
\(635\) −11.8153 + 9.09329i −0.468876 + 0.360856i
\(636\) 0 0
\(637\) −0.892423 + 1.19214i −0.0353591 + 0.0472342i
\(638\) 0 0
\(639\) 1.57642 2.45295i 0.0623621 0.0970373i
\(640\) 0 0
\(641\) 3.57248 + 12.1667i 0.141104 + 0.480557i 0.999472 0.0324770i \(-0.0103396\pi\)
−0.858368 + 0.513034i \(0.828521\pi\)
\(642\) 0 0
\(643\) −25.5764 25.5764i −1.00863 1.00863i −0.999962 0.00867061i \(-0.997240\pi\)
−0.00867061 0.999962i \(-0.502760\pi\)
\(644\) 0 0
\(645\) 0.385161 0.456670i 0.0151657 0.0179814i
\(646\) 0 0
\(647\) 7.68042 + 4.19382i 0.301948 + 0.164876i 0.623080 0.782158i \(-0.285881\pi\)
−0.321131 + 0.947035i \(0.604063\pi\)
\(648\) 0 0
\(649\) 3.24084 + 2.08276i 0.127214 + 0.0817555i
\(650\) 0 0
\(651\) 1.13018 0.162495i 0.0442952 0.00636869i
\(652\) 0 0
\(653\) 3.73723 17.1798i 0.146249 0.672296i −0.844383 0.535740i \(-0.820033\pi\)
0.990632 0.136556i \(-0.0436035\pi\)
\(654\) 0 0
\(655\) −11.1025 23.4771i −0.433812 0.917328i
\(656\) 0 0
\(657\) 9.16062 6.85755i 0.357390 0.267539i
\(658\) 0 0
\(659\) −45.1308 13.2516i −1.75805 0.516210i −0.766085 0.642739i \(-0.777798\pi\)
−0.991963 + 0.126529i \(0.959616\pi\)
\(660\) 0 0
\(661\) −5.93565 + 5.14327i −0.230870 + 0.200050i −0.762612 0.646857i \(-0.776083\pi\)
0.531742 + 0.846907i \(0.321538\pi\)
\(662\) 0 0
\(663\) 0.108390 0.00775221i 0.00420952 0.000301071i
\(664\) 0 0
\(665\) −12.3678 + 6.96910i −0.479601 + 0.270250i
\(666\) 0 0
\(667\) 2.64807 + 11.5637i 0.102534 + 0.447749i
\(668\) 0 0
\(669\) 0.673762 0.307697i 0.0260492 0.0118963i
\(670\) 0 0
\(671\) 5.61323 6.47801i 0.216696 0.250081i
\(672\) 0 0
\(673\) 26.0220 + 1.86113i 1.00307 + 0.0717412i 0.563202 0.826319i \(-0.309569\pi\)
0.439872 + 0.898061i \(0.355024\pi\)
\(674\) 0 0
\(675\) −1.09949 + 0.869791i −0.0423194 + 0.0334783i
\(676\) 0 0
\(677\) −29.1494 38.9391i −1.12030 1.49655i −0.844669 0.535289i \(-0.820203\pi\)
−0.275635 0.961262i \(-0.588888\pi\)
\(678\) 0 0
\(679\) −28.8976 13.1971i −1.10899 0.506457i
\(680\) 0 0
\(681\) −0.328982 0.511906i −0.0126066 0.0196163i
\(682\) 0 0
\(683\) 33.9979 + 25.4505i 1.30089 + 0.973837i 0.999795 + 0.0202434i \(0.00644413\pi\)
0.301098 + 0.953593i \(0.402647\pi\)
\(684\) 0 0
\(685\) −20.5356 + 38.8309i −0.784625 + 1.48365i
\(686\) 0 0
\(687\) 0.0286731 0.0525109i 0.00109395 0.00200341i
\(688\) 0 0
\(689\) 3.56011 0.135629
\(690\) 0 0
\(691\) 18.2417 0.693947 0.346974 0.937875i \(-0.387209\pi\)
0.346974 + 0.937875i \(0.387209\pi\)
\(692\) 0 0
\(693\) −2.57979 + 4.72453i −0.0979980 + 0.179470i
\(694\) 0 0
\(695\) −8.10979 26.3154i −0.307622 0.998202i
\(696\) 0 0
\(697\) −12.3213 9.22363i −0.466703 0.349370i
\(698\) 0 0
\(699\) −0.399863 0.622199i −0.0151242 0.0235337i
\(700\) 0 0
\(701\) −5.66689 2.58798i −0.214036 0.0977468i 0.305512 0.952188i \(-0.401172\pi\)
−0.519548 + 0.854441i \(0.673900\pi\)
\(702\) 0 0
\(703\) 1.18227 + 1.57933i 0.0445902 + 0.0595655i
\(704\) 0 0
\(705\) −0.226023 + 0.149554i −0.00851251 + 0.00563253i
\(706\) 0 0
\(707\) 12.3146 + 0.880760i 0.463139 + 0.0331244i
\(708\) 0 0
\(709\) −21.3230 + 24.6080i −0.800801 + 0.924174i −0.998425 0.0561043i \(-0.982132\pi\)
0.197624 + 0.980278i \(0.436678\pi\)
\(710\) 0 0
\(711\) −5.94123 + 2.71327i −0.222814 + 0.101756i
\(712\) 0 0
\(713\) 28.3672 28.9934i 1.06236 1.08581i
\(714\) 0 0
\(715\) 0.758920 + 1.34682i 0.0283820 + 0.0503684i
\(716\) 0 0
\(717\) −0.388971 + 0.0278197i −0.0145264 + 0.00103895i
\(718\) 0 0
\(719\) 30.4326 26.3700i 1.13494 0.983435i 0.134972 0.990849i \(-0.456906\pi\)
0.999973 + 0.00741457i \(0.00236015\pi\)
\(720\) 0 0
\(721\) 10.4540 + 3.06956i 0.389326 + 0.114316i
\(722\) 0 0
\(723\) 0.546602 0.409181i 0.0203283 0.0152176i
\(724\) 0 0
\(725\) 3.16664 11.9558i 0.117606 0.444029i
\(726\) 0 0
\(727\) 10.3007 47.3516i 0.382032 1.75617i −0.237679 0.971344i \(-0.576387\pi\)
0.619711 0.784830i \(-0.287250\pi\)
\(728\) 0 0
\(729\) −26.6084 + 3.82572i −0.985498 + 0.141693i
\(730\) 0 0
\(731\) 10.0515 + 6.45970i 0.371768 + 0.238920i
\(732\) 0 0
\(733\) −20.1241 10.9886i −0.743301 0.405873i 0.0625110 0.998044i \(-0.480089\pi\)
−0.805812 + 0.592171i \(0.798271\pi\)
\(734\) 0 0
\(735\) −0.139501 + 0.0118499i −0.00514559 + 0.000437090i
\(736\) 0 0
\(737\) 5.99861 + 5.99861i 0.220962 + 0.220962i
\(738\) 0 0
\(739\) −12.6529 43.0918i −0.465444 1.58516i −0.773504 0.633791i \(-0.781498\pi\)
0.308060 0.951367i \(-0.400320\pi\)
\(740\) 0 0
\(741\) 0.0617794 0.0961307i 0.00226952 0.00353145i
\(742\) 0 0
\(743\) −6.70612 + 8.95832i −0.246024 + 0.328649i −0.906506 0.422192i \(-0.861261\pi\)
0.660483 + 0.750841i \(0.270352\pi\)
\(744\) 0 0
\(745\) 2.30780 17.7269i 0.0845514 0.649464i
\(746\) 0 0
\(747\) −11.0117 29.5234i −0.402895 1.08020i
\(748\) 0 0
\(749\) −23.5499 3.38597i −0.860495 0.123721i
\(750\) 0 0
\(751\) −11.4649 + 39.0458i −0.418359 + 1.42480i 0.433559 + 0.901125i \(0.357258\pi\)
−0.851918 + 0.523675i \(0.824561\pi\)
\(752\) 0 0
\(753\) −0.0290692 + 0.406441i −0.00105934 + 0.0148115i
\(754\) 0 0
\(755\) −8.17490 51.9297i −0.297515 1.88991i
\(756\) 0 0
\(757\) −5.75625 2.14697i −0.209215 0.0780330i 0.242672 0.970108i \(-0.421976\pi\)
−0.451887 + 0.892075i \(0.649249\pi\)
\(758\) 0 0
\(759\) −0.0213447 0.137762i −0.000774763 0.00500044i
\(760\) 0 0
\(761\) 4.22538 + 9.25230i 0.153170 + 0.335396i 0.970625 0.240597i \(-0.0773431\pi\)
−0.817455 + 0.575992i \(0.804616\pi\)
\(762\) 0 0
\(763\) 2.97800 + 41.6379i 0.107811 + 1.50739i
\(764\) 0 0
\(765\) −10.0409 9.77651i −0.363030 0.353471i
\(766\) 0 0
\(767\) 3.30135 + 6.04597i 0.119205 + 0.218307i
\(768\) 0 0
\(769\) 2.92270 20.3278i 0.105395 0.733039i −0.866764 0.498718i \(-0.833804\pi\)
0.972159 0.234321i \(-0.0752866\pi\)
\(770\) 0 0
\(771\) 0.400189 0.876293i 0.0144125 0.0315589i
\(772\) 0 0
\(773\) 19.6869 + 4.28263i 0.708090 + 0.154036i 0.552167 0.833734i \(-0.313801\pi\)
0.155923 + 0.987769i \(0.450165\pi\)
\(774\) 0 0
\(775\) −40.2440 + 12.9926i −1.44561 + 0.466708i
\(776\) 0 0
\(777\) 0.0257509 + 0.118375i 0.000923807 + 0.00424667i
\(778\) 0 0
\(779\) −15.5293 + 4.55983i −0.556397 + 0.163373i
\(780\) 0 0
\(781\) 0.604797i 0.0216413i
\(782\) 0 0
\(783\) −0.490427 + 0.490427i −0.0175264 + 0.0175264i
\(784\) 0 0
\(785\) 4.92566 + 12.6867i 0.175804 + 0.452806i
\(786\) 0 0
\(787\) −42.0079 + 9.13827i −1.49742 + 0.325744i −0.885300 0.465020i \(-0.846047\pi\)
−0.612121 + 0.790764i \(0.709683\pi\)
\(788\) 0 0
\(789\) 0.0381403 + 0.265272i 0.00135783 + 0.00944393i
\(790\) 0 0
\(791\) 32.2064 20.6978i 1.14513 0.735930i
\(792\) 0 0
\(793\) 14.3608 5.35632i 0.509969 0.190208i
\(794\) 0 0
\(795\) 0.222539 + 0.250005i 0.00789265 + 0.00886677i
\(796\) 0 0
\(797\) −44.1371 + 24.1007i −1.56342 + 0.853690i −0.563802 + 0.825910i \(0.690662\pi\)
−0.999614 + 0.0277795i \(0.991156\pi\)
\(798\) 0 0
\(799\) −3.54965 4.09651i −0.125577 0.144924i
\(800\) 0 0
\(801\) 22.8286 + 19.7811i 0.806607 + 0.698929i
\(802\) 0 0
\(803\) 0.829452 2.22385i 0.0292707 0.0784778i
\(804\) 0 0
\(805\) −22.9053 + 20.8415i −0.807307 + 0.734567i
\(806\) 0 0
\(807\) 0.0832053 0.223082i 0.00292897 0.00785286i
\(808\) 0 0
\(809\) −34.4294 29.8333i −1.21047 1.04888i −0.997416 0.0718416i \(-0.977112\pi\)
−0.213057 0.977040i \(-0.568342\pi\)
\(810\) 0 0
\(811\) −34.8890 40.2641i −1.22512 1.41386i −0.879776 0.475388i \(-0.842308\pi\)
−0.345344 0.938476i \(-0.612238\pi\)
\(812\) 0 0
\(813\) −0.843896 + 0.460802i −0.0295967 + 0.0161610i
\(814\) 0 0
\(815\) −18.0379 1.04843i −0.631841 0.0367250i
\(816\) 0 0
\(817\) 11.7722 4.39080i 0.411857 0.153615i
\(818\) 0 0
\(819\) −8.09747 + 5.20393i −0.282949 + 0.181840i
\(820\) 0 0
\(821\) 0.848233 + 5.89959i 0.0296035 + 0.205897i 0.999255 0.0385944i \(-0.0122880\pi\)
−0.969651 + 0.244492i \(0.921379\pi\)
\(822\) 0 0
\(823\) −1.10009 + 0.239309i −0.0383466 + 0.00834179i −0.231698 0.972788i \(-0.574428\pi\)
0.193351 + 0.981130i \(0.438064\pi\)
\(824\) 0 0
\(825\) −0.0471400 + 0.137483i −0.00164120 + 0.00478655i
\(826\) 0 0
\(827\) −2.56413 + 2.56413i −0.0891635 + 0.0891635i −0.750282 0.661118i \(-0.770082\pi\)
0.661118 + 0.750282i \(0.270082\pi\)
\(828\) 0 0
\(829\) 6.22752i 0.216291i −0.994135 0.108145i \(-0.965509\pi\)
0.994135 0.108145i \(-0.0344912\pi\)
\(830\) 0 0
\(831\) −1.23697 + 0.363206i −0.0429099 + 0.0125995i
\(832\) 0 0
\(833\) −0.595202 2.73610i −0.0206225 0.0948002i
\(834\) 0 0
\(835\) 4.18753 + 18.0847i 0.144915 + 0.625846i
\(836\) 0 0
\(837\) 2.31728 + 0.504092i 0.0800968 + 0.0174240i
\(838\) 0 0
\(839\) −15.7581 + 34.5054i −0.544030 + 1.19126i 0.415484 + 0.909600i \(0.363612\pi\)
−0.959514 + 0.281659i \(0.909115\pi\)
\(840\) 0 0
\(841\) −3.25634 + 22.6483i −0.112287 + 0.780976i
\(842\) 0 0
\(843\) −0.632302 1.15798i −0.0217777 0.0398828i
\(844\) 0 0
\(845\) −0.350931 26.3022i −0.0120724 0.904824i
\(846\) 0 0
\(847\) −2.18649 30.5711i −0.0751286 1.05043i
\(848\) 0 0
\(849\) −0.257026 0.562808i −0.00882110 0.0193155i
\(850\) 0 0
\(851\) 3.28303 + 2.78259i 0.112541 + 0.0953861i
\(852\) 0 0
\(853\) 25.7340 + 9.59827i 0.881114 + 0.328638i 0.748979 0.662593i \(-0.230544\pi\)
0.132134 + 0.991232i \(0.457817\pi\)
\(854\) 0 0
\(855\) −14.5577 + 2.29171i −0.497863 + 0.0783749i
\(856\) 0 0
\(857\) −0.875592 + 12.2424i −0.0299097 + 0.418192i 0.960335 + 0.278850i \(0.0899532\pi\)
−0.990244 + 0.139342i \(0.955501\pi\)
\(858\) 0 0
\(859\) 5.72595 19.5008i 0.195367 0.665359i −0.802289 0.596935i \(-0.796385\pi\)
0.997656 0.0684234i \(-0.0217969\pi\)
\(860\) 0 0
\(861\) −0.983737 0.141440i −0.0335257 0.00482026i
\(862\) 0 0
\(863\) −6.74716 18.0898i −0.229676 0.615785i 0.770078 0.637949i \(-0.220217\pi\)
−0.999754 + 0.0221643i \(0.992944\pi\)
\(864\) 0 0
\(865\) 3.53917 + 4.59859i 0.120335 + 0.156357i
\(866\) 0 0
\(867\) 0.353808 0.472632i 0.0120159 0.0160514i
\(868\) 0 0
\(869\) −0.732431 + 1.13969i −0.0248460 + 0.0386612i
\(870\) 0 0
\(871\) 4.27369 + 14.5548i 0.144808 + 0.493172i
\(872\) 0 0
\(873\) −23.3195 23.3195i −0.789246 0.789246i
\(874\) 0 0
\(875\) 31.2488 8.11987i 1.05640 0.274502i
\(876\) 0 0
\(877\) 9.46774 + 5.16978i 0.319703 + 0.174571i 0.631085 0.775714i \(-0.282610\pi\)
−0.311382 + 0.950285i \(0.600792\pi\)
\(878\) 0 0
\(879\) 0.624907 + 0.401604i 0.0210776 + 0.0135458i
\(880\) 0 0
\(881\) −0.0444367 + 0.00638903i −0.00149711 + 0.000215252i −0.143063 0.989714i \(-0.545695\pi\)
0.141566 + 0.989929i \(0.454786\pi\)
\(882\) 0 0
\(883\) −5.72351 + 26.3106i −0.192612 + 0.885421i 0.774799 + 0.632208i \(0.217851\pi\)
−0.967411 + 0.253213i \(0.918513\pi\)
\(884\) 0 0
\(885\) −0.218208 + 0.609763i −0.00733499 + 0.0204970i
\(886\) 0 0
\(887\) 33.9162 25.3893i 1.13879 0.852490i 0.148150 0.988965i \(-0.452668\pi\)
0.990644 + 0.136475i \(0.0435772\pi\)
\(888\) 0 0
\(889\) −18.4749 5.42472i −0.619628 0.181939i
\(890\) 0 0
\(891\) −4.22010 + 3.65674i −0.141379 + 0.122505i
\(892\) 0 0
\(893\) −5.68546 + 0.406632i −0.190257 + 0.0136074i
\(894\) 0 0
\(895\) 0.0289834 0.103812i 0.000968808 0.00347006i
\(896\) 0 0
\(897\) 0.0845580 0.234496i 0.00282331 0.00782959i
\(898\) 0 0
\(899\) −19.0309 + 8.69111i −0.634716 + 0.289865i
\(900\) 0 0
\(901\) −4.38370 + 5.05906i −0.146042 + 0.168542i
\(902\) 0 0
\(903\) 0.769562 + 0.0550402i 0.0256094 + 0.00183162i
\(904\) 0 0
\(905\) −7.13452 10.7825i −0.237160 0.358422i
\(906\) 0 0
\(907\) 6.66578 + 8.90444i 0.221334 + 0.295667i 0.897440 0.441137i \(-0.145425\pi\)
−0.676106 + 0.736804i \(0.736334\pi\)
\(908\) 0 0
\(909\) 11.6583 + 5.32415i 0.386680 + 0.176591i
\(910\) 0 0
\(911\) 12.2990 + 19.1376i 0.407485 + 0.634059i 0.982973 0.183752i \(-0.0588242\pi\)
−0.575488 + 0.817810i \(0.695188\pi\)
\(912\) 0 0
\(913\) −5.23216 3.91675i −0.173159 0.129625i
\(914\) 0 0
\(915\) 1.27383 + 0.673658i 0.0421114 + 0.0222705i
\(916\) 0 0
\(917\) 16.0736 29.4367i 0.530799 0.972085i
\(918\) 0 0
\(919\) −17.6471 −0.582125 −0.291063 0.956704i \(-0.594009\pi\)
−0.291063 + 0.956704i \(0.594009\pi\)
\(920\) 0 0
\(921\) 0.533283 0.0175723
\(922\) 0 0
\(923\) 0.518288 0.949173i 0.0170596 0.0312424i
\(924\) 0 0
\(925\) −1.67959 4.16060i −0.0552245 0.136800i
\(926\) 0 0
\(927\) 9.05445 + 6.77808i 0.297387 + 0.222621i
\(928\) 0 0
\(929\) −4.94656 7.69700i −0.162292 0.252531i 0.750578 0.660782i \(-0.229775\pi\)
−0.912870 + 0.408251i \(0.866139\pi\)
\(930\) 0 0
\(931\) −2.67840 1.22318i −0.0877810 0.0400882i
\(932\) 0 0
\(933\) 0.309805 + 0.413851i 0.0101426 + 0.0135489i
\(934\) 0 0
\(935\) −2.84838 0.579941i −0.0931521 0.0189661i
\(936\) 0 0
\(937\) 8.21678 + 0.587675i 0.268430 + 0.0191985i 0.204906 0.978782i \(-0.434311\pi\)
0.0635248 + 0.997980i \(0.479766\pi\)
\(938\) 0 0
\(939\) 0.470559 0.543054i 0.0153561 0.0177219i
\(940\) 0 0
\(941\) −28.3568 + 12.9501i −0.924405 + 0.422162i −0.819994 0.572373i \(-0.806023\pi\)
−0.104411 + 0.994534i \(0.533296\pi\)
\(942\) 0 0
\(943\) −30.8013 + 17.2579i −1.00303 + 0.561996i
\(944\) 0 0
\(945\) −1.74385 0.486866i −0.0567274 0.0158378i
\(946\) 0 0
\(947\) −32.2017 + 2.30311i −1.04641 + 0.0748411i −0.583944 0.811794i \(-0.698491\pi\)
−0.462470 + 0.886635i \(0.653037\pi\)
\(948\) 0 0
\(949\) 3.20750 2.77931i 0.104120 0.0902203i
\(950\) 0 0
\(951\) −1.06144 0.311666i −0.0344194 0.0101065i
\(952\) 0 0
\(953\) 31.0797 23.2659i 1.00677 0.753658i 0.0374085 0.999300i \(-0.488090\pi\)
0.969361 + 0.245642i \(0.0789988\pi\)
\(954\) 0 0
\(955\) 16.6440 7.87110i 0.538588 0.254703i
\(956\) 0 0
\(957\) −0.0152841 + 0.0702601i −0.000494066 + 0.00227119i
\(958\) 0 0
\(959\) −56.1521 + 8.07345i −1.81325 + 0.260705i
\(960\) 0 0
\(961\) 34.1006 + 21.9151i 1.10002 + 0.706940i
\(962\) 0 0
\(963\) −21.6774 11.8368i −0.698544 0.381434i
\(964\) 0 0
\(965\) −2.93755 34.5819i −0.0945630 1.11323i
\(966\) 0 0
\(967\) 10.2193 + 10.2193i 0.328630 + 0.328630i 0.852065 0.523435i \(-0.175350\pi\)
−0.523435 + 0.852065i \(0.675350\pi\)
\(968\) 0 0
\(969\) 0.0605343 + 0.206161i 0.00194464 + 0.00662284i
\(970\) 0 0
\(971\) −4.46633 + 6.94974i −0.143331 + 0.223028i −0.905495 0.424356i \(-0.860501\pi\)
0.762164 + 0.647384i \(0.224137\pi\)
\(972\) 0 0
\(973\) 21.3119 28.4693i 0.683227 0.912684i
\(974\) 0 0
\(975\) −0.191800 + 0.175370i −0.00614251 + 0.00561634i
\(976\) 0 0
\(977\) −5.49131 14.7228i −0.175683 0.471024i 0.819026 0.573756i \(-0.194514\pi\)
−0.994709 + 0.102732i \(0.967241\pi\)
\(978\) 0 0
\(979\) 6.20162 + 0.891658i 0.198205 + 0.0284975i
\(980\) 0 0
\(981\) −12.2088 + 41.5793i −0.389797 + 1.32753i
\(982\) 0 0
\(983\) 0.0879238 1.22934i 0.00280433 0.0392097i −0.995857 0.0909303i \(-0.971016\pi\)
0.998662 + 0.0517205i \(0.0164705\pi\)
\(984\) 0 0
\(985\) −3.63924 + 4.99911i −0.115956 + 0.159285i
\(986\) 0 0
\(987\) −0.327945 0.122317i −0.0104386 0.00389340i
\(988\) 0 0
\(989\) 22.8944 15.0690i 0.727999 0.479166i
\(990\) 0 0
\(991\) 23.7777 + 52.0659i 0.755323 + 1.65393i 0.756557 + 0.653927i \(0.226880\pi\)
−0.00123431 + 0.999999i \(0.500393\pi\)
\(992\) 0 0
\(993\) 0.00296867 + 0.0415074i 9.42078e−5 + 0.00131720i
\(994\) 0 0
\(995\) −42.9620 + 0.573209i −1.36199 + 0.0181720i
\(996\) 0 0
\(997\) −26.6669 48.8369i −0.844551 1.54668i −0.837325 0.546705i \(-0.815882\pi\)
−0.00722554 0.999974i \(-0.502300\pi\)
\(998\) 0 0
\(999\) −0.0358077 + 0.249048i −0.00113291 + 0.00787954i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.617.18 yes 720
5.3 odd 4 inner 920.2.bv.a.433.18 yes 720
23.17 odd 22 inner 920.2.bv.a.17.18 720
115.63 even 44 inner 920.2.bv.a.753.18 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.18 720 23.17 odd 22 inner
920.2.bv.a.433.18 yes 720 5.3 odd 4 inner
920.2.bv.a.617.18 yes 720 1.1 even 1 trivial
920.2.bv.a.753.18 yes 720 115.63 even 44 inner