Properties

Label 920.2.bv.a.433.12
Level $920$
Weight $2$
Character 920.433
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 433.12
Character \(\chi\) \(=\) 920.433
Dual form 920.2.bv.a.17.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.21475 - 0.663302i) q^{3} +(0.933470 + 2.03190i) q^{5} +(-0.205002 + 0.273851i) q^{7} +(-0.586283 - 0.912274i) q^{9} +(0.437876 + 0.199971i) q^{11} +(-1.45611 + 1.09003i) q^{13} +(0.213837 - 3.08742i) q^{15} +(-0.429113 + 5.99978i) q^{17} +(2.24436 - 2.59013i) q^{19} +(0.430671 - 0.196681i) q^{21} +(4.77197 - 0.477794i) q^{23} +(-3.25727 + 3.79344i) q^{25} +(0.403282 + 5.63862i) q^{27} +(-7.06351 + 6.12056i) q^{29} +(-8.81071 - 2.58706i) q^{31} +(-0.399267 - 0.533358i) q^{33} +(-0.747802 - 0.160913i) q^{35} +(4.51781 + 0.982790i) q^{37} +(2.49182 - 0.358270i) q^{39} +(-5.19934 - 3.34142i) q^{41} +(2.67559 - 4.89997i) q^{43} +(1.30638 - 2.04285i) q^{45} +(-6.66836 + 6.66836i) q^{47} +(1.93916 + 6.60417i) q^{49} +(4.50093 - 7.00358i) q^{51} +(10.8030 + 8.08702i) q^{53} +(0.00242150 + 1.07639i) q^{55} +(-4.44437 + 1.65766i) q^{57} +(-5.21327 - 0.749555i) q^{59} +(-4.23334 + 14.4174i) q^{61} +(0.370016 + 0.0264641i) q^{63} +(-3.57407 - 1.94117i) q^{65} +(-2.35479 + 6.31343i) q^{67} +(-6.11366 - 2.58486i) q^{69} +(5.71261 + 12.5089i) q^{71} +(3.25371 - 0.232710i) q^{73} +(6.47295 - 2.44752i) q^{75} +(-0.144528 + 0.0789181i) q^{77} +(-1.00791 + 7.01019i) q^{79} +(1.89876 - 4.15771i) q^{81} +(1.64364 - 7.55568i) q^{83} +(-12.5915 + 4.72870i) q^{85} +(12.6402 - 2.74970i) q^{87} +(0.505952 - 0.148561i) q^{89} -0.622215i q^{91} +(8.98678 + 8.98678i) q^{93} +(7.35795 + 2.14252i) q^{95} +(-0.554245 - 2.54782i) q^{97} +(-0.0742905 - 0.516702i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{15}{22}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.21475 0.663302i −0.701334 0.382957i 0.0886682 0.996061i \(-0.471739\pi\)
−0.790002 + 0.613104i \(0.789921\pi\)
\(4\) 0 0
\(5\) 0.933470 + 2.03190i 0.417460 + 0.908695i
\(6\) 0 0
\(7\) −0.205002 + 0.273851i −0.0774835 + 0.103506i −0.837608 0.546271i \(-0.816047\pi\)
0.760125 + 0.649777i \(0.225138\pi\)
\(8\) 0 0
\(9\) −0.586283 0.912274i −0.195428 0.304091i
\(10\) 0 0
\(11\) 0.437876 + 0.199971i 0.132024 + 0.0602935i 0.480332 0.877087i \(-0.340516\pi\)
−0.348307 + 0.937380i \(0.613243\pi\)
\(12\) 0 0
\(13\) −1.45611 + 1.09003i −0.403852 + 0.302320i −0.781826 0.623496i \(-0.785712\pi\)
0.377974 + 0.925816i \(0.376621\pi\)
\(14\) 0 0
\(15\) 0.213837 3.08742i 0.0552124 0.797169i
\(16\) 0 0
\(17\) −0.429113 + 5.99978i −0.104075 + 1.45516i 0.630266 + 0.776379i \(0.282946\pi\)
−0.734341 + 0.678781i \(0.762509\pi\)
\(18\) 0 0
\(19\) 2.24436 2.59013i 0.514892 0.594217i −0.437452 0.899242i \(-0.644119\pi\)
0.952345 + 0.305024i \(0.0986646\pi\)
\(20\) 0 0
\(21\) 0.430671 0.196681i 0.0939802 0.0429193i
\(22\) 0 0
\(23\) 4.77197 0.477794i 0.995025 0.0996270i
\(24\) 0 0
\(25\) −3.25727 + 3.79344i −0.651454 + 0.758688i
\(26\) 0 0
\(27\) 0.403282 + 5.63862i 0.0776116 + 1.08515i
\(28\) 0 0
\(29\) −7.06351 + 6.12056i −1.31166 + 1.13656i −0.330407 + 0.943838i \(0.607186\pi\)
−0.981253 + 0.192722i \(0.938268\pi\)
\(30\) 0 0
\(31\) −8.81071 2.58706i −1.58245 0.464649i −0.631856 0.775086i \(-0.717707\pi\)
−0.950594 + 0.310436i \(0.899525\pi\)
\(32\) 0 0
\(33\) −0.399267 0.533358i −0.0695034 0.0928457i
\(34\) 0 0
\(35\) −0.747802 0.160913i −0.126402 0.0271993i
\(36\) 0 0
\(37\) 4.51781 + 0.982790i 0.742724 + 0.161570i 0.567978 0.823044i \(-0.307726\pi\)
0.174746 + 0.984614i \(0.444090\pi\)
\(38\) 0 0
\(39\) 2.49182 0.358270i 0.399011 0.0573691i
\(40\) 0 0
\(41\) −5.19934 3.34142i −0.812001 0.521841i 0.0675106 0.997719i \(-0.478494\pi\)
−0.879512 + 0.475877i \(0.842131\pi\)
\(42\) 0 0
\(43\) 2.67559 4.89997i 0.408023 0.747239i −0.590173 0.807277i \(-0.700940\pi\)
0.998196 + 0.0600382i \(0.0191223\pi\)
\(44\) 0 0
\(45\) 1.30638 2.04285i 0.194743 0.304530i
\(46\) 0 0
\(47\) −6.66836 + 6.66836i −0.972680 + 0.972680i −0.999637 0.0269569i \(-0.991418\pi\)
0.0269569 + 0.999637i \(0.491418\pi\)
\(48\) 0 0
\(49\) 1.93916 + 6.60417i 0.277023 + 0.943453i
\(50\) 0 0
\(51\) 4.50093 7.00358i 0.630256 0.980697i
\(52\) 0 0
\(53\) 10.8030 + 8.08702i 1.48390 + 1.11084i 0.966994 + 0.254798i \(0.0820089\pi\)
0.516911 + 0.856039i \(0.327082\pi\)
\(54\) 0 0
\(55\) 0.00242150 + 1.07639i 0.000326515 + 0.145140i
\(56\) 0 0
\(57\) −4.44437 + 1.65766i −0.588671 + 0.219563i
\(58\) 0 0
\(59\) −5.21327 0.749555i −0.678710 0.0975838i −0.205666 0.978622i \(-0.565936\pi\)
−0.473045 + 0.881039i \(0.656845\pi\)
\(60\) 0 0
\(61\) −4.23334 + 14.4174i −0.542024 + 1.84596i −0.00884702 + 0.999961i \(0.502816\pi\)
−0.533177 + 0.846004i \(0.679002\pi\)
\(62\) 0 0
\(63\) 0.370016 + 0.0264641i 0.0466177 + 0.00333416i
\(64\) 0 0
\(65\) −3.57407 1.94117i −0.443309 0.240772i
\(66\) 0 0
\(67\) −2.35479 + 6.31343i −0.287683 + 0.771308i 0.710059 + 0.704143i \(0.248668\pi\)
−0.997742 + 0.0671659i \(0.978604\pi\)
\(68\) 0 0
\(69\) −6.11366 2.58486i −0.735998 0.311180i
\(70\) 0 0
\(71\) 5.71261 + 12.5089i 0.677962 + 1.48453i 0.864789 + 0.502136i \(0.167452\pi\)
−0.186827 + 0.982393i \(0.559820\pi\)
\(72\) 0 0
\(73\) 3.25371 0.232710i 0.380818 0.0272367i 0.120382 0.992728i \(-0.461588\pi\)
0.260436 + 0.965491i \(0.416134\pi\)
\(74\) 0 0
\(75\) 6.47295 2.44752i 0.747432 0.282615i
\(76\) 0 0
\(77\) −0.144528 + 0.0789181i −0.0164705 + 0.00899355i
\(78\) 0 0
\(79\) −1.00791 + 7.01019i −0.113399 + 0.788708i 0.851172 + 0.524886i \(0.175892\pi\)
−0.964571 + 0.263822i \(0.915017\pi\)
\(80\) 0 0
\(81\) 1.89876 4.15771i 0.210974 0.461968i
\(82\) 0 0
\(83\) 1.64364 7.55568i 0.180413 0.829344i −0.794589 0.607147i \(-0.792314\pi\)
0.975002 0.222196i \(-0.0713226\pi\)
\(84\) 0 0
\(85\) −12.5915 + 4.72870i −1.36574 + 0.512899i
\(86\) 0 0
\(87\) 12.6402 2.74970i 1.35517 0.294798i
\(88\) 0 0
\(89\) 0.505952 0.148561i 0.0536308 0.0157474i −0.254807 0.966992i \(-0.582012\pi\)
0.308438 + 0.951244i \(0.400194\pi\)
\(90\) 0 0
\(91\) 0.622215i 0.0652259i
\(92\) 0 0
\(93\) 8.98678 + 8.98678i 0.931885 + 0.931885i
\(94\) 0 0
\(95\) 7.35795 + 2.14252i 0.754909 + 0.219818i
\(96\) 0 0
\(97\) −0.554245 2.54782i −0.0562750 0.258692i 0.940411 0.340041i \(-0.110441\pi\)
−0.996686 + 0.0813487i \(0.974077\pi\)
\(98\) 0 0
\(99\) −0.0742905 0.516702i −0.00746648 0.0519305i
\(100\) 0 0
\(101\) 13.8433 8.89658i 1.37746 0.885243i 0.378283 0.925690i \(-0.376515\pi\)
0.999182 + 0.0404471i \(0.0128782\pi\)
\(102\) 0 0
\(103\) −4.44225 11.9101i −0.437708 1.17354i −0.949317 0.314321i \(-0.898223\pi\)
0.511609 0.859218i \(-0.329050\pi\)
\(104\) 0 0
\(105\) 0.801656 + 0.691487i 0.0782336 + 0.0674822i
\(106\) 0 0
\(107\) 6.07858 + 11.1321i 0.587638 + 1.07618i 0.987202 + 0.159474i \(0.0509798\pi\)
−0.399564 + 0.916705i \(0.630838\pi\)
\(108\) 0 0
\(109\) −4.75520 5.48779i −0.455465 0.525635i 0.480847 0.876805i \(-0.340329\pi\)
−0.936312 + 0.351170i \(0.885784\pi\)
\(110\) 0 0
\(111\) −4.83611 4.19051i −0.459023 0.397746i
\(112\) 0 0
\(113\) −10.5184 3.92314i −0.989483 0.369058i −0.197969 0.980208i \(-0.563434\pi\)
−0.791515 + 0.611150i \(0.790707\pi\)
\(114\) 0 0
\(115\) 5.42532 + 9.25018i 0.505914 + 0.862584i
\(116\) 0 0
\(117\) 1.84810 + 0.689305i 0.170857 + 0.0637262i
\(118\) 0 0
\(119\) −1.55508 1.34748i −0.142554 0.123523i
\(120\) 0 0
\(121\) −7.05172 8.13812i −0.641066 0.739829i
\(122\) 0 0
\(123\) 4.09952 + 7.50771i 0.369641 + 0.676947i
\(124\) 0 0
\(125\) −10.7485 3.07740i −0.961373 0.275251i
\(126\) 0 0
\(127\) 3.79731 + 10.1810i 0.336957 + 0.903417i 0.989353 + 0.145538i \(0.0464914\pi\)
−0.652396 + 0.757879i \(0.726236\pi\)
\(128\) 0 0
\(129\) −6.50032 + 4.17750i −0.572321 + 0.367808i
\(130\) 0 0
\(131\) −0.730718 5.08226i −0.0638432 0.444039i −0.996522 0.0833309i \(-0.973444\pi\)
0.932679 0.360708i \(-0.117465\pi\)
\(132\) 0 0
\(133\) 0.249211 + 1.14560i 0.0216093 + 0.0993364i
\(134\) 0 0
\(135\) −11.0807 + 6.08291i −0.953673 + 0.523533i
\(136\) 0 0
\(137\) 5.18289 + 5.18289i 0.442804 + 0.442804i 0.892953 0.450149i \(-0.148629\pi\)
−0.450149 + 0.892953i \(0.648629\pi\)
\(138\) 0 0
\(139\) 20.3063i 1.72236i −0.508302 0.861179i \(-0.669727\pi\)
0.508302 0.861179i \(-0.330273\pi\)
\(140\) 0 0
\(141\) 12.5235 3.67723i 1.05467 0.309679i
\(142\) 0 0
\(143\) −0.855569 + 0.186118i −0.0715463 + 0.0155639i
\(144\) 0 0
\(145\) −19.0300 8.63901i −1.58035 0.717431i
\(146\) 0 0
\(147\) 2.02497 9.30864i 0.167017 0.767764i
\(148\) 0 0
\(149\) 7.20474 15.7762i 0.590235 1.29243i −0.345065 0.938579i \(-0.612143\pi\)
0.935300 0.353856i \(-0.115130\pi\)
\(150\) 0 0
\(151\) 1.43401 9.97378i 0.116698 0.811655i −0.844452 0.535631i \(-0.820074\pi\)
0.961151 0.276024i \(-0.0890170\pi\)
\(152\) 0 0
\(153\) 5.72502 3.12610i 0.462841 0.252730i
\(154\) 0 0
\(155\) −2.96788 20.3175i −0.238386 1.63194i
\(156\) 0 0
\(157\) 13.7521 0.983567i 1.09753 0.0784972i 0.489195 0.872174i \(-0.337291\pi\)
0.608339 + 0.793677i \(0.291836\pi\)
\(158\) 0 0
\(159\) −7.75876 16.9893i −0.615310 1.34734i
\(160\) 0 0
\(161\) −0.847420 + 1.40476i −0.0667861 + 0.110710i
\(162\) 0 0
\(163\) −0.606290 + 1.62553i −0.0474883 + 0.127321i −0.958529 0.284996i \(-0.908008\pi\)
0.911040 + 0.412317i \(0.135280\pi\)
\(164\) 0 0
\(165\) 0.711029 1.30914i 0.0553535 0.101917i
\(166\) 0 0
\(167\) −9.50157 0.679565i −0.735253 0.0525863i −0.301310 0.953526i \(-0.597424\pi\)
−0.433944 + 0.900940i \(0.642878\pi\)
\(168\) 0 0
\(169\) −2.73043 + 9.29900i −0.210033 + 0.715308i
\(170\) 0 0
\(171\) −3.67874 0.528923i −0.281320 0.0404478i
\(172\) 0 0
\(173\) 0.0778291 0.0290287i 0.00591723 0.00220701i −0.346504 0.938049i \(-0.612631\pi\)
0.352421 + 0.935842i \(0.385359\pi\)
\(174\) 0 0
\(175\) −0.371090 1.66967i −0.0280518 0.126215i
\(176\) 0 0
\(177\) 5.83562 + 4.36849i 0.438632 + 0.328356i
\(178\) 0 0
\(179\) 4.07713 6.34413i 0.304739 0.474183i −0.654783 0.755817i \(-0.727240\pi\)
0.959522 + 0.281634i \(0.0908764\pi\)
\(180\) 0 0
\(181\) 0.155884 + 0.530891i 0.0115867 + 0.0394608i 0.965083 0.261943i \(-0.0843631\pi\)
−0.953497 + 0.301403i \(0.902545\pi\)
\(182\) 0 0
\(183\) 14.7056 14.7056i 1.08707 1.08707i
\(184\) 0 0
\(185\) 2.22031 + 10.0972i 0.163240 + 0.742359i
\(186\) 0 0
\(187\) −1.38768 + 2.54135i −0.101477 + 0.185842i
\(188\) 0 0
\(189\) −1.62681 1.04549i −0.118333 0.0760482i
\(190\) 0 0
\(191\) −6.89106 + 0.990785i −0.498619 + 0.0716907i −0.387036 0.922064i \(-0.626501\pi\)
−0.111583 + 0.993755i \(0.535592\pi\)
\(192\) 0 0
\(193\) −13.6814 2.97621i −0.984808 0.214232i −0.308801 0.951127i \(-0.599928\pi\)
−0.676007 + 0.736895i \(0.736291\pi\)
\(194\) 0 0
\(195\) 3.05401 + 4.72871i 0.218702 + 0.338630i
\(196\) 0 0
\(197\) −5.28101 7.05460i −0.376256 0.502619i 0.571944 0.820293i \(-0.306189\pi\)
−0.948200 + 0.317673i \(0.897099\pi\)
\(198\) 0 0
\(199\) −16.6566 4.89080i −1.18075 0.346700i −0.368288 0.929712i \(-0.620056\pi\)
−0.812464 + 0.583012i \(0.801874\pi\)
\(200\) 0 0
\(201\) 7.04818 6.10728i 0.497140 0.430775i
\(202\) 0 0
\(203\) −0.228087 3.18908i −0.0160086 0.223829i
\(204\) 0 0
\(205\) 1.93601 13.6837i 0.135217 0.955710i
\(206\) 0 0
\(207\) −3.23360 4.07322i −0.224751 0.283109i
\(208\) 0 0
\(209\) 1.50070 0.685348i 0.103806 0.0474065i
\(210\) 0 0
\(211\) −4.14939 + 4.78865i −0.285656 + 0.329664i −0.880383 0.474263i \(-0.842715\pi\)
0.594727 + 0.803927i \(0.297260\pi\)
\(212\) 0 0
\(213\) 1.35778 18.9843i 0.0930337 1.30078i
\(214\) 0 0
\(215\) 12.4539 + 0.862561i 0.849346 + 0.0588262i
\(216\) 0 0
\(217\) 2.51468 1.88247i 0.170708 0.127790i
\(218\) 0 0
\(219\) −4.10679 1.87551i −0.277511 0.126735i
\(220\) 0 0
\(221\) −5.91510 9.20408i −0.397893 0.619134i
\(222\) 0 0
\(223\) −8.42173 + 11.2501i −0.563961 + 0.753364i −0.988364 0.152110i \(-0.951393\pi\)
0.424403 + 0.905474i \(0.360484\pi\)
\(224\) 0 0
\(225\) 5.37034 + 0.747492i 0.358023 + 0.0498328i
\(226\) 0 0
\(227\) 7.23215 + 3.94905i 0.480015 + 0.262108i 0.700989 0.713172i \(-0.252742\pi\)
−0.220975 + 0.975280i \(0.570924\pi\)
\(228\) 0 0
\(229\) 12.9303 0.854461 0.427230 0.904143i \(-0.359489\pi\)
0.427230 + 0.904143i \(0.359489\pi\)
\(230\) 0 0
\(231\) 0.227911 0.0149954
\(232\) 0 0
\(233\) 1.05078 + 0.573767i 0.0688386 + 0.0375887i 0.513300 0.858209i \(-0.328423\pi\)
−0.444461 + 0.895798i \(0.646605\pi\)
\(234\) 0 0
\(235\) −19.7742 7.32475i −1.28992 0.477814i
\(236\) 0 0
\(237\) 5.87423 7.84706i 0.381572 0.509721i
\(238\) 0 0
\(239\) 6.67177 + 10.3815i 0.431561 + 0.671522i 0.987125 0.159952i \(-0.0511338\pi\)
−0.555564 + 0.831474i \(0.687497\pi\)
\(240\) 0 0
\(241\) 11.5578 + 5.27826i 0.744502 + 0.340003i 0.751288 0.659974i \(-0.229433\pi\)
−0.00678624 + 0.999977i \(0.502160\pi\)
\(242\) 0 0
\(243\) 8.51209 6.37207i 0.546051 0.408769i
\(244\) 0 0
\(245\) −11.6089 + 10.1050i −0.741665 + 0.645583i
\(246\) 0 0
\(247\) −0.444716 + 6.21794i −0.0282966 + 0.395638i
\(248\) 0 0
\(249\) −7.00830 + 8.08801i −0.444133 + 0.512557i
\(250\) 0 0
\(251\) 22.1458 10.1136i 1.39783 0.638366i 0.433035 0.901377i \(-0.357443\pi\)
0.964793 + 0.263011i \(0.0847155\pi\)
\(252\) 0 0
\(253\) 2.18507 + 0.745042i 0.137374 + 0.0468404i
\(254\) 0 0
\(255\) 18.4321 + 2.60782i 1.15426 + 0.163308i
\(256\) 0 0
\(257\) −0.0525736 0.735075i −0.00327945 0.0458527i 0.995549 0.0942467i \(-0.0300442\pi\)
−0.998828 + 0.0483940i \(0.984590\pi\)
\(258\) 0 0
\(259\) −1.19530 + 1.03573i −0.0742723 + 0.0643573i
\(260\) 0 0
\(261\) 9.72484 + 2.85547i 0.601953 + 0.176749i
\(262\) 0 0
\(263\) 10.9762 + 14.6624i 0.676820 + 0.904125i 0.999096 0.0425205i \(-0.0135388\pi\)
−0.322276 + 0.946646i \(0.604448\pi\)
\(264\) 0 0
\(265\) −6.34778 + 29.4996i −0.389941 + 1.81215i
\(266\) 0 0
\(267\) −0.713144 0.155135i −0.0436437 0.00949410i
\(268\) 0 0
\(269\) 16.0708 2.31063i 0.979855 0.140882i 0.366268 0.930509i \(-0.380635\pi\)
0.613586 + 0.789628i \(0.289726\pi\)
\(270\) 0 0
\(271\) 2.55320 + 1.64084i 0.155096 + 0.0996740i 0.615887 0.787835i \(-0.288798\pi\)
−0.460791 + 0.887509i \(0.652434\pi\)
\(272\) 0 0
\(273\) −0.412717 + 0.755834i −0.0249787 + 0.0457451i
\(274\) 0 0
\(275\) −2.18486 + 1.00970i −0.131752 + 0.0608870i
\(276\) 0 0
\(277\) 11.0723 11.0723i 0.665268 0.665268i −0.291349 0.956617i \(-0.594104\pi\)
0.956617 + 0.291349i \(0.0941041\pi\)
\(278\) 0 0
\(279\) 2.80546 + 9.55453i 0.167959 + 0.572015i
\(280\) 0 0
\(281\) 2.41198 3.75311i 0.143887 0.223892i −0.761829 0.647779i \(-0.775698\pi\)
0.905715 + 0.423887i \(0.139335\pi\)
\(282\) 0 0
\(283\) 1.71562 + 1.28430i 0.101983 + 0.0763435i 0.649052 0.760744i \(-0.275166\pi\)
−0.547069 + 0.837087i \(0.684257\pi\)
\(284\) 0 0
\(285\) −7.51690 7.48316i −0.445263 0.443264i
\(286\) 0 0
\(287\) 1.98093 0.738847i 0.116930 0.0436128i
\(288\) 0 0
\(289\) −18.9863 2.72981i −1.11684 0.160577i
\(290\) 0 0
\(291\) −1.01671 + 3.46259i −0.0596005 + 0.202981i
\(292\) 0 0
\(293\) 13.5945 + 0.972299i 0.794200 + 0.0568023i 0.462542 0.886597i \(-0.346937\pi\)
0.331658 + 0.943400i \(0.392392\pi\)
\(294\) 0 0
\(295\) −3.34341 11.2926i −0.194661 0.657478i
\(296\) 0 0
\(297\) −0.950973 + 2.54966i −0.0551811 + 0.147946i
\(298\) 0 0
\(299\) −6.42770 + 5.89731i −0.371724 + 0.341050i
\(300\) 0 0
\(301\) 0.793360 + 1.73722i 0.0457285 + 0.100131i
\(302\) 0 0
\(303\) −22.7173 + 1.62477i −1.30507 + 0.0933407i
\(304\) 0 0
\(305\) −33.2466 + 4.85650i −1.90369 + 0.278082i
\(306\) 0 0
\(307\) −28.6713 + 15.6557i −1.63636 + 0.893519i −0.644728 + 0.764412i \(0.723029\pi\)
−0.991631 + 0.129108i \(0.958789\pi\)
\(308\) 0 0
\(309\) −2.50380 + 17.4143i −0.142436 + 0.990667i
\(310\) 0 0
\(311\) 14.3216 31.3600i 0.812105 1.77826i 0.214020 0.976829i \(-0.431344\pi\)
0.598085 0.801433i \(-0.295929\pi\)
\(312\) 0 0
\(313\) −0.401614 + 1.84619i −0.0227005 + 0.104353i −0.987103 0.160086i \(-0.948823\pi\)
0.964403 + 0.264438i \(0.0851866\pi\)
\(314\) 0 0
\(315\) 0.291626 + 0.776541i 0.0164313 + 0.0437531i
\(316\) 0 0
\(317\) 29.6509 6.45016i 1.66536 0.362277i 0.721446 0.692470i \(-0.243478\pi\)
0.943913 + 0.330193i \(0.107114\pi\)
\(318\) 0 0
\(319\) −4.31687 + 1.26755i −0.241699 + 0.0709691i
\(320\) 0 0
\(321\) 17.5546i 0.979802i
\(322\) 0 0
\(323\) 14.5771 + 14.5771i 0.811094 + 0.811094i
\(324\) 0 0
\(325\) 0.607975 9.07419i 0.0337244 0.503345i
\(326\) 0 0
\(327\) 2.13630 + 9.82040i 0.118138 + 0.543069i
\(328\) 0 0
\(329\) −0.459107 3.19316i −0.0253114 0.176045i
\(330\) 0 0
\(331\) −11.0838 + 7.12312i −0.609220 + 0.391522i −0.808565 0.588407i \(-0.799755\pi\)
0.199344 + 0.979930i \(0.436119\pi\)
\(332\) 0 0
\(333\) −1.75214 4.69768i −0.0960168 0.257431i
\(334\) 0 0
\(335\) −15.0264 + 1.10869i −0.820981 + 0.0605744i
\(336\) 0 0
\(337\) 13.9104 + 25.4751i 0.757750 + 1.38772i 0.916352 + 0.400373i \(0.131119\pi\)
−0.158602 + 0.987343i \(0.550699\pi\)
\(338\) 0 0
\(339\) 10.1749 + 11.7425i 0.552625 + 0.637763i
\(340\) 0 0
\(341\) −3.34066 2.89470i −0.180907 0.156757i
\(342\) 0 0
\(343\) −4.44969 1.65965i −0.240260 0.0896125i
\(344\) 0 0
\(345\) −0.454729 14.8353i −0.0244818 0.798703i
\(346\) 0 0
\(347\) 20.6424 + 7.69921i 1.10814 + 0.413315i 0.835882 0.548909i \(-0.184957\pi\)
0.272258 + 0.962224i \(0.412229\pi\)
\(348\) 0 0
\(349\) 9.46026 + 8.19736i 0.506396 + 0.438795i 0.870213 0.492676i \(-0.163981\pi\)
−0.363817 + 0.931470i \(0.618527\pi\)
\(350\) 0 0
\(351\) −6.73348 7.77085i −0.359407 0.414778i
\(352\) 0 0
\(353\) −14.6828 26.8895i −0.781485 1.43118i −0.898924 0.438104i \(-0.855650\pi\)
0.117439 0.993080i \(-0.462532\pi\)
\(354\) 0 0
\(355\) −20.0843 + 23.2841i −1.06596 + 1.23579i
\(356\) 0 0
\(357\) 0.995236 + 2.66833i 0.0526735 + 0.141223i
\(358\) 0 0
\(359\) 27.5733 17.7203i 1.45526 0.935240i 0.456293 0.889830i \(-0.349177\pi\)
0.998968 0.0454098i \(-0.0144593\pi\)
\(360\) 0 0
\(361\) 1.03236 + 7.18021i 0.0543347 + 0.377906i
\(362\) 0 0
\(363\) 3.16802 + 14.5632i 0.166278 + 0.764368i
\(364\) 0 0
\(365\) 3.51009 + 6.39400i 0.183726 + 0.334677i
\(366\) 0 0
\(367\) −16.9996 16.9996i −0.887373 0.887373i 0.106897 0.994270i \(-0.465909\pi\)
−0.994270 + 0.106897i \(0.965909\pi\)
\(368\) 0 0
\(369\) 6.70224i 0.348905i
\(370\) 0 0
\(371\) −4.42927 + 1.30055i −0.229956 + 0.0675213i
\(372\) 0 0
\(373\) 3.74434 0.814532i 0.193875 0.0421749i −0.114579 0.993414i \(-0.536552\pi\)
0.308454 + 0.951239i \(0.400188\pi\)
\(374\) 0 0
\(375\) 11.0154 + 10.8677i 0.568834 + 0.561207i
\(376\) 0 0
\(377\) 3.61364 16.6116i 0.186112 0.855543i
\(378\) 0 0
\(379\) 3.26503 7.14942i 0.167713 0.367241i −0.807050 0.590484i \(-0.798937\pi\)
0.974763 + 0.223243i \(0.0716643\pi\)
\(380\) 0 0
\(381\) 2.14030 14.8861i 0.109651 0.762637i
\(382\) 0 0
\(383\) −20.1566 + 11.0063i −1.02995 + 0.562398i −0.903058 0.429519i \(-0.858683\pi\)
−0.126896 + 0.991916i \(0.540501\pi\)
\(384\) 0 0
\(385\) −0.295266 0.219999i −0.0150482 0.0112122i
\(386\) 0 0
\(387\) −6.03877 + 0.431901i −0.306968 + 0.0219548i
\(388\) 0 0
\(389\) 9.91792 + 21.7172i 0.502859 + 1.10111i 0.975530 + 0.219868i \(0.0705626\pi\)
−0.472671 + 0.881239i \(0.656710\pi\)
\(390\) 0 0
\(391\) 0.818945 + 28.8358i 0.0414159 + 1.45829i
\(392\) 0 0
\(393\) −2.48343 + 6.65834i −0.125273 + 0.335869i
\(394\) 0 0
\(395\) −15.1849 + 4.49582i −0.764035 + 0.226209i
\(396\) 0 0
\(397\) −29.9011 2.13857i −1.50069 0.107332i −0.703343 0.710851i \(-0.748310\pi\)
−0.797348 + 0.603519i \(0.793765\pi\)
\(398\) 0 0
\(399\) 0.457153 1.55692i 0.0228863 0.0779435i
\(400\) 0 0
\(401\) −18.2622 2.62571i −0.911971 0.131122i −0.329671 0.944096i \(-0.606938\pi\)
−0.582300 + 0.812974i \(0.697847\pi\)
\(402\) 0 0
\(403\) 15.6493 5.83690i 0.779549 0.290757i
\(404\) 0 0
\(405\) 10.2205 0.0229926i 0.507861 0.00114251i
\(406\) 0 0
\(407\) 1.78171 + 1.33377i 0.0883161 + 0.0661126i
\(408\) 0 0
\(409\) 3.32710 5.17708i 0.164515 0.255990i −0.749202 0.662341i \(-0.769563\pi\)
0.913717 + 0.406352i \(0.133199\pi\)
\(410\) 0 0
\(411\) −2.85807 9.73371i −0.140978 0.480128i
\(412\) 0 0
\(413\) 1.27400 1.27400i 0.0626894 0.0626894i
\(414\) 0 0
\(415\) 16.8867 3.71328i 0.828936 0.182278i
\(416\) 0 0
\(417\) −13.4692 + 24.6670i −0.659590 + 1.20795i
\(418\) 0 0
\(419\) −16.3546 10.5104i −0.798973 0.513469i 0.0763072 0.997084i \(-0.475687\pi\)
−0.875281 + 0.483615i \(0.839323\pi\)
\(420\) 0 0
\(421\) 22.8972 3.29212i 1.11594 0.160448i 0.440423 0.897790i \(-0.354829\pi\)
0.675520 + 0.737342i \(0.263919\pi\)
\(422\) 0 0
\(423\) 9.99291 + 2.17382i 0.485872 + 0.105695i
\(424\) 0 0
\(425\) −21.3621 21.1707i −1.03621 1.02693i
\(426\) 0 0
\(427\) −3.08038 4.11491i −0.149070 0.199135i
\(428\) 0 0
\(429\) 1.16275 + 0.341415i 0.0561382 + 0.0164837i
\(430\) 0 0
\(431\) −5.28791 + 4.58200i −0.254710 + 0.220707i −0.772851 0.634588i \(-0.781170\pi\)
0.518141 + 0.855295i \(0.326624\pi\)
\(432\) 0 0
\(433\) −0.355679 4.97304i −0.0170928 0.238989i −0.998815 0.0486692i \(-0.984502\pi\)
0.981722 0.190320i \(-0.0609525\pi\)
\(434\) 0 0
\(435\) 17.3863 + 23.1168i 0.833610 + 1.10837i
\(436\) 0 0
\(437\) 9.47249 13.4324i 0.453130 0.642558i
\(438\) 0 0
\(439\) −2.42656 + 1.10817i −0.115813 + 0.0528901i −0.472479 0.881342i \(-0.656641\pi\)
0.356666 + 0.934232i \(0.383913\pi\)
\(440\) 0 0
\(441\) 4.88792 5.64096i 0.232758 0.268617i
\(442\) 0 0
\(443\) 1.09727 15.3419i 0.0521331 0.728916i −0.902417 0.430864i \(-0.858209\pi\)
0.954550 0.298052i \(-0.0963368\pi\)
\(444\) 0 0
\(445\) 0.774152 + 0.889368i 0.0366983 + 0.0421601i
\(446\) 0 0
\(447\) −19.2163 + 14.3851i −0.908900 + 0.680394i
\(448\) 0 0
\(449\) 11.7182 + 5.35152i 0.553016 + 0.252554i 0.672265 0.740311i \(-0.265322\pi\)
−0.119249 + 0.992864i \(0.538049\pi\)
\(450\) 0 0
\(451\) −1.60848 2.50284i −0.0757403 0.117854i
\(452\) 0 0
\(453\) −8.35759 + 11.1644i −0.392674 + 0.524551i
\(454\) 0 0
\(455\) 1.26428 0.580819i 0.0592705 0.0272292i
\(456\) 0 0
\(457\) −6.54577 3.57426i −0.306198 0.167197i 0.318802 0.947821i \(-0.396719\pi\)
−0.625000 + 0.780624i \(0.714901\pi\)
\(458\) 0 0
\(459\) −34.0035 −1.58715
\(460\) 0 0
\(461\) 1.78272 0.0830295 0.0415147 0.999138i \(-0.486782\pi\)
0.0415147 + 0.999138i \(0.486782\pi\)
\(462\) 0 0
\(463\) 15.4286 + 8.42465i 0.717028 + 0.391527i 0.795957 0.605354i \(-0.206968\pi\)
−0.0789291 + 0.996880i \(0.525150\pi\)
\(464\) 0 0
\(465\) −9.87139 + 26.6492i −0.457775 + 1.23583i
\(466\) 0 0
\(467\) −23.4916 + 31.3812i −1.08706 + 1.45215i −0.206362 + 0.978476i \(0.566162\pi\)
−0.880702 + 0.473671i \(0.842929\pi\)
\(468\) 0 0
\(469\) −1.24620 1.93913i −0.0575443 0.0895406i
\(470\) 0 0
\(471\) −17.3577 7.92699i −0.799800 0.365256i
\(472\) 0 0
\(473\) 2.15143 1.61054i 0.0989227 0.0740526i
\(474\) 0 0
\(475\) 2.51502 + 16.9506i 0.115397 + 0.777748i
\(476\) 0 0
\(477\) 1.04397 14.5966i 0.0478000 0.668331i
\(478\) 0 0
\(479\) 2.50775 2.89410i 0.114582 0.132235i −0.695561 0.718467i \(-0.744844\pi\)
0.810143 + 0.586232i \(0.199389\pi\)
\(480\) 0 0
\(481\) −7.64970 + 3.49350i −0.348796 + 0.159290i
\(482\) 0 0
\(483\) 1.96118 1.14433i 0.0892367 0.0520688i
\(484\) 0 0
\(485\) 4.65956 3.50449i 0.211580 0.159131i
\(486\) 0 0
\(487\) 2.72669 + 38.1241i 0.123558 + 1.72757i 0.560564 + 0.828111i \(0.310584\pi\)
−0.437006 + 0.899458i \(0.643961\pi\)
\(488\) 0 0
\(489\) 1.81470 1.57245i 0.0820638 0.0711087i
\(490\) 0 0
\(491\) −14.5271 4.26553i −0.655598 0.192501i −0.0630177 0.998012i \(-0.520072\pi\)
−0.592580 + 0.805512i \(0.701891\pi\)
\(492\) 0 0
\(493\) −33.6910 45.0059i −1.51737 2.02696i
\(494\) 0 0
\(495\) 0.980541 0.633277i 0.0440720 0.0284637i
\(496\) 0 0
\(497\) −4.59666 0.999942i −0.206188 0.0448535i
\(498\) 0 0
\(499\) −21.1033 + 3.03420i −0.944714 + 0.135829i −0.597422 0.801927i \(-0.703808\pi\)
−0.347293 + 0.937757i \(0.612899\pi\)
\(500\) 0 0
\(501\) 11.0912 + 7.12790i 0.495520 + 0.318451i
\(502\) 0 0
\(503\) 0.730270 1.33739i 0.0325611 0.0596312i −0.860892 0.508788i \(-0.830094\pi\)
0.893453 + 0.449157i \(0.148276\pi\)
\(504\) 0 0
\(505\) 30.9993 + 19.8237i 1.37945 + 0.882142i
\(506\) 0 0
\(507\) 9.48483 9.48483i 0.421236 0.421236i
\(508\) 0 0
\(509\) 3.13431 + 10.6745i 0.138926 + 0.473138i 0.999335 0.0364663i \(-0.0116102\pi\)
−0.860409 + 0.509604i \(0.829792\pi\)
\(510\) 0 0
\(511\) −0.603290 + 0.938738i −0.0266880 + 0.0415273i
\(512\) 0 0
\(513\) 15.5099 + 11.6105i 0.684778 + 0.512618i
\(514\) 0 0
\(515\) 20.0535 20.1440i 0.883664 0.887649i
\(516\) 0 0
\(517\) −4.25339 + 1.58643i −0.187064 + 0.0697712i
\(518\) 0 0
\(519\) −0.113797 0.0163616i −0.00499515 0.000718194i
\(520\) 0 0
\(521\) 1.21793 4.14789i 0.0533586 0.181723i −0.928502 0.371328i \(-0.878903\pi\)
0.981860 + 0.189605i \(0.0607208\pi\)
\(522\) 0 0
\(523\) −14.0370 1.00394i −0.613793 0.0438994i −0.239018 0.971015i \(-0.576826\pi\)
−0.374775 + 0.927116i \(0.622280\pi\)
\(524\) 0 0
\(525\) −0.656715 + 2.27437i −0.0286614 + 0.0992616i
\(526\) 0 0
\(527\) 19.3026 51.7522i 0.840833 2.25436i
\(528\) 0 0
\(529\) 22.5434 4.56004i 0.980149 0.198263i
\(530\) 0 0
\(531\) 2.37265 + 5.19538i 0.102964 + 0.225460i
\(532\) 0 0
\(533\) 11.2131 0.801974i 0.485691 0.0347373i
\(534\) 0 0
\(535\) −16.9452 + 22.7426i −0.732603 + 0.983246i
\(536\) 0 0
\(537\) −9.16075 + 5.00215i −0.395315 + 0.215859i
\(538\) 0 0
\(539\) −0.471533 + 3.27958i −0.0203103 + 0.141262i
\(540\) 0 0
\(541\) −15.8761 + 34.7639i −0.682568 + 1.49462i 0.177330 + 0.984151i \(0.443254\pi\)
−0.859899 + 0.510465i \(0.829473\pi\)
\(542\) 0 0
\(543\) 0.162782 0.748296i 0.00698564 0.0321125i
\(544\) 0 0
\(545\) 6.71183 14.7848i 0.287503 0.633311i
\(546\) 0 0
\(547\) 11.9966 2.60970i 0.512937 0.111583i 0.0513554 0.998680i \(-0.483646\pi\)
0.461581 + 0.887098i \(0.347282\pi\)
\(548\) 0 0
\(549\) 15.6346 4.59073i 0.667268 0.195928i
\(550\) 0 0
\(551\) 32.0322i 1.36462i
\(552\) 0 0
\(553\) −1.71312 1.71312i −0.0728494 0.0728494i
\(554\) 0 0
\(555\) 4.00036 13.7382i 0.169806 0.583155i
\(556\) 0 0
\(557\) 3.43979 + 15.8125i 0.145749 + 0.669995i 0.990803 + 0.135315i \(0.0432045\pi\)
−0.845054 + 0.534681i \(0.820432\pi\)
\(558\) 0 0
\(559\) 1.44517 + 10.0514i 0.0611241 + 0.425127i
\(560\) 0 0
\(561\) 3.37136 2.16664i 0.142339 0.0914757i
\(562\) 0 0
\(563\) 15.8213 + 42.4186i 0.666789 + 1.78773i 0.614248 + 0.789113i \(0.289459\pi\)
0.0525413 + 0.998619i \(0.483268\pi\)
\(564\) 0 0
\(565\) −1.84711 25.0344i −0.0777086 1.05321i
\(566\) 0 0
\(567\) 0.749342 + 1.37232i 0.0314694 + 0.0576320i
\(568\) 0 0
\(569\) 14.6434 + 16.8994i 0.613883 + 0.708459i 0.974533 0.224242i \(-0.0719906\pi\)
−0.360650 + 0.932701i \(0.617445\pi\)
\(570\) 0 0
\(571\) −3.23046 2.79921i −0.135190 0.117143i 0.584641 0.811292i \(-0.301235\pi\)
−0.719831 + 0.694149i \(0.755781\pi\)
\(572\) 0 0
\(573\) 9.02808 + 3.36730i 0.377153 + 0.140671i
\(574\) 0 0
\(575\) −13.7311 + 19.6585i −0.572627 + 0.819816i
\(576\) 0 0
\(577\) 6.97385 + 2.60111i 0.290325 + 0.108286i 0.490407 0.871493i \(-0.336848\pi\)
−0.200082 + 0.979779i \(0.564121\pi\)
\(578\) 0 0
\(579\) 14.6453 + 12.6902i 0.608638 + 0.527388i
\(580\) 0 0
\(581\) 1.73218 + 1.99904i 0.0718629 + 0.0829343i
\(582\) 0 0
\(583\) 3.11320 + 5.70139i 0.128935 + 0.236128i
\(584\) 0 0
\(585\) 0.324542 + 4.39860i 0.0134182 + 0.181860i
\(586\) 0 0
\(587\) 2.72897 + 7.31666i 0.112637 + 0.301991i 0.981021 0.193901i \(-0.0621140\pi\)
−0.868384 + 0.495892i \(0.834841\pi\)
\(588\) 0 0
\(589\) −26.4753 + 17.0146i −1.09089 + 0.701075i
\(590\) 0 0
\(591\) 1.73576 + 12.0725i 0.0713995 + 0.496594i
\(592\) 0 0
\(593\) 0.731036 + 3.36052i 0.0300201 + 0.138000i 0.989718 0.143035i \(-0.0456860\pi\)
−0.959698 + 0.281035i \(0.909322\pi\)
\(594\) 0 0
\(595\) 1.28634 4.41760i 0.0527346 0.181104i
\(596\) 0 0
\(597\) 16.9894 + 16.9894i 0.695330 + 0.695330i
\(598\) 0 0
\(599\) 9.17302i 0.374799i −0.982284 0.187400i \(-0.939994\pi\)
0.982284 0.187400i \(-0.0600060\pi\)
\(600\) 0 0
\(601\) −1.24243 + 0.364811i −0.0506799 + 0.0148810i −0.306974 0.951718i \(-0.599317\pi\)
0.256294 + 0.966599i \(0.417498\pi\)
\(602\) 0 0
\(603\) 7.14015 1.55324i 0.290769 0.0632530i
\(604\) 0 0
\(605\) 9.95331 21.9251i 0.404660 0.891382i
\(606\) 0 0
\(607\) 4.38250 20.1460i 0.177880 0.817702i −0.798560 0.601915i \(-0.794405\pi\)
0.976440 0.215787i \(-0.0692318\pi\)
\(608\) 0 0
\(609\) −1.83825 + 4.02521i −0.0744897 + 0.163110i
\(610\) 0 0
\(611\) 2.44115 16.9786i 0.0987583 0.686879i
\(612\) 0 0
\(613\) 15.7353 8.59214i 0.635544 0.347033i −0.128962 0.991649i \(-0.541165\pi\)
0.764506 + 0.644616i \(0.222983\pi\)
\(614\) 0 0
\(615\) −11.4282 + 15.3380i −0.460828 + 0.618490i
\(616\) 0 0
\(617\) −26.7290 + 1.91170i −1.07607 + 0.0769620i −0.598106 0.801417i \(-0.704080\pi\)
−0.477964 + 0.878379i \(0.658625\pi\)
\(618\) 0 0
\(619\) −7.48869 16.3979i −0.300996 0.659089i 0.697341 0.716740i \(-0.254366\pi\)
−0.998337 + 0.0576506i \(0.981639\pi\)
\(620\) 0 0
\(621\) 4.61855 + 26.7146i 0.185336 + 1.07202i
\(622\) 0 0
\(623\) −0.0630377 + 0.169011i −0.00252555 + 0.00677127i
\(624\) 0 0
\(625\) −3.78040 24.7125i −0.151216 0.988501i
\(626\) 0 0
\(627\) −2.27757 0.162895i −0.0909573 0.00650539i
\(628\) 0 0
\(629\) −7.83518 + 26.6842i −0.312409 + 1.06397i
\(630\) 0 0
\(631\) −19.3844 2.78705i −0.771680 0.110951i −0.254783 0.966998i \(-0.582004\pi\)
−0.516897 + 0.856048i \(0.672913\pi\)
\(632\) 0 0
\(633\) 8.21678 3.06470i 0.326588 0.121811i
\(634\) 0 0
\(635\) −17.1421 + 17.2194i −0.680264 + 0.683332i
\(636\) 0 0
\(637\) −10.0224 7.50265i −0.397101 0.297266i
\(638\) 0 0
\(639\) 8.06230 12.5452i 0.318940 0.496280i
\(640\) 0 0
\(641\) −6.91160 23.5387i −0.272992 0.929724i −0.975859 0.218403i \(-0.929915\pi\)
0.702867 0.711321i \(-0.251903\pi\)
\(642\) 0 0
\(643\) −22.6055 + 22.6055i −0.891474 + 0.891474i −0.994662 0.103188i \(-0.967096\pi\)
0.103188 + 0.994662i \(0.467096\pi\)
\(644\) 0 0
\(645\) −14.5561 9.30845i −0.573147 0.366520i
\(646\) 0 0
\(647\) 17.2300 31.5544i 0.677381 1.24053i −0.282270 0.959335i \(-0.591087\pi\)
0.959651 0.281195i \(-0.0907309\pi\)
\(648\) 0 0
\(649\) −2.13288 1.37072i −0.0837227 0.0538053i
\(650\) 0 0
\(651\) −4.30335 + 0.618728i −0.168661 + 0.0242499i
\(652\) 0 0
\(653\) 6.38617 + 1.38923i 0.249910 + 0.0543646i 0.335775 0.941942i \(-0.391002\pi\)
−0.0858650 + 0.996307i \(0.527365\pi\)
\(654\) 0 0
\(655\) 9.64456 6.22888i 0.376844 0.243383i
\(656\) 0 0
\(657\) −2.11989 2.83184i −0.0827048 0.110481i
\(658\) 0 0
\(659\) 42.0499 + 12.3470i 1.63803 + 0.480970i 0.965782 0.259355i \(-0.0835099\pi\)
0.672250 + 0.740324i \(0.265328\pi\)
\(660\) 0 0
\(661\) 3.70631 3.21154i 0.144159 0.124914i −0.579796 0.814762i \(-0.696868\pi\)
0.723955 + 0.689847i \(0.242322\pi\)
\(662\) 0 0
\(663\) 1.08027 + 15.1041i 0.0419541 + 0.586596i
\(664\) 0 0
\(665\) −2.09513 + 1.57576i −0.0812455 + 0.0611053i
\(666\) 0 0
\(667\) −30.7825 + 32.5821i −1.19190 + 1.26158i
\(668\) 0 0
\(669\) 17.6925 8.07989i 0.684031 0.312387i
\(670\) 0 0
\(671\) −4.73675 + 5.46650i −0.182860 + 0.211032i
\(672\) 0 0
\(673\) −1.74162 + 24.3510i −0.0671344 + 0.938661i 0.846569 + 0.532279i \(0.178664\pi\)
−0.913703 + 0.406382i \(0.866790\pi\)
\(674\) 0 0
\(675\) −22.7034 16.8367i −0.873853 0.648044i
\(676\) 0 0
\(677\) −16.3048 + 12.2056i −0.626646 + 0.469101i −0.864793 0.502128i \(-0.832551\pi\)
0.238148 + 0.971229i \(0.423460\pi\)
\(678\) 0 0
\(679\) 0.811345 + 0.370529i 0.0311366 + 0.0142196i
\(680\) 0 0
\(681\) −6.16581 9.59419i −0.236275 0.367650i
\(682\) 0 0
\(683\) 3.17237 4.23779i 0.121387 0.162155i −0.735731 0.677274i \(-0.763161\pi\)
0.857119 + 0.515119i \(0.172252\pi\)
\(684\) 0 0
\(685\) −5.69306 + 15.3692i −0.217521 + 0.587227i
\(686\) 0 0
\(687\) −15.7071 8.57672i −0.599263 0.327222i
\(688\) 0 0
\(689\) −24.5454 −0.935106
\(690\) 0 0
\(691\) −19.3261 −0.735198 −0.367599 0.929984i \(-0.619820\pi\)
−0.367599 + 0.929984i \(0.619820\pi\)
\(692\) 0 0
\(693\) 0.156729 + 0.0855805i 0.00595364 + 0.00325094i
\(694\) 0 0
\(695\) 41.2605 18.9553i 1.56510 0.719016i
\(696\) 0 0
\(697\) 22.2789 29.7611i 0.843872 1.12728i
\(698\) 0 0
\(699\) −0.895845 1.39396i −0.0338840 0.0527245i
\(700\) 0 0
\(701\) −9.11833 4.16420i −0.344395 0.157280i 0.235706 0.971824i \(-0.424260\pi\)
−0.580101 + 0.814545i \(0.696987\pi\)
\(702\) 0 0
\(703\) 12.6852 9.49600i 0.478430 0.358148i
\(704\) 0 0
\(705\) 19.1621 + 22.0140i 0.721686 + 0.829094i
\(706\) 0 0
\(707\) −0.401581 + 5.61483i −0.0151030 + 0.211167i
\(708\) 0 0
\(709\) −9.38474 + 10.8306i −0.352451 + 0.406750i −0.904096 0.427328i \(-0.859455\pi\)
0.551645 + 0.834079i \(0.314000\pi\)
\(710\) 0 0
\(711\) 6.98614 3.19046i 0.262001 0.119652i
\(712\) 0 0
\(713\) −43.2805 8.13566i −1.62087 0.304683i
\(714\) 0 0
\(715\) −1.17682 1.56470i −0.0440106 0.0585164i
\(716\) 0 0
\(717\) −1.21846 17.0363i −0.0455041 0.636231i
\(718\) 0 0
\(719\) 16.3929 14.2045i 0.611352 0.529739i −0.293229 0.956042i \(-0.594730\pi\)
0.904580 + 0.426303i \(0.140184\pi\)
\(720\) 0 0
\(721\) 4.17227 + 1.22509i 0.155383 + 0.0456247i
\(722\) 0 0
\(723\) −10.5387 14.0780i −0.391938 0.523568i
\(724\) 0 0
\(725\) −0.210259 46.7313i −0.00780884 1.73556i
\(726\) 0 0
\(727\) 12.1405 + 2.64100i 0.450266 + 0.0979494i 0.431980 0.901883i \(-0.357815\pi\)
0.0182865 + 0.999833i \(0.494179\pi\)
\(728\) 0 0
\(729\) −28.1394 + 4.04583i −1.04220 + 0.149846i
\(730\) 0 0
\(731\) 28.2506 + 18.1556i 1.04489 + 0.671508i
\(732\) 0 0
\(733\) 6.90727 12.6497i 0.255126 0.467228i −0.718454 0.695574i \(-0.755150\pi\)
0.973580 + 0.228346i \(0.0733318\pi\)
\(734\) 0 0
\(735\) 20.8045 4.57479i 0.767386 0.168744i
\(736\) 0 0
\(737\) −2.29361 + 2.29361i −0.0844861 + 0.0844861i
\(738\) 0 0
\(739\) −9.19622 31.3194i −0.338288 1.15210i −0.936471 0.350745i \(-0.885929\pi\)
0.598183 0.801360i \(-0.295890\pi\)
\(740\) 0 0
\(741\) 4.66459 7.25824i 0.171358 0.266638i
\(742\) 0 0
\(743\) 25.8905 + 19.3814i 0.949832 + 0.711035i 0.957348 0.288936i \(-0.0933016\pi\)
−0.00751631 + 0.999972i \(0.502393\pi\)
\(744\) 0 0
\(745\) 38.7811 0.0872439i 1.42083 0.00319637i
\(746\) 0 0
\(747\) −7.85649 + 2.93032i −0.287454 + 0.107215i
\(748\) 0 0
\(749\) −4.29465 0.617478i −0.156923 0.0225622i
\(750\) 0 0
\(751\) −7.87817 + 26.8306i −0.287479 + 0.979062i 0.681480 + 0.731837i \(0.261337\pi\)
−0.968958 + 0.247225i \(0.920481\pi\)
\(752\) 0 0
\(753\) −33.6099 2.40382i −1.22481 0.0876002i
\(754\) 0 0
\(755\) 21.6044 6.39645i 0.786264 0.232790i
\(756\) 0 0
\(757\) 8.74260 23.4398i 0.317755 0.851935i −0.675644 0.737228i \(-0.736134\pi\)
0.993399 0.114707i \(-0.0365929\pi\)
\(758\) 0 0
\(759\) −2.16012 2.35440i −0.0784075 0.0854593i
\(760\) 0 0
\(761\) 14.0409 + 30.7452i 0.508981 + 1.11451i 0.973445 + 0.228921i \(0.0735198\pi\)
−0.464464 + 0.885592i \(0.653753\pi\)
\(762\) 0 0
\(763\) 2.47766 0.177206i 0.0896974 0.00641528i
\(764\) 0 0
\(765\) 11.6961 + 8.71458i 0.422872 + 0.315076i
\(766\) 0 0
\(767\) 8.40813 4.59119i 0.303600 0.165778i
\(768\) 0 0
\(769\) 3.25665 22.6505i 0.117438 0.816798i −0.842922 0.538035i \(-0.819167\pi\)
0.960360 0.278762i \(-0.0899242\pi\)
\(770\) 0 0
\(771\) −0.423713 + 0.927802i −0.0152597 + 0.0334140i
\(772\) 0 0
\(773\) −3.13807 + 14.4255i −0.112868 + 0.518848i 0.885646 + 0.464361i \(0.153716\pi\)
−0.998514 + 0.0544868i \(0.982648\pi\)
\(774\) 0 0
\(775\) 38.5127 24.9962i 1.38342 0.897889i
\(776\) 0 0
\(777\) 2.13899 0.465309i 0.0767358 0.0166929i
\(778\) 0 0
\(779\) −20.3239 + 5.96764i −0.728180 + 0.213813i
\(780\) 0 0
\(781\) 6.61968i 0.236871i
\(782\) 0 0
\(783\) −37.3601 37.3601i −1.33514 1.33514i
\(784\) 0 0
\(785\) 14.8357 + 27.0248i 0.529507 + 0.964555i
\(786\) 0 0
\(787\) 0.460569 + 2.11720i 0.0164175 + 0.0754702i 0.984627 0.174672i \(-0.0558864\pi\)
−0.968209 + 0.250142i \(0.919523\pi\)
\(788\) 0 0
\(789\) −3.60764 25.0917i −0.128435 0.893287i
\(790\) 0 0
\(791\) 3.23064 2.07621i 0.114868 0.0738214i
\(792\) 0 0
\(793\) −9.55123 25.6078i −0.339174 0.909361i
\(794\) 0 0
\(795\) 27.2781 31.6241i 0.967454 1.12159i
\(796\) 0 0
\(797\) 17.0460 + 31.2174i 0.603800 + 1.10578i 0.983541 + 0.180684i \(0.0578311\pi\)
−0.379741 + 0.925093i \(0.623987\pi\)
\(798\) 0 0
\(799\) −37.1472 42.8701i −1.31417 1.51664i
\(800\) 0 0
\(801\) −0.432159 0.374468i −0.0152696 0.0132312i
\(802\) 0 0
\(803\) 1.47126 + 0.548750i 0.0519195 + 0.0193650i
\(804\) 0 0
\(805\) −3.64537 0.410578i −0.128483 0.0144710i
\(806\) 0 0
\(807\) −21.0546 7.85296i −0.741157 0.276437i
\(808\) 0 0
\(809\) 8.63341 + 7.48089i 0.303535 + 0.263014i 0.793288 0.608847i \(-0.208368\pi\)
−0.489753 + 0.871861i \(0.662913\pi\)
\(810\) 0 0
\(811\) 5.12440 + 5.91387i 0.179942 + 0.207664i 0.838554 0.544819i \(-0.183402\pi\)
−0.658612 + 0.752483i \(0.728856\pi\)
\(812\) 0 0
\(813\) −2.01312 3.68675i −0.0706031 0.129300i
\(814\) 0 0
\(815\) −3.86887 + 0.285457i −0.135521 + 0.00999911i
\(816\) 0 0
\(817\) −6.68659 17.9274i −0.233934 0.627202i
\(818\) 0 0
\(819\) −0.567631 + 0.364794i −0.0198346 + 0.0127469i
\(820\) 0 0
\(821\) 5.49638 + 38.2282i 0.191825 + 1.33417i 0.827174 + 0.561946i \(0.189947\pi\)
−0.635349 + 0.772225i \(0.719144\pi\)
\(822\) 0 0
\(823\) −3.81542 17.5392i −0.132997 0.611377i −0.994599 0.103793i \(-0.966902\pi\)
0.861602 0.507585i \(-0.169462\pi\)
\(824\) 0 0
\(825\) 3.32378 + 0.222695i 0.115719 + 0.00775325i
\(826\) 0 0
\(827\) −21.8354 21.8354i −0.759291 0.759291i 0.216902 0.976193i \(-0.430405\pi\)
−0.976193 + 0.216902i \(0.930405\pi\)
\(828\) 0 0
\(829\) 37.2747i 1.29460i 0.762234 + 0.647302i \(0.224103\pi\)
−0.762234 + 0.647302i \(0.775897\pi\)
\(830\) 0 0
\(831\) −20.7942 + 6.10574i −0.721344 + 0.211806i
\(832\) 0 0
\(833\) −40.4557 + 8.80060i −1.40171 + 0.304923i
\(834\) 0 0
\(835\) −7.48861 19.9406i −0.259154 0.690074i
\(836\) 0 0
\(837\) 11.0342 50.7235i 0.381399 1.75326i
\(838\) 0 0
\(839\) 3.22273 7.05680i 0.111261 0.243628i −0.845808 0.533487i \(-0.820881\pi\)
0.957069 + 0.289859i \(0.0936085\pi\)
\(840\) 0 0
\(841\) 8.30471 57.7605i 0.286369 1.99174i
\(842\) 0 0
\(843\) −5.41939 + 2.95921i −0.186654 + 0.101921i
\(844\) 0 0
\(845\) −21.4435 + 3.13236i −0.737677 + 0.107756i
\(846\) 0 0
\(847\) 3.67425 0.262788i 0.126249 0.00902949i
\(848\) 0 0
\(849\) −1.23217 2.69807i −0.0422878 0.0925974i
\(850\) 0 0
\(851\) 22.0284 + 2.53126i 0.755126 + 0.0867706i
\(852\) 0 0
\(853\) −3.59897 + 9.64922i −0.123226 + 0.330383i −0.983886 0.178798i \(-0.942779\pi\)
0.860659 + 0.509181i \(0.170052\pi\)
\(854\) 0 0
\(855\) −2.35927 7.96858i −0.0806854 0.272520i
\(856\) 0 0
\(857\) −34.4775 2.46588i −1.17773 0.0842329i −0.531284 0.847193i \(-0.678290\pi\)
−0.646445 + 0.762961i \(0.723745\pi\)
\(858\) 0 0
\(859\) 5.50305 18.7417i 0.187762 0.639458i −0.810774 0.585360i \(-0.800953\pi\)
0.998536 0.0540983i \(-0.0172284\pi\)
\(860\) 0 0
\(861\) −2.89640 0.416440i −0.0987091 0.0141922i
\(862\) 0 0
\(863\) −0.968710 + 0.361310i −0.0329753 + 0.0122991i −0.365898 0.930655i \(-0.619238\pi\)
0.332922 + 0.942954i \(0.391965\pi\)
\(864\) 0 0
\(865\) 0.131635 + 0.131044i 0.00447571 + 0.00445562i
\(866\) 0 0
\(867\) 21.2528 + 15.9096i 0.721783 + 0.540320i
\(868\) 0 0
\(869\) −1.84318 + 2.86804i −0.0625255 + 0.0972916i
\(870\) 0 0
\(871\) −3.45300 11.7598i −0.117000 0.398467i
\(872\) 0 0
\(873\) −1.99937 + 1.99937i −0.0676683 + 0.0676683i
\(874\) 0 0
\(875\) 3.04621 2.31261i 0.102981 0.0781803i
\(876\) 0 0
\(877\) 15.6553 28.6705i 0.528641 0.968134i −0.467799 0.883835i \(-0.654953\pi\)
0.996440 0.0842994i \(-0.0268652\pi\)
\(878\) 0 0
\(879\) −15.8690 10.1984i −0.535247 0.343982i
\(880\) 0 0
\(881\) 16.4824 2.36981i 0.555306 0.0798410i 0.141052 0.990002i \(-0.454952\pi\)
0.414254 + 0.910161i \(0.364042\pi\)
\(882\) 0 0
\(883\) 25.8688 + 5.62741i 0.870554 + 0.189377i 0.625587 0.780154i \(-0.284859\pi\)
0.244967 + 0.969532i \(0.421223\pi\)
\(884\) 0 0
\(885\) −3.42898 + 15.9353i −0.115264 + 0.535659i
\(886\) 0 0
\(887\) 1.42395 + 1.90218i 0.0478116 + 0.0638688i 0.823810 0.566866i \(-0.191844\pi\)
−0.775998 + 0.630735i \(0.782753\pi\)
\(888\) 0 0
\(889\) −3.56653 1.04723i −0.119618 0.0351229i
\(890\) 0 0
\(891\) 1.66284 1.44086i 0.0557074 0.0482707i
\(892\) 0 0
\(893\) 2.30572 + 32.2381i 0.0771579 + 1.07881i
\(894\) 0 0
\(895\) 16.6965 + 2.36227i 0.558104 + 0.0789621i
\(896\) 0 0
\(897\) 11.7197 2.90023i 0.391310 0.0968359i
\(898\) 0 0
\(899\) 78.0688 35.6528i 2.60374 1.18909i
\(900\) 0 0
\(901\) −53.1560 + 61.3453i −1.77088 + 2.04371i
\(902\) 0 0
\(903\) 0.188567 2.63651i 0.00627513 0.0877377i
\(904\) 0 0
\(905\) −0.933207 + 0.812312i −0.0310209 + 0.0270022i
\(906\) 0 0
\(907\) 11.1744 8.36505i 0.371040 0.277757i −0.397444 0.917627i \(-0.630103\pi\)
0.768483 + 0.639870i \(0.221012\pi\)
\(908\) 0 0
\(909\) −16.2322 7.41301i −0.538389 0.245874i
\(910\) 0 0
\(911\) −4.12898 6.42481i −0.136799 0.212864i 0.766094 0.642728i \(-0.222198\pi\)
−0.902893 + 0.429865i \(0.858561\pi\)
\(912\) 0 0
\(913\) 2.23063 2.97977i 0.0738230 0.0986159i
\(914\) 0 0
\(915\) 43.6075 + 16.1531i 1.44162 + 0.534005i
\(916\) 0 0
\(917\) 1.54158 + 0.841766i 0.0509074 + 0.0277976i
\(918\) 0 0
\(919\) 19.5874 0.646130 0.323065 0.946377i \(-0.395287\pi\)
0.323065 + 0.946377i \(0.395287\pi\)
\(920\) 0 0
\(921\) 45.2129 1.48981
\(922\) 0 0
\(923\) −21.9532 11.9874i −0.722599 0.394569i
\(924\) 0 0
\(925\) −18.4439 + 13.9368i −0.606431 + 0.458241i
\(926\) 0 0
\(927\) −8.26088 + 11.0352i −0.271323 + 0.362445i
\(928\) 0 0
\(929\) −17.0422 26.5181i −0.559135 0.870031i 0.440480 0.897762i \(-0.354808\pi\)
−0.999615 + 0.0277309i \(0.991172\pi\)
\(930\) 0 0
\(931\) 21.4579 + 9.79947i 0.703253 + 0.321165i
\(932\) 0 0
\(933\) −38.1983 + 28.5949i −1.25056 + 0.936154i
\(934\) 0 0
\(935\) −6.45913 0.447363i −0.211236 0.0146303i
\(936\) 0 0
\(937\) −1.28410 + 17.9541i −0.0419498 + 0.586535i 0.932390 + 0.361453i \(0.117719\pi\)
−0.974340 + 0.225081i \(0.927735\pi\)
\(938\) 0 0
\(939\) 1.71244 1.97626i 0.0558833 0.0644928i
\(940\) 0 0
\(941\) 45.7808 20.9074i 1.49241 0.681562i 0.508639 0.860980i \(-0.330149\pi\)
0.983773 + 0.179418i \(0.0574214\pi\)
\(942\) 0 0
\(943\) −26.4076 13.4609i −0.859951 0.438348i
\(944\) 0 0
\(945\) 0.605754 4.28146i 0.0197052 0.139276i
\(946\) 0 0
\(947\) −3.01599 42.1691i −0.0980065 1.37031i −0.773898 0.633310i \(-0.781696\pi\)
0.675892 0.737001i \(-0.263759\pi\)
\(948\) 0 0
\(949\) −4.48410 + 3.88549i −0.145560 + 0.126128i
\(950\) 0 0
\(951\) −40.2967 11.8322i −1.30671 0.383685i
\(952\) 0 0
\(953\) −5.45650 7.28903i −0.176753 0.236115i 0.703412 0.710783i \(-0.251659\pi\)
−0.880165 + 0.474668i \(0.842568\pi\)
\(954\) 0 0
\(955\) −8.44577 13.0771i −0.273299 0.423165i
\(956\) 0 0
\(957\) 6.08467 + 1.32364i 0.196690 + 0.0427872i
\(958\) 0 0
\(959\) −2.48184 + 0.356835i −0.0801428 + 0.0115228i
\(960\) 0 0
\(961\) 44.8569 + 28.8278i 1.44700 + 0.929928i
\(962\) 0 0
\(963\) 6.59174 12.0719i 0.212416 0.389011i
\(964\) 0 0
\(965\) −6.72380 30.5775i −0.216447 0.984324i
\(966\) 0 0
\(967\) 38.9774 38.9774i 1.25343 1.25343i 0.299254 0.954174i \(-0.403262\pi\)
0.954174 0.299254i \(-0.0967376\pi\)
\(968\) 0 0
\(969\) −8.03849 27.3766i −0.258233 0.879462i
\(970\) 0 0
\(971\) −26.1330 + 40.6638i −0.838649 + 1.30496i 0.111689 + 0.993743i \(0.464374\pi\)
−0.950338 + 0.311219i \(0.899263\pi\)
\(972\) 0 0
\(973\) 5.56090 + 4.16284i 0.178274 + 0.133454i
\(974\) 0 0
\(975\) −6.75746 + 10.6196i −0.216412 + 0.340098i
\(976\) 0 0
\(977\) −8.30510 + 3.09764i −0.265704 + 0.0991023i −0.478785 0.877932i \(-0.658923\pi\)
0.213082 + 0.977034i \(0.431650\pi\)
\(978\) 0 0
\(979\) 0.251252 + 0.0361245i 0.00803004 + 0.00115455i
\(980\) 0 0
\(981\) −2.21848 + 7.55544i −0.0708305 + 0.241227i
\(982\) 0 0
\(983\) 39.1545 + 2.80039i 1.24883 + 0.0893184i 0.680049 0.733167i \(-0.261959\pi\)
0.568786 + 0.822486i \(0.307413\pi\)
\(984\) 0 0
\(985\) 9.40461 17.3158i 0.299656 0.551726i
\(986\) 0 0
\(987\) −1.56033 + 4.18341i −0.0496659 + 0.133159i
\(988\) 0 0
\(989\) 10.4266 24.6609i 0.331548 0.784171i
\(990\) 0 0
\(991\) 16.1771 + 35.4229i 0.513883 + 1.12525i 0.971704 + 0.236202i \(0.0759028\pi\)
−0.457821 + 0.889044i \(0.651370\pi\)
\(992\) 0 0
\(993\) 18.1888 1.30089i 0.577203 0.0412824i
\(994\) 0 0
\(995\) −5.61074 38.4099i −0.177872 1.21768i
\(996\) 0 0
\(997\) 29.1410 15.9122i 0.922905 0.503944i 0.0537891 0.998552i \(-0.482870\pi\)
0.869116 + 0.494608i \(0.164688\pi\)
\(998\) 0 0
\(999\) −3.71963 + 25.8706i −0.117684 + 0.818508i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.433.12 yes 720
5.2 odd 4 inner 920.2.bv.a.617.12 yes 720
23.17 odd 22 inner 920.2.bv.a.753.12 yes 720
115.17 even 44 inner 920.2.bv.a.17.12 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.12 720 115.17 even 44 inner
920.2.bv.a.433.12 yes 720 1.1 even 1 trivial
920.2.bv.a.617.12 yes 720 5.2 odd 4 inner
920.2.bv.a.753.12 yes 720 23.17 odd 22 inner