Properties

Label 920.2.bv.a.17.9
Level $920$
Weight $2$
Character 920.17
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 17.9
Character \(\chi\) \(=\) 920.17
Dual form 920.2.bv.a.433.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71186 + 0.934747i) q^{3} +(-1.96254 - 1.07164i) q^{5} +(-1.50613 - 2.01195i) q^{7} +(0.434794 - 0.676553i) q^{9} +(-4.24123 + 1.93690i) q^{11} +(2.26863 + 1.69828i) q^{13} +(4.36132 + 2.20316e-5i) q^{15} +(0.101392 + 1.41764i) q^{17} +(-3.21223 - 3.70711i) q^{19} +(4.45894 + 2.03633i) q^{21} +(4.29583 - 2.13210i) q^{23} +(2.70316 + 4.20629i) q^{25} +(0.305527 - 4.27183i) q^{27} +(1.05670 + 0.915636i) q^{29} +(3.73483 - 1.09665i) q^{31} +(5.44988 - 7.28018i) q^{33} +(0.799748 + 5.56257i) q^{35} +(6.14902 - 1.33764i) q^{37} +(-5.47104 - 0.786617i) q^{39} +(4.26137 - 2.73861i) q^{41} +(4.24763 + 7.77896i) q^{43} +(-1.57833 + 0.861821i) q^{45} +(3.58322 + 3.58322i) q^{47} +(0.192605 - 0.655954i) q^{49} +(-1.49870 - 2.33203i) q^{51} +(-1.48283 + 1.11004i) q^{53} +(10.3993 + 0.743823i) q^{55} +(8.96409 + 3.34343i) q^{57} +(-7.19858 + 1.03500i) q^{59} +(2.56930 + 8.75023i) q^{61} +(-2.01605 + 0.144190i) q^{63} +(-2.63234 - 5.76411i) q^{65} +(-2.26999 - 6.08607i) q^{67} +(-5.36089 + 7.66538i) q^{69} +(-6.51918 + 14.2750i) q^{71} +(13.3151 + 0.952316i) q^{73} +(-8.55926 - 4.67382i) q^{75} +(10.2848 + 5.61591i) q^{77} +(-0.712802 - 4.95765i) q^{79} +(4.47231 + 9.79300i) q^{81} +(1.96132 + 9.01603i) q^{83} +(1.32022 - 2.89084i) q^{85} +(-2.66481 - 0.579694i) q^{87} +(0.00355312 + 0.00104329i) q^{89} -7.12219i q^{91} +(-5.36843 + 5.36843i) q^{93} +(2.33144 + 10.7177i) q^{95} +(3.23913 - 14.8900i) q^{97} +(-0.533643 + 3.71157i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.71186 + 0.934747i −0.988343 + 0.539676i −0.890236 0.455499i \(-0.849461\pi\)
−0.0981074 + 0.995176i \(0.531279\pi\)
\(4\) 0 0
\(5\) −1.96254 1.07164i −0.877677 0.479253i
\(6\) 0 0
\(7\) −1.50613 2.01195i −0.569262 0.760445i 0.419852 0.907592i \(-0.362082\pi\)
−0.989115 + 0.147147i \(0.952991\pi\)
\(8\) 0 0
\(9\) 0.434794 0.676553i 0.144931 0.225518i
\(10\) 0 0
\(11\) −4.24123 + 1.93690i −1.27878 + 0.583998i −0.934865 0.355003i \(-0.884480\pi\)
−0.343913 + 0.939002i \(0.611752\pi\)
\(12\) 0 0
\(13\) 2.26863 + 1.69828i 0.629205 + 0.471017i 0.865665 0.500624i \(-0.166896\pi\)
−0.236460 + 0.971641i \(0.575987\pi\)
\(14\) 0 0
\(15\) 4.36132 2.20316e-5i 1.12609 5.68854e-6i
\(16\) 0 0
\(17\) 0.101392 + 1.41764i 0.0245911 + 0.343828i 0.994821 + 0.101643i \(0.0324098\pi\)
−0.970230 + 0.242186i \(0.922136\pi\)
\(18\) 0 0
\(19\) −3.21223 3.70711i −0.736935 0.850468i 0.256299 0.966598i \(-0.417497\pi\)
−0.993234 + 0.116129i \(0.962951\pi\)
\(20\) 0 0
\(21\) 4.45894 + 2.03633i 0.973021 + 0.444364i
\(22\) 0 0
\(23\) 4.29583 2.13210i 0.895742 0.444574i
\(24\) 0 0
\(25\) 2.70316 + 4.20629i 0.540632 + 0.841259i
\(26\) 0 0
\(27\) 0.305527 4.27183i 0.0587987 0.822113i
\(28\) 0 0
\(29\) 1.05670 + 0.915636i 0.196224 + 0.170029i 0.747431 0.664339i \(-0.231287\pi\)
−0.551207 + 0.834369i \(0.685832\pi\)
\(30\) 0 0
\(31\) 3.73483 1.09665i 0.670795 0.196963i 0.0714382 0.997445i \(-0.477241\pi\)
0.599357 + 0.800482i \(0.295423\pi\)
\(32\) 0 0
\(33\) 5.44988 7.28018i 0.948702 1.26732i
\(34\) 0 0
\(35\) 0.799748 + 5.56257i 0.135182 + 0.940246i
\(36\) 0 0
\(37\) 6.14902 1.33764i 1.01089 0.219906i 0.323528 0.946219i \(-0.395131\pi\)
0.687365 + 0.726312i \(0.258767\pi\)
\(38\) 0 0
\(39\) −5.47104 0.786617i −0.876068 0.125960i
\(40\) 0 0
\(41\) 4.26137 2.73861i 0.665514 0.427700i −0.163792 0.986495i \(-0.552373\pi\)
0.829306 + 0.558795i \(0.188736\pi\)
\(42\) 0 0
\(43\) 4.24763 + 7.77896i 0.647758 + 1.18628i 0.970799 + 0.239895i \(0.0771130\pi\)
−0.323041 + 0.946385i \(0.604705\pi\)
\(44\) 0 0
\(45\) −1.57833 + 0.861821i −0.235283 + 0.128473i
\(46\) 0 0
\(47\) 3.58322 + 3.58322i 0.522666 + 0.522666i 0.918376 0.395710i \(-0.129501\pi\)
−0.395710 + 0.918376i \(0.629501\pi\)
\(48\) 0 0
\(49\) 0.192605 0.655954i 0.0275151 0.0937077i
\(50\) 0 0
\(51\) −1.49870 2.33203i −0.209860 0.326549i
\(52\) 0 0
\(53\) −1.48283 + 1.11004i −0.203683 + 0.152475i −0.696250 0.717799i \(-0.745149\pi\)
0.492567 + 0.870274i \(0.336059\pi\)
\(54\) 0 0
\(55\) 10.3993 + 0.743823i 1.40224 + 0.100297i
\(56\) 0 0
\(57\) 8.96409 + 3.34343i 1.18732 + 0.442848i
\(58\) 0 0
\(59\) −7.19858 + 1.03500i −0.937175 + 0.134745i −0.593945 0.804506i \(-0.702430\pi\)
−0.343231 + 0.939251i \(0.611521\pi\)
\(60\) 0 0
\(61\) 2.56930 + 8.75023i 0.328965 + 1.12035i 0.943475 + 0.331443i \(0.107536\pi\)
−0.614510 + 0.788909i \(0.710646\pi\)
\(62\) 0 0
\(63\) −2.01605 + 0.144190i −0.253998 + 0.0181663i
\(64\) 0 0
\(65\) −2.63234 5.76411i −0.326502 0.714949i
\(66\) 0 0
\(67\) −2.26999 6.08607i −0.277323 0.743532i −0.998699 0.0509887i \(-0.983763\pi\)
0.721376 0.692544i \(-0.243510\pi\)
\(68\) 0 0
\(69\) −5.36089 + 7.66538i −0.645375 + 0.922803i
\(70\) 0 0
\(71\) −6.51918 + 14.2750i −0.773684 + 1.69413i −0.0553161 + 0.998469i \(0.517617\pi\)
−0.718368 + 0.695663i \(0.755111\pi\)
\(72\) 0 0
\(73\) 13.3151 + 0.952316i 1.55842 + 0.111460i 0.823744 0.566962i \(-0.191881\pi\)
0.734673 + 0.678422i \(0.237336\pi\)
\(74\) 0 0
\(75\) −8.55926 4.67382i −0.988338 0.539686i
\(76\) 0 0
\(77\) 10.2848 + 5.61591i 1.17206 + 0.639992i
\(78\) 0 0
\(79\) −0.712802 4.95765i −0.0801965 0.557779i −0.989818 0.142341i \(-0.954537\pi\)
0.909621 0.415439i \(-0.136372\pi\)
\(80\) 0 0
\(81\) 4.47231 + 9.79300i 0.496924 + 1.08811i
\(82\) 0 0
\(83\) 1.96132 + 9.01603i 0.215283 + 0.989638i 0.950239 + 0.311523i \(0.100839\pi\)
−0.734956 + 0.678115i \(0.762797\pi\)
\(84\) 0 0
\(85\) 1.32022 2.89084i 0.143198 0.313555i
\(86\) 0 0
\(87\) −2.66481 0.579694i −0.285698 0.0621497i
\(88\) 0 0
\(89\) 0.00355312 + 0.00104329i 0.000376630 + 0.000110588i 0.281921 0.959438i \(-0.409028\pi\)
−0.281544 + 0.959548i \(0.590847\pi\)
\(90\) 0 0
\(91\) 7.12219i 0.746608i
\(92\) 0 0
\(93\) −5.36843 + 5.36843i −0.556680 + 0.556680i
\(94\) 0 0
\(95\) 2.33144 + 10.7177i 0.239201 + 1.09961i
\(96\) 0 0
\(97\) 3.23913 14.8900i 0.328883 1.51185i −0.454744 0.890622i \(-0.650269\pi\)
0.783628 0.621231i \(-0.213367\pi\)
\(98\) 0 0
\(99\) −0.533643 + 3.71157i −0.0536331 + 0.373027i
\(100\) 0 0
\(101\) −7.73272 4.96952i −0.769435 0.494486i 0.0960774 0.995374i \(-0.469370\pi\)
−0.865512 + 0.500888i \(0.833007\pi\)
\(102\) 0 0
\(103\) −0.499298 + 1.33867i −0.0491973 + 0.131903i −0.959224 0.282646i \(-0.908788\pi\)
0.910027 + 0.414549i \(0.136061\pi\)
\(104\) 0 0
\(105\) −6.56865 8.77478i −0.641035 0.856331i
\(106\) 0 0
\(107\) 8.46040 15.4941i 0.817898 1.49787i −0.0486734 0.998815i \(-0.515499\pi\)
0.866571 0.499053i \(-0.166319\pi\)
\(108\) 0 0
\(109\) −2.31623 + 2.67307i −0.221855 + 0.256034i −0.855755 0.517380i \(-0.826907\pi\)
0.633901 + 0.773414i \(0.281453\pi\)
\(110\) 0 0
\(111\) −9.27592 + 8.03763i −0.880432 + 0.762898i
\(112\) 0 0
\(113\) 12.5213 4.67020i 1.17790 0.439335i 0.317159 0.948372i \(-0.397271\pi\)
0.860745 + 0.509037i \(0.169998\pi\)
\(114\) 0 0
\(115\) −10.7156 0.419250i −0.999235 0.0390952i
\(116\) 0 0
\(117\) 2.13536 0.796449i 0.197414 0.0736317i
\(118\) 0 0
\(119\) 2.69951 2.33914i 0.247464 0.214429i
\(120\) 0 0
\(121\) 7.03293 8.11644i 0.639358 0.737858i
\(122\) 0 0
\(123\) −4.73496 + 8.67143i −0.426937 + 0.781876i
\(124\) 0 0
\(125\) −0.797427 11.1519i −0.0713241 0.997453i
\(126\) 0 0
\(127\) 2.64159 7.08239i 0.234404 0.628460i −0.765484 0.643455i \(-0.777500\pi\)
0.999888 + 0.0149945i \(0.00477308\pi\)
\(128\) 0 0
\(129\) −14.5427 9.34603i −1.28041 0.822872i
\(130\) 0 0
\(131\) 0.654229 4.55027i 0.0571603 0.397559i −0.941076 0.338195i \(-0.890184\pi\)
0.998236 0.0593638i \(-0.0189072\pi\)
\(132\) 0 0
\(133\) −2.62049 + 12.0462i −0.227225 + 1.04454i
\(134\) 0 0
\(135\) −5.17748 + 8.05623i −0.445607 + 0.693370i
\(136\) 0 0
\(137\) −7.15629 + 7.15629i −0.611403 + 0.611403i −0.943312 0.331909i \(-0.892307\pi\)
0.331909 + 0.943312i \(0.392307\pi\)
\(138\) 0 0
\(139\) 2.75673i 0.233823i −0.993142 0.116911i \(-0.962701\pi\)
0.993142 0.116911i \(-0.0372993\pi\)
\(140\) 0 0
\(141\) −9.48337 2.78457i −0.798644 0.234503i
\(142\) 0 0
\(143\) −12.9112 2.80865i −1.07969 0.234871i
\(144\) 0 0
\(145\) −1.09259 2.92938i −0.0907343 0.243272i
\(146\) 0 0
\(147\) 0.283437 + 1.30294i 0.0233775 + 0.107465i
\(148\) 0 0
\(149\) −3.69741 8.09619i −0.302903 0.663266i 0.695573 0.718456i \(-0.255151\pi\)
−0.998476 + 0.0551902i \(0.982423\pi\)
\(150\) 0 0
\(151\) −2.19453 15.2633i −0.178588 1.24211i −0.860034 0.510238i \(-0.829557\pi\)
0.681446 0.731869i \(-0.261352\pi\)
\(152\) 0 0
\(153\) 1.00319 + 0.547785i 0.0811034 + 0.0442858i
\(154\) 0 0
\(155\) −8.50498 1.85019i −0.683137 0.148611i
\(156\) 0 0
\(157\) 2.69516 + 0.192762i 0.215097 + 0.0153841i 0.178472 0.983945i \(-0.442885\pi\)
0.0366255 + 0.999329i \(0.488339\pi\)
\(158\) 0 0
\(159\) 1.50080 3.28630i 0.119021 0.260621i
\(160\) 0 0
\(161\) −10.7597 5.43177i −0.847986 0.428084i
\(162\) 0 0
\(163\) 7.54410 + 20.2265i 0.590899 + 1.58426i 0.795852 + 0.605491i \(0.207023\pi\)
−0.204953 + 0.978772i \(0.565704\pi\)
\(164\) 0 0
\(165\) −18.4974 + 8.44736i −1.44002 + 0.657626i
\(166\) 0 0
\(167\) 12.0066 0.858728i 0.929098 0.0664504i 0.401419 0.915894i \(-0.368517\pi\)
0.527679 + 0.849444i \(0.323063\pi\)
\(168\) 0 0
\(169\) −1.39998 4.76788i −0.107691 0.366760i
\(170\) 0 0
\(171\) −3.90471 + 0.561413i −0.298601 + 0.0429323i
\(172\) 0 0
\(173\) 8.35636 + 3.11676i 0.635322 + 0.236963i 0.646428 0.762975i \(-0.276262\pi\)
−0.0111052 + 0.999938i \(0.503535\pi\)
\(174\) 0 0
\(175\) 4.39155 11.7738i 0.331970 0.890018i
\(176\) 0 0
\(177\) 11.3555 8.50063i 0.853532 0.638946i
\(178\) 0 0
\(179\) 9.15380 + 14.2436i 0.684187 + 1.06462i 0.993519 + 0.113662i \(0.0362581\pi\)
−0.309332 + 0.950954i \(0.600106\pi\)
\(180\) 0 0
\(181\) 2.28005 7.76512i 0.169474 0.577177i −0.830327 0.557276i \(-0.811847\pi\)
0.999802 0.0199013i \(-0.00633521\pi\)
\(182\) 0 0
\(183\) −12.5775 12.5775i −0.929758 0.929758i
\(184\) 0 0
\(185\) −13.5012 3.96439i −0.992628 0.291467i
\(186\) 0 0
\(187\) −3.17586 5.81615i −0.232242 0.425319i
\(188\) 0 0
\(189\) −9.05486 + 5.81920i −0.658644 + 0.423285i
\(190\) 0 0
\(191\) 14.2907 + 2.05470i 1.03404 + 0.148673i 0.638378 0.769723i \(-0.279606\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(192\) 0 0
\(193\) −22.7009 + 4.93827i −1.63404 + 0.355464i −0.933621 0.358263i \(-0.883369\pi\)
−0.700423 + 0.713728i \(0.747005\pi\)
\(194\) 0 0
\(195\) 9.89419 + 7.40677i 0.708537 + 0.530410i
\(196\) 0 0
\(197\) −12.7569 + 17.0412i −0.908888 + 1.21413i 0.0674151 + 0.997725i \(0.478525\pi\)
−0.976303 + 0.216407i \(0.930566\pi\)
\(198\) 0 0
\(199\) 18.1890 5.34078i 1.28939 0.378598i 0.436033 0.899931i \(-0.356383\pi\)
0.853354 + 0.521333i \(0.174565\pi\)
\(200\) 0 0
\(201\) 9.57484 + 8.29665i 0.675357 + 0.585201i
\(202\) 0 0
\(203\) 0.250689 3.50509i 0.0175949 0.246009i
\(204\) 0 0
\(205\) −11.2979 + 0.807987i −0.789082 + 0.0564323i
\(206\) 0 0
\(207\) 0.425321 3.83338i 0.0295619 0.266438i
\(208\) 0 0
\(209\) 20.8041 + 9.50090i 1.43905 + 0.657191i
\(210\) 0 0
\(211\) 7.53495 + 8.69580i 0.518727 + 0.598643i 0.953312 0.301988i \(-0.0976502\pi\)
−0.434584 + 0.900631i \(0.643105\pi\)
\(212\) 0 0
\(213\) −2.18359 30.5306i −0.149617 2.09192i
\(214\) 0 0
\(215\) 0.000100115 19.8185i 6.82779e−6 1.35161i
\(216\) 0 0
\(217\) −7.83152 5.86260i −0.531638 0.397979i
\(218\) 0 0
\(219\) −23.6838 + 10.8160i −1.60040 + 0.730880i
\(220\) 0 0
\(221\) −2.17752 + 3.38829i −0.146476 + 0.227921i
\(222\) 0 0
\(223\) −1.10874 1.48110i −0.0742466 0.0991818i 0.761880 0.647718i \(-0.224276\pi\)
−0.836127 + 0.548536i \(0.815185\pi\)
\(224\) 0 0
\(225\) 4.02110 4.06260e-5i 0.268073 2.70840e-6i
\(226\) 0 0
\(227\) −2.56980 + 1.40322i −0.170563 + 0.0931347i −0.562263 0.826959i \(-0.690069\pi\)
0.391699 + 0.920093i \(0.371887\pi\)
\(228\) 0 0
\(229\) 9.28260 0.613411 0.306706 0.951804i \(-0.400773\pi\)
0.306706 + 0.951804i \(0.400773\pi\)
\(230\) 0 0
\(231\) −22.8556 −1.50378
\(232\) 0 0
\(233\) 0.417724 0.228095i 0.0273660 0.0149430i −0.465508 0.885044i \(-0.654128\pi\)
0.492874 + 0.870101i \(0.335946\pi\)
\(234\) 0 0
\(235\) −3.19229 10.8722i −0.208242 0.709221i
\(236\) 0 0
\(237\) 5.85437 + 7.82052i 0.380282 + 0.507997i
\(238\) 0 0
\(239\) −15.9892 + 24.8796i −1.03425 + 1.60933i −0.271722 + 0.962376i \(0.587593\pi\)
−0.762530 + 0.646952i \(0.776043\pi\)
\(240\) 0 0
\(241\) −21.7888 + 9.95062i −1.40354 + 0.640976i −0.966076 0.258260i \(-0.916851\pi\)
−0.437465 + 0.899235i \(0.644124\pi\)
\(242\) 0 0
\(243\) −6.52443 4.88412i −0.418542 0.313317i
\(244\) 0 0
\(245\) −1.08095 + 1.08093i −0.0690591 + 0.0690584i
\(246\) 0 0
\(247\) −0.991666 13.8653i −0.0630982 0.882228i
\(248\) 0 0
\(249\) −11.7852 13.6009i −0.746857 0.861919i
\(250\) 0 0
\(251\) −13.2909 6.06976i −0.838915 0.383120i −0.0508459 0.998707i \(-0.516192\pi\)
−0.788069 + 0.615587i \(0.788919\pi\)
\(252\) 0 0
\(253\) −14.0899 + 17.3633i −0.885825 + 1.09162i
\(254\) 0 0
\(255\) 0.442170 + 6.18278i 0.0276898 + 0.387181i
\(256\) 0 0
\(257\) 0.643264 8.99401i 0.0401257 0.561031i −0.937132 0.348975i \(-0.886530\pi\)
0.977258 0.212055i \(-0.0680157\pi\)
\(258\) 0 0
\(259\) −11.9525 10.3569i −0.742690 0.643545i
\(260\) 0 0
\(261\) 1.07892 0.316800i 0.0667837 0.0196095i
\(262\) 0 0
\(263\) 1.94303 2.59558i 0.119812 0.160051i −0.736625 0.676301i \(-0.763582\pi\)
0.856438 + 0.516251i \(0.172673\pi\)
\(264\) 0 0
\(265\) 4.09969 0.589425i 0.251842 0.0362081i
\(266\) 0 0
\(267\) −0.00705766 + 0.00153530i −0.000431922 + 9.39588e-5i
\(268\) 0 0
\(269\) 12.5338 + 1.80209i 0.764202 + 0.109876i 0.513384 0.858159i \(-0.328392\pi\)
0.250817 + 0.968034i \(0.419301\pi\)
\(270\) 0 0
\(271\) 5.63097 3.61880i 0.342057 0.219827i −0.358322 0.933598i \(-0.616651\pi\)
0.700379 + 0.713771i \(0.253014\pi\)
\(272\) 0 0
\(273\) 6.65744 + 12.1922i 0.402927 + 0.737905i
\(274\) 0 0
\(275\) −19.6119 12.6041i −1.18264 0.760055i
\(276\) 0 0
\(277\) 19.8907 + 19.8907i 1.19511 + 1.19511i 0.975612 + 0.219502i \(0.0704432\pi\)
0.219502 + 0.975612i \(0.429557\pi\)
\(278\) 0 0
\(279\) 0.881944 3.00363i 0.0528006 0.179822i
\(280\) 0 0
\(281\) 10.8881 + 16.9422i 0.649530 + 1.01069i 0.997323 + 0.0731172i \(0.0232947\pi\)
−0.347793 + 0.937571i \(0.613069\pi\)
\(282\) 0 0
\(283\) 24.9114 18.6484i 1.48083 1.10853i 0.512550 0.858658i \(-0.328701\pi\)
0.968278 0.249876i \(-0.0803898\pi\)
\(284\) 0 0
\(285\) −14.0095 16.1679i −0.829849 0.957706i
\(286\) 0 0
\(287\) −11.9281 4.44895i −0.704094 0.262614i
\(288\) 0 0
\(289\) 14.8275 2.13188i 0.872208 0.125405i
\(290\) 0 0
\(291\) 8.37347 + 28.5174i 0.490861 + 1.67172i
\(292\) 0 0
\(293\) −15.5812 + 1.11439i −0.910264 + 0.0651034i −0.518612 0.855010i \(-0.673551\pi\)
−0.391652 + 0.920113i \(0.628096\pi\)
\(294\) 0 0
\(295\) 15.2367 + 5.68308i 0.887114 + 0.330882i
\(296\) 0 0
\(297\) 6.97830 + 18.7096i 0.404922 + 1.08564i
\(298\) 0 0
\(299\) 13.3665 + 2.45855i 0.773007 + 0.142182i
\(300\) 0 0
\(301\) 9.25340 20.2621i 0.533357 1.16789i
\(302\) 0 0
\(303\) 17.8826 + 1.27899i 1.02733 + 0.0734759i
\(304\) 0 0
\(305\) 4.33476 19.9261i 0.248208 1.14096i
\(306\) 0 0
\(307\) 5.98199 + 3.26642i 0.341410 + 0.186424i 0.640802 0.767706i \(-0.278602\pi\)
−0.299392 + 0.954130i \(0.596784\pi\)
\(308\) 0 0
\(309\) −0.396589 2.75834i −0.0225611 0.156916i
\(310\) 0 0
\(311\) 11.3674 + 24.8911i 0.644584 + 1.41144i 0.896215 + 0.443619i \(0.146306\pi\)
−0.251631 + 0.967823i \(0.580967\pi\)
\(312\) 0 0
\(313\) 4.71208 + 21.6611i 0.266343 + 1.22436i 0.894784 + 0.446500i \(0.147330\pi\)
−0.628441 + 0.777857i \(0.716307\pi\)
\(314\) 0 0
\(315\) 4.11110 + 1.87750i 0.231634 + 0.105785i
\(316\) 0 0
\(317\) −7.48916 1.62917i −0.420633 0.0915031i −0.00273328 0.999996i \(-0.500870\pi\)
−0.417900 + 0.908493i \(0.637234\pi\)
\(318\) 0 0
\(319\) −6.25520 1.83669i −0.350224 0.102835i
\(320\) 0 0
\(321\) 34.4320i 1.92181i
\(322\) 0 0
\(323\) 4.92965 4.92965i 0.274293 0.274293i
\(324\) 0 0
\(325\) −1.01097 + 14.1332i −0.0560787 + 0.783972i
\(326\) 0 0
\(327\) 1.46642 6.74101i 0.0810931 0.372779i
\(328\) 0 0
\(329\) 1.81247 12.6060i 0.0999249 0.694993i
\(330\) 0 0
\(331\) 2.54562 + 1.63597i 0.139920 + 0.0899212i 0.608728 0.793379i \(-0.291680\pi\)
−0.468808 + 0.883300i \(0.655316\pi\)
\(332\) 0 0
\(333\) 1.76858 4.74174i 0.0969174 0.259846i
\(334\) 0 0
\(335\) −2.06715 + 14.3768i −0.112940 + 0.785489i
\(336\) 0 0
\(337\) 7.74704 14.1876i 0.422008 0.772850i −0.577029 0.816724i \(-0.695788\pi\)
0.999037 + 0.0438736i \(0.0139699\pi\)
\(338\) 0 0
\(339\) −17.0693 + 19.6990i −0.927075 + 1.06990i
\(340\) 0 0
\(341\) −13.7162 + 11.8851i −0.742772 + 0.643615i
\(342\) 0 0
\(343\) −18.0933 + 6.74844i −0.976944 + 0.364381i
\(344\) 0 0
\(345\) 18.7355 9.29868i 1.00869 0.500624i
\(346\) 0 0
\(347\) −1.41015 + 0.525958i −0.0757007 + 0.0282349i −0.387029 0.922067i \(-0.626499\pi\)
0.311329 + 0.950302i \(0.399226\pi\)
\(348\) 0 0
\(349\) 12.8199 11.1085i 0.686236 0.594627i −0.240361 0.970684i \(-0.577266\pi\)
0.926597 + 0.376057i \(0.122720\pi\)
\(350\) 0 0
\(351\) 7.94787 9.17233i 0.424226 0.489583i
\(352\) 0 0
\(353\) 9.32334 17.0744i 0.496231 0.908780i −0.502784 0.864412i \(-0.667691\pi\)
0.999015 0.0443678i \(-0.0141274\pi\)
\(354\) 0 0
\(355\) 28.0919 21.0291i 1.49096 1.11611i
\(356\) 0 0
\(357\) −2.43468 + 6.52764i −0.128857 + 0.345479i
\(358\) 0 0
\(359\) −7.27262 4.67383i −0.383834 0.246675i 0.334467 0.942407i \(-0.391444\pi\)
−0.718301 + 0.695732i \(0.755080\pi\)
\(360\) 0 0
\(361\) −0.720259 + 5.00951i −0.0379083 + 0.263658i
\(362\) 0 0
\(363\) −4.45259 + 20.4682i −0.233700 + 1.07430i
\(364\) 0 0
\(365\) −25.1110 16.1380i −1.31437 0.844703i
\(366\) 0 0
\(367\) 18.0897 18.0897i 0.944276 0.944276i −0.0542509 0.998527i \(-0.517277\pi\)
0.998527 + 0.0542509i \(0.0172771\pi\)
\(368\) 0 0
\(369\) 4.07378i 0.212072i
\(370\) 0 0
\(371\) 4.46667 + 1.31153i 0.231898 + 0.0680913i
\(372\) 0 0
\(373\) −21.0638 4.58214i −1.09064 0.237254i −0.368935 0.929455i \(-0.620278\pi\)
−0.721705 + 0.692201i \(0.756641\pi\)
\(374\) 0 0
\(375\) 11.7893 + 18.3451i 0.608795 + 0.947334i
\(376\) 0 0
\(377\) 0.842260 + 3.87181i 0.0433786 + 0.199408i
\(378\) 0 0
\(379\) −3.35290 7.34183i −0.172227 0.377125i 0.803760 0.594954i \(-0.202830\pi\)
−0.975987 + 0.217829i \(0.930102\pi\)
\(380\) 0 0
\(381\) 2.09820 + 14.5933i 0.107494 + 0.747637i
\(382\) 0 0
\(383\) 12.6618 + 6.91387i 0.646989 + 0.353282i 0.769002 0.639246i \(-0.220753\pi\)
−0.122014 + 0.992528i \(0.538935\pi\)
\(384\) 0 0
\(385\) −14.1661 22.0431i −0.721970 1.12342i
\(386\) 0 0
\(387\) 7.10972 + 0.508498i 0.361408 + 0.0258484i
\(388\) 0 0
\(389\) −7.66853 + 16.7917i −0.388810 + 0.851375i 0.609473 + 0.792807i \(0.291381\pi\)
−0.998283 + 0.0585687i \(0.981346\pi\)
\(390\) 0 0
\(391\) 3.45812 + 5.87376i 0.174884 + 0.297049i
\(392\) 0 0
\(393\) 3.13340 + 8.40096i 0.158059 + 0.423773i
\(394\) 0 0
\(395\) −3.91392 + 10.4935i −0.196931 + 0.527984i
\(396\) 0 0
\(397\) 7.00243 0.500824i 0.351442 0.0251356i 0.105498 0.994420i \(-0.466356\pi\)
0.245944 + 0.969284i \(0.420902\pi\)
\(398\) 0 0
\(399\) −6.77423 23.0709i −0.339136 1.15499i
\(400\) 0 0
\(401\) −16.9558 + 2.43787i −0.846730 + 0.121741i −0.552005 0.833841i \(-0.686137\pi\)
−0.294725 + 0.955582i \(0.595228\pi\)
\(402\) 0 0
\(403\) 10.3354 + 3.85489i 0.514841 + 0.192026i
\(404\) 0 0
\(405\) 1.71749 24.0119i 0.0853427 1.19316i
\(406\) 0 0
\(407\) −23.4885 + 17.5833i −1.16428 + 0.871571i
\(408\) 0 0
\(409\) 3.47028 + 5.39986i 0.171594 + 0.267006i 0.916390 0.400287i \(-0.131089\pi\)
−0.744796 + 0.667293i \(0.767453\pi\)
\(410\) 0 0
\(411\) 5.56125 18.9399i 0.274316 0.934236i
\(412\) 0 0
\(413\) 12.9243 + 12.9243i 0.635965 + 0.635965i
\(414\) 0 0
\(415\) 5.81280 19.7962i 0.285339 0.971757i
\(416\) 0 0
\(417\) 2.57684 + 4.71913i 0.126189 + 0.231097i
\(418\) 0 0
\(419\) −11.6813 + 7.50714i −0.570670 + 0.366748i −0.793928 0.608012i \(-0.791967\pi\)
0.223257 + 0.974760i \(0.428331\pi\)
\(420\) 0 0
\(421\) −6.96130 1.00088i −0.339273 0.0487801i −0.0294274 0.999567i \(-0.509368\pi\)
−0.309846 + 0.950787i \(0.600277\pi\)
\(422\) 0 0
\(423\) 3.98220 0.866274i 0.193621 0.0421197i
\(424\) 0 0
\(425\) −5.68894 + 4.25859i −0.275954 + 0.206572i
\(426\) 0 0
\(427\) 13.7353 18.3482i 0.664699 0.887934i
\(428\) 0 0
\(429\) 24.7275 7.26065i 1.19386 0.350548i
\(430\) 0 0
\(431\) −13.4737 11.6751i −0.649008 0.562368i 0.266917 0.963720i \(-0.413995\pi\)
−0.915924 + 0.401351i \(0.868541\pi\)
\(432\) 0 0
\(433\) 2.17781 30.4497i 0.104659 1.46332i −0.625596 0.780147i \(-0.715144\pi\)
0.730255 0.683175i \(-0.239401\pi\)
\(434\) 0 0
\(435\) 4.60858 + 3.99340i 0.220965 + 0.191469i
\(436\) 0 0
\(437\) −21.7031 9.07630i −1.03820 0.434178i
\(438\) 0 0
\(439\) 26.2480 + 11.9870i 1.25275 + 0.572110i 0.927608 0.373556i \(-0.121862\pi\)
0.325139 + 0.945666i \(0.394589\pi\)
\(440\) 0 0
\(441\) −0.360044 0.415513i −0.0171449 0.0197863i
\(442\) 0 0
\(443\) −1.47646 20.6436i −0.0701486 0.980806i −0.903645 0.428281i \(-0.859119\pi\)
0.833497 0.552524i \(-0.186335\pi\)
\(444\) 0 0
\(445\) −0.00585512 0.00585518i −0.000277559 0.000277562i
\(446\) 0 0
\(447\) 13.8973 + 10.4034i 0.657321 + 0.492065i
\(448\) 0 0
\(449\) 29.7488 13.5858i 1.40393 0.641156i 0.437771 0.899086i \(-0.355768\pi\)
0.966163 + 0.257931i \(0.0830406\pi\)
\(450\) 0 0
\(451\) −12.7690 + 19.8689i −0.601268 + 0.935592i
\(452\) 0 0
\(453\) 18.0240 + 24.0773i 0.846842 + 1.13125i
\(454\) 0 0
\(455\) −7.63244 + 13.9776i −0.357815 + 0.655281i
\(456\) 0 0
\(457\) −11.0409 + 6.02878i −0.516471 + 0.282015i −0.716271 0.697822i \(-0.754153\pi\)
0.199800 + 0.979837i \(0.435971\pi\)
\(458\) 0 0
\(459\) 6.08689 0.284112
\(460\) 0 0
\(461\) 28.5574 1.33005 0.665025 0.746821i \(-0.268421\pi\)
0.665025 + 0.746821i \(0.268421\pi\)
\(462\) 0 0
\(463\) −4.90931 + 2.68068i −0.228155 + 0.124582i −0.589261 0.807943i \(-0.700581\pi\)
0.361106 + 0.932525i \(0.382399\pi\)
\(464\) 0 0
\(465\) 16.2888 4.78274i 0.755375 0.221794i
\(466\) 0 0
\(467\) −3.59285 4.79948i −0.166257 0.222093i 0.709673 0.704531i \(-0.248843\pi\)
−0.875930 + 0.482437i \(0.839752\pi\)
\(468\) 0 0
\(469\) −8.82598 + 13.7335i −0.407546 + 0.634154i
\(470\) 0 0
\(471\) −4.79393 + 2.18931i −0.220893 + 0.100878i
\(472\) 0 0
\(473\) −33.0823 24.7651i −1.52112 1.13870i
\(474\) 0 0
\(475\) 6.91002 23.5325i 0.317053 1.07974i
\(476\) 0 0
\(477\) 0.106270 + 1.48585i 0.00486578 + 0.0680325i
\(478\) 0 0
\(479\) 10.3604 + 11.9565i 0.473378 + 0.546307i 0.941348 0.337437i \(-0.109560\pi\)
−0.467970 + 0.883744i \(0.655015\pi\)
\(480\) 0 0
\(481\) 16.2215 + 7.40813i 0.739639 + 0.337782i
\(482\) 0 0
\(483\) 23.4965 0.759194i 1.06913 0.0345445i
\(484\) 0 0
\(485\) −22.3137 + 25.7511i −1.01321 + 1.16930i
\(486\) 0 0
\(487\) −2.10827 + 29.4774i −0.0955346 + 1.33575i 0.693080 + 0.720861i \(0.256253\pi\)
−0.788615 + 0.614888i \(0.789201\pi\)
\(488\) 0 0
\(489\) −31.8211 27.5732i −1.43900 1.24690i
\(490\) 0 0
\(491\) 14.3242 4.20597i 0.646443 0.189813i 0.0579554 0.998319i \(-0.481542\pi\)
0.588487 + 0.808506i \(0.299724\pi\)
\(492\) 0 0
\(493\) −1.19090 + 1.59086i −0.0536355 + 0.0716486i
\(494\) 0 0
\(495\) 5.02478 6.71224i 0.225847 0.301693i
\(496\) 0 0
\(497\) 38.5393 8.38371i 1.72872 0.376061i
\(498\) 0 0
\(499\) 15.3568 + 2.20797i 0.687464 + 0.0988424i 0.477190 0.878800i \(-0.341655\pi\)
0.210274 + 0.977642i \(0.432564\pi\)
\(500\) 0 0
\(501\) −19.7509 + 12.6931i −0.882406 + 0.567088i
\(502\) 0 0
\(503\) −5.07222 9.28907i −0.226159 0.414179i 0.739818 0.672807i \(-0.234912\pi\)
−0.965977 + 0.258628i \(0.916730\pi\)
\(504\) 0 0
\(505\) 9.85026 + 18.0396i 0.438331 + 0.802752i
\(506\) 0 0
\(507\) 6.85333 + 6.85333i 0.304367 + 0.304367i
\(508\) 0 0
\(509\) 12.5718 42.8157i 0.557236 1.89777i 0.136340 0.990662i \(-0.456466\pi\)
0.420896 0.907109i \(-0.361716\pi\)
\(510\) 0 0
\(511\) −18.1382 28.2236i −0.802388 1.24854i
\(512\) 0 0
\(513\) −16.8175 + 12.5894i −0.742512 + 0.555838i
\(514\) 0 0
\(515\) 2.41447 2.09213i 0.106394 0.0921903i
\(516\) 0 0
\(517\) −22.1376 8.25689i −0.973609 0.363138i
\(518\) 0 0
\(519\) −17.2183 + 2.47562i −0.755800 + 0.108668i
\(520\) 0 0
\(521\) 12.5745 + 42.8249i 0.550900 + 1.87619i 0.476946 + 0.878933i \(0.341744\pi\)
0.0739543 + 0.997262i \(0.476438\pi\)
\(522\) 0 0
\(523\) 40.6039 2.90405i 1.77548 0.126985i 0.855215 0.518273i \(-0.173425\pi\)
0.920268 + 0.391288i \(0.127970\pi\)
\(524\) 0 0
\(525\) 3.48783 + 24.2602i 0.152222 + 1.05880i
\(526\) 0 0
\(527\) 1.93333 + 5.18346i 0.0842171 + 0.225795i
\(528\) 0 0
\(529\) 13.9083 18.3183i 0.604708 0.796447i
\(530\) 0 0
\(531\) −2.42967 + 5.32023i −0.105439 + 0.230879i
\(532\) 0 0
\(533\) 14.3184 + 1.02407i 0.620199 + 0.0443575i
\(534\) 0 0
\(535\) −33.2080 + 21.3413i −1.43571 + 0.922663i
\(536\) 0 0
\(537\) −28.9842 15.8266i −1.25076 0.682967i
\(538\) 0 0
\(539\) 0.453636 + 3.15511i 0.0195395 + 0.135900i
\(540\) 0 0
\(541\) −3.44131 7.53543i −0.147954 0.323973i 0.821116 0.570762i \(-0.193352\pi\)
−0.969069 + 0.246788i \(0.920625\pi\)
\(542\) 0 0
\(543\) 3.35530 + 15.4241i 0.143990 + 0.661911i
\(544\) 0 0
\(545\) 7.41028 2.76385i 0.317422 0.118390i
\(546\) 0 0
\(547\) 15.6837 + 3.41178i 0.670586 + 0.145877i 0.534953 0.844882i \(-0.320329\pi\)
0.135633 + 0.990759i \(0.456693\pi\)
\(548\) 0 0
\(549\) 7.03711 + 2.06628i 0.300337 + 0.0881868i
\(550\) 0 0
\(551\) 6.85853i 0.292183i
\(552\) 0 0
\(553\) −8.90097 + 8.90097i −0.378508 + 0.378508i
\(554\) 0 0
\(555\) 26.8179 5.83373i 1.13836 0.247628i
\(556\) 0 0
\(557\) −3.56519 + 16.3889i −0.151062 + 0.694421i 0.837848 + 0.545904i \(0.183814\pi\)
−0.988910 + 0.148517i \(0.952550\pi\)
\(558\) 0 0
\(559\) −3.57451 + 24.8612i −0.151186 + 1.05152i
\(560\) 0 0
\(561\) 10.8732 + 6.98781i 0.459069 + 0.295026i
\(562\) 0 0
\(563\) 10.8848 29.1833i 0.458741 1.22993i −0.477519 0.878622i \(-0.658464\pi\)
0.936259 0.351310i \(-0.114264\pi\)
\(564\) 0 0
\(565\) −29.5784 4.25288i −1.24437 0.178920i
\(566\) 0 0
\(567\) 12.9671 23.7476i 0.544569 0.997304i
\(568\) 0 0
\(569\) −2.84620 + 3.28468i −0.119319 + 0.137701i −0.812266 0.583287i \(-0.801766\pi\)
0.692947 + 0.720988i \(0.256312\pi\)
\(570\) 0 0
\(571\) 12.3574 10.7077i 0.517141 0.448105i −0.356769 0.934192i \(-0.616122\pi\)
0.873910 + 0.486087i \(0.161576\pi\)
\(572\) 0 0
\(573\) −26.3843 + 9.84085i −1.10222 + 0.411107i
\(574\) 0 0
\(575\) 20.5806 + 12.3061i 0.858269 + 0.513200i
\(576\) 0 0
\(577\) −30.9105 + 11.5290i −1.28682 + 0.479960i −0.897448 0.441120i \(-0.854581\pi\)
−0.389373 + 0.921080i \(0.627308\pi\)
\(578\) 0 0
\(579\) 34.2447 29.6732i 1.42316 1.23318i
\(580\) 0 0
\(581\) 15.1858 17.5253i 0.630013 0.727074i
\(582\) 0 0
\(583\) 4.13900 7.58001i 0.171420 0.313932i
\(584\) 0 0
\(585\) −5.04425 0.725280i −0.208554 0.0299866i
\(586\) 0 0
\(587\) 14.8437 39.7975i 0.612665 1.64262i −0.144585 0.989492i \(-0.546185\pi\)
0.757250 0.653125i \(-0.226542\pi\)
\(588\) 0 0
\(589\) −16.0625 10.3227i −0.661844 0.425341i
\(590\) 0 0
\(591\) 5.90879 41.0965i 0.243055 1.69049i
\(592\) 0 0
\(593\) −2.18383 + 10.0389i −0.0896791 + 0.412248i −0.999999 0.00165816i \(-0.999472\pi\)
0.910320 + 0.413906i \(0.135836\pi\)
\(594\) 0 0
\(595\) −7.80463 + 1.69775i −0.319959 + 0.0696011i
\(596\) 0 0
\(597\) −26.1448 + 26.1448i −1.07004 + 1.07004i
\(598\) 0 0
\(599\) 27.6923i 1.13148i 0.824585 + 0.565738i \(0.191409\pi\)
−0.824585 + 0.565738i \(0.808591\pi\)
\(600\) 0 0
\(601\) 16.3423 + 4.79853i 0.666616 + 0.195736i 0.597496 0.801872i \(-0.296163\pi\)
0.0691204 + 0.997608i \(0.477981\pi\)
\(602\) 0 0
\(603\) −5.10453 1.11042i −0.207873 0.0452199i
\(604\) 0 0
\(605\) −22.5004 + 8.39208i −0.914770 + 0.341186i
\(606\) 0 0
\(607\) 5.51036 + 25.3307i 0.223659 + 1.02814i 0.942821 + 0.333300i \(0.108162\pi\)
−0.719162 + 0.694842i \(0.755474\pi\)
\(608\) 0 0
\(609\) 2.84723 + 6.23456i 0.115375 + 0.252637i
\(610\) 0 0
\(611\) 2.04371 + 14.2143i 0.0826795 + 0.575049i
\(612\) 0 0
\(613\) 23.3530 + 12.7517i 0.943221 + 0.515037i 0.875793 0.482687i \(-0.160339\pi\)
0.0674276 + 0.997724i \(0.478521\pi\)
\(614\) 0 0
\(615\) 18.5852 11.9439i 0.749429 0.481624i
\(616\) 0 0
\(617\) −35.4655 2.53654i −1.42779 0.102117i −0.664071 0.747670i \(-0.731173\pi\)
−0.763716 + 0.645553i \(0.776627\pi\)
\(618\) 0 0
\(619\) −12.5295 + 27.4358i −0.503604 + 1.10274i 0.471678 + 0.881771i \(0.343649\pi\)
−0.975281 + 0.220967i \(0.929079\pi\)
\(620\) 0 0
\(621\) −7.79548 19.0024i −0.312822 0.762542i
\(622\) 0 0
\(623\) −0.00325240 0.00872002i −0.000130305 0.000349360i
\(624\) 0 0
\(625\) −10.3858 + 22.7406i −0.415433 + 0.909624i
\(626\) 0 0
\(627\) −44.4946 + 3.18232i −1.77694 + 0.127090i
\(628\) 0 0
\(629\) 2.51975 + 8.58148i 0.100469 + 0.342166i
\(630\) 0 0
\(631\) 31.0040 4.45771i 1.23425 0.177459i 0.505857 0.862617i \(-0.331176\pi\)
0.728394 + 0.685159i \(0.240267\pi\)
\(632\) 0 0
\(633\) −21.0272 7.84272i −0.835755 0.311720i
\(634\) 0 0
\(635\) −12.7740 + 11.0687i −0.506922 + 0.439246i
\(636\) 0 0
\(637\) 1.55094 1.16102i 0.0614505 0.0460013i
\(638\) 0 0
\(639\) 6.82330 + 10.6173i 0.269926 + 0.420013i
\(640\) 0 0
\(641\) 6.71934 22.8840i 0.265398 0.903862i −0.713696 0.700455i \(-0.752980\pi\)
0.979094 0.203407i \(-0.0652014\pi\)
\(642\) 0 0
\(643\) 19.1680 + 19.1680i 0.755913 + 0.755913i 0.975576 0.219663i \(-0.0704957\pi\)
−0.219663 + 0.975576i \(0.570496\pi\)
\(644\) 0 0
\(645\) 18.5251 + 33.9266i 0.729425 + 1.33586i
\(646\) 0 0
\(647\) 22.6931 + 41.5593i 0.892157 + 1.63386i 0.766926 + 0.641735i \(0.221785\pi\)
0.125230 + 0.992128i \(0.460033\pi\)
\(648\) 0 0
\(649\) 28.5261 18.3326i 1.11975 0.719618i
\(650\) 0 0
\(651\) 18.8865 + 2.71547i 0.740221 + 0.106428i
\(652\) 0 0
\(653\) −22.1639 + 4.82145i −0.867339 + 0.188678i −0.624153 0.781302i \(-0.714556\pi\)
−0.243185 + 0.969980i \(0.578192\pi\)
\(654\) 0 0
\(655\) −6.16022 + 8.22900i −0.240700 + 0.321534i
\(656\) 0 0
\(657\) 6.43363 8.59432i 0.251000 0.335297i
\(658\) 0 0
\(659\) −29.8294 + 8.75869i −1.16199 + 0.341190i −0.805204 0.592997i \(-0.797944\pi\)
−0.356783 + 0.934187i \(0.616126\pi\)
\(660\) 0 0
\(661\) −3.60466 3.12346i −0.140205 0.121488i 0.581935 0.813235i \(-0.302296\pi\)
−0.722140 + 0.691747i \(0.756841\pi\)
\(662\) 0 0
\(663\) 0.560422 7.83572i 0.0217650 0.304314i
\(664\) 0 0
\(665\) 18.0521 20.8330i 0.700029 0.807868i
\(666\) 0 0
\(667\) 6.49163 + 1.68042i 0.251357 + 0.0650662i
\(668\) 0 0
\(669\) 3.28246 + 1.49905i 0.126907 + 0.0579566i
\(670\) 0 0
\(671\) −27.8453 32.1352i −1.07496 1.24057i
\(672\) 0 0
\(673\) −2.11852 29.6208i −0.0816629 1.14180i −0.858747 0.512400i \(-0.828757\pi\)
0.777084 0.629397i \(-0.216698\pi\)
\(674\) 0 0
\(675\) 18.7945 10.2623i 0.723399 0.394996i
\(676\) 0 0
\(677\) 2.21406 + 1.65742i 0.0850931 + 0.0636999i 0.640977 0.767560i \(-0.278529\pi\)
−0.555884 + 0.831260i \(0.687620\pi\)
\(678\) 0 0
\(679\) −34.8365 + 15.9093i −1.33690 + 0.610543i
\(680\) 0 0
\(681\) 3.08749 4.80422i 0.118313 0.184098i
\(682\) 0 0
\(683\) 2.48748 + 3.32288i 0.0951806 + 0.127146i 0.845603 0.533812i \(-0.179241\pi\)
−0.750423 + 0.660958i \(0.770150\pi\)
\(684\) 0 0
\(685\) 21.7135 6.37555i 0.829631 0.243597i
\(686\) 0 0
\(687\) −15.8905 + 8.67688i −0.606261 + 0.331044i
\(688\) 0 0
\(689\) −5.24915 −0.199977
\(690\) 0 0
\(691\) −37.9093 −1.44214 −0.721069 0.692864i \(-0.756349\pi\)
−0.721069 + 0.692864i \(0.756349\pi\)
\(692\) 0 0
\(693\) 8.27122 4.51643i 0.314198 0.171565i
\(694\) 0 0
\(695\) −2.95423 + 5.41020i −0.112060 + 0.205221i
\(696\) 0 0
\(697\) 4.31444 + 5.76341i 0.163421 + 0.218305i
\(698\) 0 0
\(699\) −0.501875 + 0.780932i −0.0189826 + 0.0295376i
\(700\) 0 0
\(701\) 21.4174 9.78099i 0.808923 0.369423i 0.0323711 0.999476i \(-0.489694\pi\)
0.776552 + 0.630053i \(0.216967\pi\)
\(702\) 0 0
\(703\) −24.7108 18.4983i −0.931986 0.697676i
\(704\) 0 0
\(705\) 15.6275 + 15.6276i 0.588565 + 0.588571i
\(706\) 0 0
\(707\) 1.64804 + 23.0426i 0.0619808 + 0.866605i
\(708\) 0 0
\(709\) 21.9733 + 25.3586i 0.825226 + 0.952362i 0.999477 0.0323393i \(-0.0102957\pi\)
−0.174251 + 0.984701i \(0.555750\pi\)
\(710\) 0 0
\(711\) −3.66404 1.67331i −0.137412 0.0627540i
\(712\) 0 0
\(713\) 13.7060 12.6740i 0.513295 0.474646i
\(714\) 0 0
\(715\) 22.3289 + 19.3483i 0.835053 + 0.723585i
\(716\) 0 0
\(717\) 4.11507 57.5363i 0.153680 2.14873i
\(718\) 0 0
\(719\) 19.5013 + 16.8980i 0.727277 + 0.630189i 0.937710 0.347419i \(-0.112942\pi\)
−0.210433 + 0.977608i \(0.567487\pi\)
\(720\) 0 0
\(721\) 3.44534 1.01164i 0.128311 0.0376756i
\(722\) 0 0
\(723\) 27.9981 37.4011i 1.04126 1.39096i
\(724\) 0 0
\(725\) −0.995003 + 6.91990i −0.0369535 + 0.256999i
\(726\) 0 0
\(727\) −43.8066 + 9.52954i −1.62470 + 0.353431i −0.930482 0.366337i \(-0.880612\pi\)
−0.694214 + 0.719768i \(0.744248\pi\)
\(728\) 0 0
\(729\) −16.2346 2.33418i −0.601281 0.0864512i
\(730\) 0 0
\(731\) −10.5971 + 6.81034i −0.391948 + 0.251889i
\(732\) 0 0
\(733\) 19.9128 + 36.4675i 0.735495 + 1.34696i 0.930549 + 0.366166i \(0.119330\pi\)
−0.195054 + 0.980792i \(0.562488\pi\)
\(734\) 0 0
\(735\) 0.840028 2.86082i 0.0309849 0.105523i
\(736\) 0 0
\(737\) 21.4157 + 21.4157i 0.788856 + 0.788856i
\(738\) 0 0
\(739\) −5.16801 + 17.6006i −0.190108 + 0.647450i 0.808178 + 0.588938i \(0.200454\pi\)
−0.998287 + 0.0585120i \(0.981364\pi\)
\(740\) 0 0
\(741\) 14.6581 + 22.8085i 0.538480 + 0.837892i
\(742\) 0 0
\(743\) −2.05289 + 1.53677i −0.0753132 + 0.0563788i −0.636271 0.771466i \(-0.719524\pi\)
0.560958 + 0.827844i \(0.310433\pi\)
\(744\) 0 0
\(745\) −1.41990 + 19.8514i −0.0520212 + 0.727300i
\(746\) 0 0
\(747\) 6.95259 + 2.59318i 0.254382 + 0.0948796i
\(748\) 0 0
\(749\) −43.9157 + 6.31412i −1.60464 + 0.230713i
\(750\) 0 0
\(751\) −0.372917 1.27004i −0.0136079 0.0463443i 0.952409 0.304823i \(-0.0985972\pi\)
−0.966017 + 0.258478i \(0.916779\pi\)
\(752\) 0 0
\(753\) 28.4259 2.03306i 1.03590 0.0740888i
\(754\) 0 0
\(755\) −12.0499 + 32.3066i −0.438541 + 1.17576i
\(756\) 0 0
\(757\) 6.47682 + 17.3650i 0.235404 + 0.631143i 0.999909 0.0134747i \(-0.00428926\pi\)
−0.764505 + 0.644618i \(0.777017\pi\)
\(758\) 0 0
\(759\) 7.88964 42.8941i 0.286376 1.55696i
\(760\) 0 0
\(761\) 21.0927 46.1866i 0.764610 1.67426i 0.0264384 0.999650i \(-0.491583\pi\)
0.738172 0.674613i \(-0.235689\pi\)
\(762\) 0 0
\(763\) 8.86661 + 0.634153i 0.320993 + 0.0229579i
\(764\) 0 0
\(765\) −1.38178 2.15012i −0.0499584 0.0777377i
\(766\) 0 0
\(767\) −18.0886 9.87715i −0.653143 0.356643i
\(768\) 0 0
\(769\) −6.75619 46.9903i −0.243634 1.69451i −0.633581 0.773677i \(-0.718415\pi\)
0.389946 0.920838i \(-0.372494\pi\)
\(770\) 0 0
\(771\) 7.30594 + 15.9978i 0.263117 + 0.576146i
\(772\) 0 0
\(773\) 0.218661 + 1.00517i 0.00786469 + 0.0361534i 0.980912 0.194452i \(-0.0622929\pi\)
−0.973047 + 0.230606i \(0.925929\pi\)
\(774\) 0 0
\(775\) 14.7087 + 12.7454i 0.528351 + 0.457828i
\(776\) 0 0
\(777\) 30.1420 + 6.55699i 1.08134 + 0.235231i
\(778\) 0 0
\(779\) −23.8408 7.00029i −0.854186 0.250812i
\(780\) 0 0
\(781\) 73.1706i 2.61825i
\(782\) 0 0
\(783\) 4.23429 4.23429i 0.151321 0.151321i
\(784\) 0 0
\(785\) −5.08281 3.26656i −0.181413 0.116588i
\(786\) 0 0
\(787\) 7.34861 33.7810i 0.261949 1.20416i −0.638645 0.769502i \(-0.720505\pi\)
0.900594 0.434661i \(-0.143132\pi\)
\(788\) 0 0
\(789\) −0.899983 + 6.25952i −0.0320402 + 0.222845i
\(790\) 0 0
\(791\) −28.2548 18.1583i −1.00463 0.645634i
\(792\) 0 0
\(793\) −9.03151 + 24.2144i −0.320718 + 0.859880i
\(794\) 0 0
\(795\) −6.46713 + 4.84118i −0.229366 + 0.171699i
\(796\) 0 0
\(797\) 8.45789 15.4895i 0.299594 0.548665i −0.683907 0.729569i \(-0.739721\pi\)
0.983501 + 0.180904i \(0.0579024\pi\)
\(798\) 0 0
\(799\) −4.71640 + 5.44302i −0.166854 + 0.192560i
\(800\) 0 0
\(801\) 0.00225072 0.00195026i 7.95252e−5 6.89089e-5i
\(802\) 0 0
\(803\) −58.3170 + 21.7511i −2.05796 + 0.767580i
\(804\) 0 0
\(805\) 15.2955 + 22.1907i 0.539097 + 0.782119i
\(806\) 0 0
\(807\) −23.1407 + 8.63103i −0.814591 + 0.303827i
\(808\) 0 0
\(809\) −19.8829 + 17.2286i −0.699046 + 0.605727i −0.930140 0.367205i \(-0.880315\pi\)
0.231094 + 0.972931i \(0.425769\pi\)
\(810\) 0 0
\(811\) −17.3545 + 20.0281i −0.609397 + 0.703282i −0.973658 0.228015i \(-0.926776\pi\)
0.364260 + 0.931297i \(0.381322\pi\)
\(812\) 0 0
\(813\) −6.25677 + 11.4584i −0.219435 + 0.401864i
\(814\) 0 0
\(815\) 6.86997 47.7800i 0.240645 1.67366i
\(816\) 0 0
\(817\) 15.1931 40.7342i 0.531538 1.42511i
\(818\) 0 0
\(819\) −4.81854 3.09669i −0.168373 0.108207i
\(820\) 0 0
\(821\) 0.458276 3.18738i 0.0159939 0.111240i −0.980261 0.197710i \(-0.936650\pi\)
0.996254 + 0.0864699i \(0.0275586\pi\)
\(822\) 0 0
\(823\) −8.02626 + 36.8961i −0.279778 + 1.28612i 0.595836 + 0.803106i \(0.296821\pi\)
−0.875614 + 0.483012i \(0.839543\pi\)
\(824\) 0 0
\(825\) 45.3545 + 3.24428i 1.57904 + 0.112951i
\(826\) 0 0
\(827\) 23.1852 23.1852i 0.806230 0.806230i −0.177831 0.984061i \(-0.556908\pi\)
0.984061 + 0.177831i \(0.0569081\pi\)
\(828\) 0 0
\(829\) 10.6628i 0.370333i −0.982707 0.185166i \(-0.940718\pi\)
0.982707 0.185166i \(-0.0592824\pi\)
\(830\) 0 0
\(831\) −52.6428 15.4573i −1.82616 0.536208i
\(832\) 0 0
\(833\) 0.949435 + 0.206537i 0.0328960 + 0.00715608i
\(834\) 0 0
\(835\) −24.4837 11.1815i −0.847294 0.386951i
\(836\) 0 0
\(837\) −3.54359 16.2896i −0.122484 0.563051i
\(838\) 0 0
\(839\) 3.79858 + 8.31772i 0.131141 + 0.287160i 0.963800 0.266628i \(-0.0859094\pi\)
−0.832658 + 0.553787i \(0.813182\pi\)
\(840\) 0 0
\(841\) −3.84890 26.7697i −0.132721 0.923094i
\(842\) 0 0
\(843\) −34.4756 18.8251i −1.18740 0.648371i
\(844\) 0 0
\(845\) −2.36195 + 10.8575i −0.0812537 + 0.373508i
\(846\) 0 0
\(847\) −26.9223 1.92552i −0.925063 0.0661618i
\(848\) 0 0
\(849\) −25.2133 + 55.2093i −0.865317 + 1.89478i
\(850\) 0 0
\(851\) 23.5632 18.8566i 0.807735 0.646396i
\(852\) 0 0
\(853\) −11.8542 31.7824i −0.405881 1.08821i −0.965715 0.259605i \(-0.916408\pi\)
0.559834 0.828605i \(-0.310865\pi\)
\(854\) 0 0
\(855\) 8.26480 + 3.08266i 0.282650 + 0.105425i
\(856\) 0 0
\(857\) 20.7659 1.48521i 0.709351 0.0507338i 0.287999 0.957631i \(-0.407010\pi\)
0.421352 + 0.906897i \(0.361556\pi\)
\(858\) 0 0
\(859\) −9.91196 33.7570i −0.338192 1.15178i −0.936546 0.350544i \(-0.885997\pi\)
0.598355 0.801231i \(-0.295821\pi\)
\(860\) 0 0
\(861\) 24.5779 3.53377i 0.837613 0.120431i
\(862\) 0 0
\(863\) −21.2019 7.90788i −0.721719 0.269187i −0.0383543 0.999264i \(-0.512212\pi\)
−0.683365 + 0.730077i \(0.739484\pi\)
\(864\) 0 0
\(865\) −13.0597 15.0718i −0.444042 0.512457i
\(866\) 0 0
\(867\) −23.3899 + 17.5095i −0.794363 + 0.594653i
\(868\) 0 0
\(869\) 12.6256 + 19.6459i 0.428296 + 0.666441i
\(870\) 0 0
\(871\) 5.18607 17.6621i 0.175723 0.598458i
\(872\) 0 0
\(873\) −8.66554 8.66554i −0.293284 0.293284i
\(874\) 0 0
\(875\) −21.2360 + 18.4005i −0.717906 + 0.622050i
\(876\) 0 0
\(877\) 13.1237 + 24.0343i 0.443157 + 0.811582i 0.999816 0.0191589i \(-0.00609885\pi\)
−0.556659 + 0.830741i \(0.687917\pi\)
\(878\) 0 0
\(879\) 25.6312 16.4722i 0.864519 0.555592i
\(880\) 0 0
\(881\) −53.2287 7.65313i −1.79332 0.257841i −0.836386 0.548141i \(-0.815336\pi\)
−0.956935 + 0.290301i \(0.906245\pi\)
\(882\) 0 0
\(883\) −18.0857 + 3.93431i −0.608633 + 0.132400i −0.506310 0.862351i \(-0.668991\pi\)
−0.102323 + 0.994751i \(0.532627\pi\)
\(884\) 0 0
\(885\) −31.3953 + 4.51380i −1.05534 + 0.151730i
\(886\) 0 0
\(887\) −6.06209 + 8.09800i −0.203545 + 0.271904i −0.890685 0.454620i \(-0.849775\pi\)
0.687140 + 0.726525i \(0.258866\pi\)
\(888\) 0 0
\(889\) −18.2280 + 5.35222i −0.611347 + 0.179508i
\(890\) 0 0
\(891\) −37.9362 32.8719i −1.27091 1.10125i
\(892\) 0 0
\(893\) 1.77326 24.7935i 0.0593400 0.829682i
\(894\) 0 0
\(895\) −2.70069 37.7633i −0.0902742 1.26229i
\(896\) 0 0
\(897\) −25.1798 + 8.28565i −0.840729 + 0.276650i
\(898\) 0 0
\(899\) 4.95072 + 2.26092i 0.165116 + 0.0754059i
\(900\) 0 0
\(901\) −1.72398 1.98958i −0.0574340 0.0662824i
\(902\) 0 0
\(903\) 3.09942 + 43.3355i 0.103142 + 1.44212i
\(904\) 0 0
\(905\) −12.7961 + 12.7960i −0.425358 + 0.425354i
\(906\) 0 0
\(907\) −22.5329 16.8680i −0.748194 0.560091i 0.155722 0.987801i \(-0.450230\pi\)
−0.903916 + 0.427710i \(0.859321\pi\)
\(908\) 0 0
\(909\) −6.72429 + 3.07088i −0.223031 + 0.101855i
\(910\) 0 0
\(911\) −28.5939 + 44.4929i −0.947357 + 1.47412i −0.0681501 + 0.997675i \(0.521710\pi\)
−0.879207 + 0.476441i \(0.841927\pi\)
\(912\) 0 0
\(913\) −25.7816 34.4401i −0.853245 1.13980i
\(914\) 0 0
\(915\) 11.2053 + 38.1626i 0.370437 + 1.26162i
\(916\) 0 0
\(917\) −10.1403 + 5.53700i −0.334861 + 0.182848i
\(918\) 0 0
\(919\) −27.8551 −0.918854 −0.459427 0.888216i \(-0.651945\pi\)
−0.459427 + 0.888216i \(0.651945\pi\)
\(920\) 0 0
\(921\) −13.2936 −0.438039
\(922\) 0 0
\(923\) −39.0325 + 21.3134i −1.28477 + 0.701538i
\(924\) 0 0
\(925\) 22.2483 + 22.2488i 0.731520 + 0.731535i
\(926\) 0 0
\(927\) 0.688590 + 0.919848i 0.0226163 + 0.0302118i
\(928\) 0 0
\(929\) −4.49750 + 6.99825i −0.147558 + 0.229605i −0.907162 0.420780i \(-0.861756\pi\)
0.759604 + 0.650386i \(0.225393\pi\)
\(930\) 0 0
\(931\) −3.05038 + 1.39306i −0.0999722 + 0.0456558i
\(932\) 0 0
\(933\) −42.7262 31.9844i −1.39879 1.04712i
\(934\) 0 0
\(935\) −7.48537e−5 14.8178i −2.44798e−6 0.484595i
\(936\) 0 0
\(937\) −0.0929942 1.30023i −0.00303799 0.0424766i 0.995707 0.0925613i \(-0.0295054\pi\)
−0.998745 + 0.0500847i \(0.984051\pi\)
\(938\) 0 0
\(939\) −28.3141 32.6762i −0.923995 1.06635i
\(940\) 0 0
\(941\) −20.1623 9.20783i −0.657273 0.300167i 0.0587193 0.998275i \(-0.481298\pi\)
−0.715993 + 0.698108i \(0.754026\pi\)
\(942\) 0 0
\(943\) 12.4671 20.8503i 0.405985 0.678979i
\(944\) 0 0
\(945\) 24.0067 1.71687i 0.780937 0.0558498i
\(946\) 0 0
\(947\) 3.01981 42.2225i 0.0981306 1.37205i −0.675009 0.737810i \(-0.735860\pi\)
0.773140 0.634236i \(-0.218685\pi\)
\(948\) 0 0
\(949\) 28.5898 + 24.7732i 0.928064 + 0.804172i
\(950\) 0 0
\(951\) 14.3433 4.21156i 0.465112 0.136569i
\(952\) 0 0
\(953\) −15.1737 + 20.2697i −0.491524 + 0.656599i −0.975889 0.218267i \(-0.929960\pi\)
0.484365 + 0.874866i \(0.339051\pi\)
\(954\) 0 0
\(955\) −25.8443 19.3470i −0.836301 0.626054i
\(956\) 0 0
\(957\) 12.4249 2.70287i 0.401639 0.0873713i
\(958\) 0 0
\(959\) 25.1764 + 3.61981i 0.812987 + 0.116890i
\(960\) 0 0
\(961\) −13.3325 + 8.56830i −0.430082 + 0.276397i
\(962\) 0 0
\(963\) −6.80403 12.4606i −0.219257 0.401539i
\(964\) 0 0
\(965\) 49.8435 + 14.6356i 1.60452 + 0.471138i
\(966\) 0 0
\(967\) −21.1246 21.1246i −0.679322 0.679322i 0.280525 0.959847i \(-0.409491\pi\)
−0.959847 + 0.280525i \(0.909491\pi\)
\(968\) 0 0
\(969\) −3.83090 + 13.0468i −0.123066 + 0.419125i
\(970\) 0 0
\(971\) 7.32887 + 11.4039i 0.235195 + 0.365970i 0.938709 0.344711i \(-0.112023\pi\)
−0.703514 + 0.710681i \(0.748387\pi\)
\(972\) 0 0
\(973\) −5.54639 + 4.15198i −0.177809 + 0.133106i
\(974\) 0 0
\(975\) −11.4804 25.1392i −0.367666 0.805097i
\(976\) 0 0
\(977\) 16.6866 + 6.22378i 0.533851 + 0.199116i 0.601908 0.798565i \(-0.294407\pi\)
−0.0680570 + 0.997681i \(0.521680\pi\)
\(978\) 0 0
\(979\) −0.0170903 + 0.00245722i −0.000546209 + 7.85330e-5i
\(980\) 0 0
\(981\) 0.801391 + 2.72929i 0.0255865 + 0.0871395i
\(982\) 0 0
\(983\) 16.2268 1.16056i 0.517555 0.0370163i 0.189881 0.981807i \(-0.439190\pi\)
0.327674 + 0.944791i \(0.393735\pi\)
\(984\) 0 0
\(985\) 43.2979 19.7732i 1.37959 0.630028i
\(986\) 0 0
\(987\) 8.68074 + 23.2740i 0.276311 + 0.740819i
\(988\) 0 0
\(989\) 34.8326 + 24.3607i 1.10761 + 0.774625i
\(990\) 0 0
\(991\) 11.1861 24.4942i 0.355338 0.778082i −0.644570 0.764545i \(-0.722964\pi\)
0.999908 0.0135372i \(-0.00430914\pi\)
\(992\) 0 0
\(993\) −5.88697 0.421045i −0.186817 0.0133614i
\(994\) 0 0
\(995\) −41.4202 9.01063i −1.31311 0.285656i
\(996\) 0 0
\(997\) −5.79223 3.16280i −0.183442 0.100167i 0.384904 0.922957i \(-0.374235\pi\)
−0.568346 + 0.822790i \(0.692416\pi\)
\(998\) 0 0
\(999\) −3.83547 26.6763i −0.121349 0.843999i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.17.9 720
5.3 odd 4 inner 920.2.bv.a.753.9 yes 720
23.19 odd 22 inner 920.2.bv.a.617.9 yes 720
115.88 even 44 inner 920.2.bv.a.433.9 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.9 720 1.1 even 1 trivial
920.2.bv.a.433.9 yes 720 115.88 even 44 inner
920.2.bv.a.617.9 yes 720 23.19 odd 22 inner
920.2.bv.a.753.9 yes 720 5.3 odd 4 inner