Properties

Label 920.2.bv.a.17.8
Level $920$
Weight $2$
Character 920.17
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 17.8
Character \(\chi\) \(=\) 920.17
Dual form 920.2.bv.a.433.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72248 + 0.940543i) q^{3} +(0.500469 - 2.17934i) q^{5} +(2.14878 + 2.87043i) q^{7} +(0.460382 - 0.716368i) q^{9} +(4.06197 - 1.85504i) q^{11} +(-2.18769 - 1.63769i) q^{13} +(1.18772 + 4.22458i) q^{15} +(0.0397148 + 0.555286i) q^{17} +(-2.54021 - 2.93156i) q^{19} +(-6.40098 - 2.92323i) q^{21} +(0.911490 + 4.70842i) q^{23} +(-4.49906 - 2.18138i) q^{25} +(0.300796 - 4.20567i) q^{27} +(2.07316 + 1.79641i) q^{29} +(6.34302 - 1.86248i) q^{31} +(-5.25190 + 7.01572i) q^{33} +(7.33104 - 3.24636i) q^{35} +(9.37577 - 2.03957i) q^{37} +(5.30857 + 0.763257i) q^{39} +(1.50077 - 0.964484i) q^{41} +(4.61548 + 8.45262i) q^{43} +(-1.33080 - 1.36185i) q^{45} +(5.14501 + 5.14501i) q^{47} +(-1.64999 + 5.61937i) q^{49} +(-0.590678 - 0.919113i) q^{51} +(-3.13388 + 2.34600i) q^{53} +(-2.00988 - 9.78081i) q^{55} +(7.13271 + 2.66037i) q^{57} +(12.4276 - 1.78681i) q^{59} +(-0.563296 - 1.91841i) q^{61} +(3.04554 - 0.217821i) q^{63} +(-4.66395 + 3.94812i) q^{65} +(1.29030 + 3.45944i) q^{67} +(-5.99849 - 7.25284i) q^{69} +(-4.08394 + 8.94257i) q^{71} +(1.32193 + 0.0945464i) q^{73} +(9.80122 - 0.474179i) q^{75} +(14.0530 + 7.67353i) q^{77} +(-1.85461 - 12.8991i) q^{79} +(4.49874 + 9.85087i) q^{81} +(0.423827 + 1.94830i) q^{83} +(1.23003 + 0.191351i) q^{85} +(-5.26057 - 1.14437i) q^{87} +(5.08258 + 1.49238i) q^{89} -9.79864i q^{91} +(-9.17396 + 9.17396i) q^{93} +(-7.66017 + 4.06884i) q^{95} +(2.55569 - 11.7483i) q^{97} +(0.541166 - 3.76389i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.72248 + 0.940543i −0.994472 + 0.543023i −0.892155 0.451729i \(-0.850807\pi\)
−0.102317 + 0.994752i \(0.532626\pi\)
\(4\) 0 0
\(5\) 0.500469 2.17934i 0.223816 0.974631i
\(6\) 0 0
\(7\) 2.14878 + 2.87043i 0.812161 + 1.08492i 0.994811 + 0.101742i \(0.0324416\pi\)
−0.182650 + 0.983178i \(0.558467\pi\)
\(8\) 0 0
\(9\) 0.460382 0.716368i 0.153461 0.238789i
\(10\) 0 0
\(11\) 4.06197 1.85504i 1.22473 0.559315i 0.305182 0.952294i \(-0.401283\pi\)
0.919548 + 0.392978i \(0.128555\pi\)
\(12\) 0 0
\(13\) −2.18769 1.63769i −0.606757 0.454213i 0.251199 0.967935i \(-0.419175\pi\)
−0.857956 + 0.513723i \(0.828266\pi\)
\(14\) 0 0
\(15\) 1.18772 + 4.22458i 0.306668 + 1.09078i
\(16\) 0 0
\(17\) 0.0397148 + 0.555286i 0.00963226 + 0.134677i 0.999993 0.00383813i \(-0.00122172\pi\)
−0.990360 + 0.138515i \(0.955767\pi\)
\(18\) 0 0
\(19\) −2.54021 2.93156i −0.582764 0.672546i 0.385432 0.922736i \(-0.374052\pi\)
−0.968197 + 0.250190i \(0.919507\pi\)
\(20\) 0 0
\(21\) −6.40098 2.92323i −1.39681 0.637901i
\(22\) 0 0
\(23\) 0.911490 + 4.70842i 0.190059 + 0.981773i
\(24\) 0 0
\(25\) −4.49906 2.18138i −0.899812 0.436277i
\(26\) 0 0
\(27\) 0.300796 4.20567i 0.0578881 0.809382i
\(28\) 0 0
\(29\) 2.07316 + 1.79641i 0.384977 + 0.333584i 0.825752 0.564033i \(-0.190751\pi\)
−0.440775 + 0.897617i \(0.645296\pi\)
\(30\) 0 0
\(31\) 6.34302 1.86248i 1.13924 0.334511i 0.342907 0.939369i \(-0.388589\pi\)
0.796333 + 0.604859i \(0.206770\pi\)
\(32\) 0 0
\(33\) −5.25190 + 7.01572i −0.914239 + 1.22128i
\(34\) 0 0
\(35\) 7.33104 3.24636i 1.23917 0.548735i
\(36\) 0 0
\(37\) 9.37577 2.03957i 1.54137 0.335304i 0.640005 0.768371i \(-0.278932\pi\)
0.901362 + 0.433067i \(0.142569\pi\)
\(38\) 0 0
\(39\) 5.30857 + 0.763257i 0.850051 + 0.122219i
\(40\) 0 0
\(41\) 1.50077 0.964484i 0.234380 0.150627i −0.418179 0.908365i \(-0.637332\pi\)
0.652560 + 0.757737i \(0.273695\pi\)
\(42\) 0 0
\(43\) 4.61548 + 8.45262i 0.703854 + 1.28901i 0.947689 + 0.319196i \(0.103413\pi\)
−0.243834 + 0.969817i \(0.578405\pi\)
\(44\) 0 0
\(45\) −1.33080 1.36185i −0.198385 0.203012i
\(46\) 0 0
\(47\) 5.14501 + 5.14501i 0.750477 + 0.750477i 0.974568 0.224091i \(-0.0719413\pi\)
−0.224091 + 0.974568i \(0.571941\pi\)
\(48\) 0 0
\(49\) −1.64999 + 5.61937i −0.235713 + 0.802766i
\(50\) 0 0
\(51\) −0.590678 0.919113i −0.0827115 0.128702i
\(52\) 0 0
\(53\) −3.13388 + 2.34600i −0.430472 + 0.322247i −0.792447 0.609940i \(-0.791193\pi\)
0.361975 + 0.932188i \(0.382102\pi\)
\(54\) 0 0
\(55\) −2.00988 9.78081i −0.271012 1.31884i
\(56\) 0 0
\(57\) 7.13271 + 2.66037i 0.944751 + 0.352374i
\(58\) 0 0
\(59\) 12.4276 1.78681i 1.61793 0.232623i 0.726958 0.686682i \(-0.240934\pi\)
0.890972 + 0.454059i \(0.150024\pi\)
\(60\) 0 0
\(61\) −0.563296 1.91841i −0.0721227 0.245627i 0.915539 0.402229i \(-0.131764\pi\)
−0.987662 + 0.156601i \(0.949946\pi\)
\(62\) 0 0
\(63\) 3.04554 0.217821i 0.383702 0.0274429i
\(64\) 0 0
\(65\) −4.66395 + 3.94812i −0.578492 + 0.489704i
\(66\) 0 0
\(67\) 1.29030 + 3.45944i 0.157636 + 0.422637i 0.991626 0.129141i \(-0.0412221\pi\)
−0.833991 + 0.551779i \(0.813949\pi\)
\(68\) 0 0
\(69\) −5.99849 7.25284i −0.722133 0.873140i
\(70\) 0 0
\(71\) −4.08394 + 8.94257i −0.484674 + 1.06129i 0.496478 + 0.868049i \(0.334626\pi\)
−0.981152 + 0.193239i \(0.938101\pi\)
\(72\) 0 0
\(73\) 1.32193 + 0.0945464i 0.154720 + 0.0110658i 0.148485 0.988915i \(-0.452560\pi\)
0.00623592 + 0.999981i \(0.498015\pi\)
\(74\) 0 0
\(75\) 9.80122 0.474179i 1.13175 0.0547535i
\(76\) 0 0
\(77\) 14.0530 + 7.67353i 1.60149 + 0.874480i
\(78\) 0 0
\(79\) −1.85461 12.8991i −0.208660 1.45126i −0.777535 0.628839i \(-0.783530\pi\)
0.568875 0.822424i \(-0.307379\pi\)
\(80\) 0 0
\(81\) 4.49874 + 9.85087i 0.499860 + 1.09454i
\(82\) 0 0
\(83\) 0.423827 + 1.94830i 0.0465210 + 0.213854i 0.994539 0.104362i \(-0.0332800\pi\)
−0.948018 + 0.318216i \(0.896916\pi\)
\(84\) 0 0
\(85\) 1.23003 + 0.191351i 0.133416 + 0.0207549i
\(86\) 0 0
\(87\) −5.26057 1.14437i −0.563992 0.122689i
\(88\) 0 0
\(89\) 5.08258 + 1.49238i 0.538752 + 0.158192i 0.539778 0.841808i \(-0.318508\pi\)
−0.00102565 + 0.999999i \(0.500326\pi\)
\(90\) 0 0
\(91\) 9.79864i 1.02718i
\(92\) 0 0
\(93\) −9.17396 + 9.17396i −0.951295 + 0.951295i
\(94\) 0 0
\(95\) −7.66017 + 4.06884i −0.785917 + 0.417454i
\(96\) 0 0
\(97\) 2.55569 11.7483i 0.259491 1.19286i −0.644262 0.764805i \(-0.722835\pi\)
0.903753 0.428055i \(-0.140801\pi\)
\(98\) 0 0
\(99\) 0.541166 3.76389i 0.0543892 0.378285i
\(100\) 0 0
\(101\) 2.24926 + 1.44551i 0.223810 + 0.143834i 0.647741 0.761861i \(-0.275714\pi\)
−0.423931 + 0.905694i \(0.639350\pi\)
\(102\) 0 0
\(103\) 5.13607 13.7703i 0.506072 1.35683i −0.393204 0.919451i \(-0.628633\pi\)
0.899276 0.437381i \(-0.144094\pi\)
\(104\) 0 0
\(105\) −9.57421 + 12.4869i −0.934347 + 1.21860i
\(106\) 0 0
\(107\) −4.45208 + 8.15338i −0.430399 + 0.788217i −0.999418 0.0341074i \(-0.989141\pi\)
0.569019 + 0.822324i \(0.307323\pi\)
\(108\) 0 0
\(109\) −1.97306 + 2.27703i −0.188985 + 0.218100i −0.842333 0.538957i \(-0.818818\pi\)
0.653348 + 0.757058i \(0.273364\pi\)
\(110\) 0 0
\(111\) −14.2312 + 12.3314i −1.35077 + 1.17045i
\(112\) 0 0
\(113\) 3.51478 1.31094i 0.330642 0.123323i −0.178660 0.983911i \(-0.557176\pi\)
0.509302 + 0.860588i \(0.329903\pi\)
\(114\) 0 0
\(115\) 10.7174 + 0.369966i 0.999405 + 0.0344995i
\(116\) 0 0
\(117\) −2.18036 + 0.813232i −0.201574 + 0.0751834i
\(118\) 0 0
\(119\) −1.50857 + 1.30718i −0.138290 + 0.119829i
\(120\) 0 0
\(121\) 5.85496 6.75698i 0.532269 0.614271i
\(122\) 0 0
\(123\) −1.67790 + 3.07284i −0.151291 + 0.277068i
\(124\) 0 0
\(125\) −7.00562 + 8.71328i −0.626602 + 0.779339i
\(126\) 0 0
\(127\) −7.42572 + 19.9091i −0.658926 + 1.76665i −0.0170347 + 0.999855i \(0.505423\pi\)
−0.641892 + 0.766795i \(0.721850\pi\)
\(128\) 0 0
\(129\) −15.9001 10.2184i −1.39993 0.899679i
\(130\) 0 0
\(131\) 0.210656 1.46514i 0.0184051 0.128010i −0.978547 0.206022i \(-0.933948\pi\)
0.996952 + 0.0780119i \(0.0248572\pi\)
\(132\) 0 0
\(133\) 2.95649 13.5908i 0.256360 1.17847i
\(134\) 0 0
\(135\) −9.01506 2.76034i −0.775893 0.237573i
\(136\) 0 0
\(137\) −2.50625 + 2.50625i −0.214124 + 0.214124i −0.806017 0.591893i \(-0.798381\pi\)
0.591893 + 0.806017i \(0.298381\pi\)
\(138\) 0 0
\(139\) 11.3584i 0.963410i 0.876333 + 0.481705i \(0.159982\pi\)
−0.876333 + 0.481705i \(0.840018\pi\)
\(140\) 0 0
\(141\) −13.7013 4.02306i −1.15386 0.338802i
\(142\) 0 0
\(143\) −11.9243 2.59398i −0.997162 0.216919i
\(144\) 0 0
\(145\) 4.95253 3.61909i 0.411286 0.300549i
\(146\) 0 0
\(147\) −2.44318 11.2311i −0.201510 0.926327i
\(148\) 0 0
\(149\) −8.25457 18.0750i −0.676240 1.48076i −0.866578 0.499041i \(-0.833686\pi\)
0.190338 0.981719i \(-0.439042\pi\)
\(150\) 0 0
\(151\) −0.628715 4.37281i −0.0511641 0.355854i −0.999280 0.0379305i \(-0.987923\pi\)
0.948116 0.317924i \(-0.102986\pi\)
\(152\) 0 0
\(153\) 0.416073 + 0.227193i 0.0336375 + 0.0183675i
\(154\) 0 0
\(155\) −0.884495 14.7557i −0.0710443 1.18521i
\(156\) 0 0
\(157\) 11.8252 + 0.845755i 0.943754 + 0.0674986i 0.534728 0.845024i \(-0.320414\pi\)
0.409026 + 0.912523i \(0.365869\pi\)
\(158\) 0 0
\(159\) 3.19153 6.98848i 0.253105 0.554222i
\(160\) 0 0
\(161\) −11.5566 + 12.7337i −0.910786 + 1.00356i
\(162\) 0 0
\(163\) 0.267001 + 0.715857i 0.0209131 + 0.0560702i 0.946987 0.321273i \(-0.104111\pi\)
−0.926074 + 0.377343i \(0.876838\pi\)
\(164\) 0 0
\(165\) 12.6612 + 14.9568i 0.985676 + 1.16439i
\(166\) 0 0
\(167\) 20.0462 1.43373i 1.55122 0.110946i 0.730755 0.682640i \(-0.239168\pi\)
0.820467 + 0.571694i \(0.193714\pi\)
\(168\) 0 0
\(169\) −1.55854 5.30789i −0.119888 0.408299i
\(170\) 0 0
\(171\) −3.26954 + 0.470089i −0.250028 + 0.0359486i
\(172\) 0 0
\(173\) −16.9497 6.32192i −1.28866 0.480647i −0.390620 0.920552i \(-0.627739\pi\)
−0.898044 + 0.439905i \(0.855012\pi\)
\(174\) 0 0
\(175\) −3.40597 17.6015i −0.257467 1.33055i
\(176\) 0 0
\(177\) −19.7256 + 14.7664i −1.48267 + 1.10991i
\(178\) 0 0
\(179\) −8.16650 12.7073i −0.610393 0.949789i −0.999590 0.0286350i \(-0.990884\pi\)
0.389197 0.921154i \(-0.372752\pi\)
\(180\) 0 0
\(181\) 6.30329 21.4670i 0.468520 1.59563i −0.298766 0.954326i \(-0.596575\pi\)
0.767286 0.641305i \(-0.221607\pi\)
\(182\) 0 0
\(183\) 2.77461 + 2.77461i 0.205105 + 0.205105i
\(184\) 0 0
\(185\) 0.247350 21.4537i 0.0181855 1.57731i
\(186\) 0 0
\(187\) 1.19140 + 2.18188i 0.0871236 + 0.159555i
\(188\) 0 0
\(189\) 12.7184 8.17363i 0.925129 0.594544i
\(190\) 0 0
\(191\) −24.4279 3.51220i −1.76754 0.254134i −0.819679 0.572824i \(-0.805848\pi\)
−0.947859 + 0.318690i \(0.896757\pi\)
\(192\) 0 0
\(193\) −6.20402 + 1.34960i −0.446575 + 0.0971464i −0.430229 0.902720i \(-0.641567\pi\)
−0.0163462 + 0.999866i \(0.505203\pi\)
\(194\) 0 0
\(195\) 4.32017 11.1872i 0.309374 0.801132i
\(196\) 0 0
\(197\) 12.2403 16.3511i 0.872084 1.16497i −0.113120 0.993581i \(-0.536084\pi\)
0.985204 0.171386i \(-0.0548246\pi\)
\(198\) 0 0
\(199\) −23.4511 + 6.88586i −1.66240 + 0.488126i −0.971937 0.235239i \(-0.924413\pi\)
−0.690466 + 0.723365i \(0.742594\pi\)
\(200\) 0 0
\(201\) −5.47627 4.74521i −0.386266 0.334701i
\(202\) 0 0
\(203\) −0.701692 + 9.81094i −0.0492491 + 0.688593i
\(204\) 0 0
\(205\) −1.35085 3.75338i −0.0943477 0.262147i
\(206\) 0 0
\(207\) 3.79259 + 1.51471i 0.263603 + 0.105279i
\(208\) 0 0
\(209\) −15.7564 7.19572i −1.08989 0.497738i
\(210\) 0 0
\(211\) 7.81027 + 9.01353i 0.537681 + 0.620517i 0.957968 0.286874i \(-0.0926162\pi\)
−0.420287 + 0.907391i \(0.638071\pi\)
\(212\) 0 0
\(213\) −1.37639 19.2445i −0.0943089 1.31861i
\(214\) 0 0
\(215\) 20.7311 5.82844i 1.41385 0.397496i
\(216\) 0 0
\(217\) 18.9758 + 14.2051i 1.28816 + 0.964307i
\(218\) 0 0
\(219\) −2.36592 + 1.08048i −0.159874 + 0.0730121i
\(220\) 0 0
\(221\) 0.822501 1.27984i 0.0553274 0.0860911i
\(222\) 0 0
\(223\) 9.28332 + 12.4011i 0.621657 + 0.830436i 0.995270 0.0971483i \(-0.0309721\pi\)
−0.373613 + 0.927585i \(0.621881\pi\)
\(224\) 0 0
\(225\) −3.63396 + 2.21871i −0.242264 + 0.147914i
\(226\) 0 0
\(227\) −21.2393 + 11.5975i −1.40970 + 0.769755i −0.990418 0.138100i \(-0.955900\pi\)
−0.419283 + 0.907855i \(0.637719\pi\)
\(228\) 0 0
\(229\) −8.47366 −0.559955 −0.279978 0.960007i \(-0.590327\pi\)
−0.279978 + 0.960007i \(0.590327\pi\)
\(230\) 0 0
\(231\) −31.4233 −2.06750
\(232\) 0 0
\(233\) −13.8504 + 7.56290i −0.907371 + 0.495462i −0.863940 0.503594i \(-0.832011\pi\)
−0.0434307 + 0.999056i \(0.513829\pi\)
\(234\) 0 0
\(235\) 13.7877 8.63782i 0.899408 0.563469i
\(236\) 0 0
\(237\) 15.3267 + 20.4741i 0.995576 + 1.32993i
\(238\) 0 0
\(239\) −1.72600 + 2.68570i −0.111645 + 0.173724i −0.892580 0.450889i \(-0.851107\pi\)
0.780934 + 0.624613i \(0.214743\pi\)
\(240\) 0 0
\(241\) −22.8068 + 10.4155i −1.46912 + 0.670923i −0.979579 0.201060i \(-0.935561\pi\)
−0.489537 + 0.871983i \(0.662834\pi\)
\(242\) 0 0
\(243\) −6.88791 5.15622i −0.441859 0.330772i
\(244\) 0 0
\(245\) 11.4207 + 6.40822i 0.729645 + 0.409406i
\(246\) 0 0
\(247\) 0.756227 + 10.5734i 0.0481175 + 0.672771i
\(248\) 0 0
\(249\) −2.56249 2.95727i −0.162391 0.187410i
\(250\) 0 0
\(251\) 0.612266 + 0.279613i 0.0386459 + 0.0176490i 0.434644 0.900602i \(-0.356874\pi\)
−0.395998 + 0.918251i \(0.629601\pi\)
\(252\) 0 0
\(253\) 12.4367 + 17.4346i 0.781891 + 1.09610i
\(254\) 0 0
\(255\) −2.29868 + 0.827303i −0.143949 + 0.0518077i
\(256\) 0 0
\(257\) −1.66466 + 23.2749i −0.103838 + 1.45185i 0.632145 + 0.774850i \(0.282175\pi\)
−0.735983 + 0.677000i \(0.763280\pi\)
\(258\) 0 0
\(259\) 26.0009 + 22.5299i 1.61562 + 1.39994i
\(260\) 0 0
\(261\) 2.24133 0.658115i 0.138735 0.0407363i
\(262\) 0 0
\(263\) 7.10868 9.49609i 0.438340 0.585554i −0.525912 0.850539i \(-0.676276\pi\)
0.964253 + 0.264985i \(0.0853669\pi\)
\(264\) 0 0
\(265\) 3.54432 + 8.00390i 0.217726 + 0.491676i
\(266\) 0 0
\(267\) −10.1583 + 2.20980i −0.621676 + 0.135237i
\(268\) 0 0
\(269\) 5.62351 + 0.808539i 0.342872 + 0.0492975i 0.311600 0.950213i \(-0.399135\pi\)
0.0312718 + 0.999511i \(0.490044\pi\)
\(270\) 0 0
\(271\) 15.1802 9.75570i 0.922129 0.592617i 0.00885467 0.999961i \(-0.497181\pi\)
0.913275 + 0.407344i \(0.133545\pi\)
\(272\) 0 0
\(273\) 9.21605 + 16.8779i 0.557781 + 1.02150i
\(274\) 0 0
\(275\) −22.3216 0.514780i −1.34604 0.0310424i
\(276\) 0 0
\(277\) −17.8300 17.8300i −1.07130 1.07130i −0.997255 0.0740480i \(-0.976408\pi\)
−0.0740480 0.997255i \(-0.523592\pi\)
\(278\) 0 0
\(279\) 1.58599 5.40138i 0.0949507 0.323372i
\(280\) 0 0
\(281\) 6.12021 + 9.52323i 0.365101 + 0.568108i 0.974397 0.224835i \(-0.0721842\pi\)
−0.609296 + 0.792943i \(0.708548\pi\)
\(282\) 0 0
\(283\) −10.5094 + 7.86725i −0.624720 + 0.467659i −0.864136 0.503258i \(-0.832135\pi\)
0.239417 + 0.970917i \(0.423044\pi\)
\(284\) 0 0
\(285\) 9.36755 14.2132i 0.554885 0.841917i
\(286\) 0 0
\(287\) 5.99329 + 2.23538i 0.353773 + 0.131951i
\(288\) 0 0
\(289\) 16.5202 2.37525i 0.971776 0.139720i
\(290\) 0 0
\(291\) 6.64768 + 22.6399i 0.389694 + 1.32718i
\(292\) 0 0
\(293\) 7.32904 0.524184i 0.428167 0.0306231i 0.144407 0.989518i \(-0.453873\pi\)
0.283760 + 0.958895i \(0.408418\pi\)
\(294\) 0 0
\(295\) 2.32553 27.9781i 0.135397 1.62895i
\(296\) 0 0
\(297\) −6.57986 17.6413i −0.381802 1.02365i
\(298\) 0 0
\(299\) 5.71685 11.7933i 0.330614 0.682025i
\(300\) 0 0
\(301\) −14.3450 + 31.4112i −0.826833 + 1.81051i
\(302\) 0 0
\(303\) −5.23386 0.374333i −0.300678 0.0215049i
\(304\) 0 0
\(305\) −4.46278 + 0.267511i −0.255538 + 0.0153176i
\(306\) 0 0
\(307\) −20.8795 11.4011i −1.19166 0.650695i −0.243936 0.969791i \(-0.578439\pi\)
−0.947722 + 0.319097i \(0.896621\pi\)
\(308\) 0 0
\(309\) 4.10484 + 28.5498i 0.233516 + 1.62414i
\(310\) 0 0
\(311\) 5.77589 + 12.6474i 0.327521 + 0.717171i 0.999731 0.0231896i \(-0.00738213\pi\)
−0.672210 + 0.740360i \(0.734655\pi\)
\(312\) 0 0
\(313\) −4.17522 19.1932i −0.235997 1.08486i −0.930762 0.365625i \(-0.880855\pi\)
0.694765 0.719237i \(-0.255508\pi\)
\(314\) 0 0
\(315\) 1.04949 6.74628i 0.0591321 0.380110i
\(316\) 0 0
\(317\) −23.5481 5.12258i −1.32259 0.287713i −0.504806 0.863233i \(-0.668436\pi\)
−0.817788 + 0.575520i \(0.804800\pi\)
\(318\) 0 0
\(319\) 11.7535 + 3.45115i 0.658071 + 0.193227i
\(320\) 0 0
\(321\) 18.2314i 1.01758i
\(322\) 0 0
\(323\) 1.52697 1.52697i 0.0849629 0.0849629i
\(324\) 0 0
\(325\) 6.27015 + 12.1403i 0.347805 + 0.673420i
\(326\) 0 0
\(327\) 1.25690 5.77789i 0.0695069 0.319518i
\(328\) 0 0
\(329\) −3.71291 + 25.8239i −0.204699 + 1.42372i
\(330\) 0 0
\(331\) 14.8427 + 9.53884i 0.815830 + 0.524302i 0.880746 0.473589i \(-0.157042\pi\)
−0.0649163 + 0.997891i \(0.520678\pi\)
\(332\) 0 0
\(333\) 2.85535 7.65548i 0.156472 0.419518i
\(334\) 0 0
\(335\) 8.18505 1.08067i 0.447197 0.0590434i
\(336\) 0 0
\(337\) 5.35358 9.80434i 0.291628 0.534077i −0.690255 0.723566i \(-0.742502\pi\)
0.981883 + 0.189490i \(0.0606834\pi\)
\(338\) 0 0
\(339\) −4.82112 + 5.56387i −0.261847 + 0.302188i
\(340\) 0 0
\(341\) 22.3102 19.3319i 1.20816 1.04688i
\(342\) 0 0
\(343\) 3.84130 1.43273i 0.207411 0.0773602i
\(344\) 0 0
\(345\) −18.8085 + 9.44294i −1.01261 + 0.508391i
\(346\) 0 0
\(347\) −12.4666 + 4.64981i −0.669243 + 0.249615i −0.661039 0.750352i \(-0.729884\pi\)
−0.00820389 + 0.999966i \(0.502611\pi\)
\(348\) 0 0
\(349\) 5.10097 4.42001i 0.273049 0.236598i −0.507563 0.861615i \(-0.669453\pi\)
0.780611 + 0.625017i \(0.214908\pi\)
\(350\) 0 0
\(351\) −7.54562 + 8.70811i −0.402756 + 0.464805i
\(352\) 0 0
\(353\) −11.1531 + 20.4254i −0.593621 + 1.08714i 0.392286 + 0.919843i \(0.371684\pi\)
−0.985907 + 0.167293i \(0.946498\pi\)
\(354\) 0 0
\(355\) 17.4450 + 13.3758i 0.925887 + 0.709912i
\(356\) 0 0
\(357\) 1.36901 3.67047i 0.0724559 0.194262i
\(358\) 0 0
\(359\) 22.0558 + 14.1744i 1.16406 + 0.748097i 0.972390 0.233362i \(-0.0749728\pi\)
0.191671 + 0.981459i \(0.438609\pi\)
\(360\) 0 0
\(361\) 0.562610 3.91304i 0.0296111 0.205950i
\(362\) 0 0
\(363\) −3.72980 + 17.1456i −0.195763 + 0.899910i
\(364\) 0 0
\(365\) 0.867635 2.83362i 0.0454141 0.148319i
\(366\) 0 0
\(367\) −7.64661 + 7.64661i −0.399150 + 0.399150i −0.877933 0.478783i \(-0.841078\pi\)
0.478783 + 0.877933i \(0.341078\pi\)
\(368\) 0 0
\(369\) 1.51913i 0.0790828i
\(370\) 0 0
\(371\) −13.4680 3.95457i −0.699225 0.205311i
\(372\) 0 0
\(373\) −2.63971 0.574234i −0.136679 0.0297327i 0.143705 0.989621i \(-0.454098\pi\)
−0.280384 + 0.959888i \(0.590462\pi\)
\(374\) 0 0
\(375\) 3.87180 21.5975i 0.199939 1.11529i
\(376\) 0 0
\(377\) −1.59349 7.32518i −0.0820692 0.377266i
\(378\) 0 0
\(379\) 0.262987 + 0.575862i 0.0135087 + 0.0295800i 0.916266 0.400570i \(-0.131188\pi\)
−0.902757 + 0.430150i \(0.858461\pi\)
\(380\) 0 0
\(381\) −5.93477 41.2772i −0.304048 2.11470i
\(382\) 0 0
\(383\) −21.3428 11.6541i −1.09057 0.595494i −0.169749 0.985487i \(-0.554296\pi\)
−0.920818 + 0.389993i \(0.872477\pi\)
\(384\) 0 0
\(385\) 23.7563 26.7860i 1.21074 1.36514i
\(386\) 0 0
\(387\) 8.18007 + 0.585050i 0.415816 + 0.0297398i
\(388\) 0 0
\(389\) 2.08625 4.56825i 0.105777 0.231619i −0.849341 0.527844i \(-0.823000\pi\)
0.955118 + 0.296225i \(0.0957278\pi\)
\(390\) 0 0
\(391\) −2.57832 + 0.693132i −0.130391 + 0.0350532i
\(392\) 0 0
\(393\) 1.01518 + 2.72181i 0.0512091 + 0.137297i
\(394\) 0 0
\(395\) −29.0397 2.41377i −1.46115 0.121450i
\(396\) 0 0
\(397\) 34.1537 2.44272i 1.71413 0.122597i 0.820570 0.571546i \(-0.193656\pi\)
0.893557 + 0.448950i \(0.148202\pi\)
\(398\) 0 0
\(399\) 7.69022 + 26.1905i 0.384992 + 1.31116i
\(400\) 0 0
\(401\) 25.5100 3.66779i 1.27391 0.183161i 0.528021 0.849231i \(-0.322934\pi\)
0.745889 + 0.666070i \(0.232025\pi\)
\(402\) 0 0
\(403\) −16.9267 6.31335i −0.843181 0.314490i
\(404\) 0 0
\(405\) 23.7199 4.87424i 1.17865 0.242203i
\(406\) 0 0
\(407\) 34.3006 25.6771i 1.70022 1.27277i
\(408\) 0 0
\(409\) −1.52636 2.37507i −0.0754739 0.117440i 0.801465 0.598042i \(-0.204054\pi\)
−0.876939 + 0.480602i \(0.840418\pi\)
\(410\) 0 0
\(411\) 1.95972 6.67421i 0.0966660 0.329214i
\(412\) 0 0
\(413\) 31.8329 + 31.8329i 1.56640 + 1.56640i
\(414\) 0 0
\(415\) 4.45813 + 0.0513998i 0.218841 + 0.00252311i
\(416\) 0 0
\(417\) −10.6831 19.5646i −0.523154 0.958085i
\(418\) 0 0
\(419\) −10.8983 + 7.00391i −0.532417 + 0.342163i −0.779067 0.626941i \(-0.784307\pi\)
0.246650 + 0.969105i \(0.420670\pi\)
\(420\) 0 0
\(421\) 23.8512 + 3.42929i 1.16244 + 0.167133i 0.696415 0.717640i \(-0.254778\pi\)
0.466022 + 0.884773i \(0.345687\pi\)
\(422\) 0 0
\(423\) 6.05439 1.31705i 0.294375 0.0640373i
\(424\) 0 0
\(425\) 1.03261 2.58490i 0.0500891 0.125386i
\(426\) 0 0
\(427\) 4.29626 5.73914i 0.207911 0.277736i
\(428\) 0 0
\(429\) 22.9791 6.74728i 1.10944 0.325762i
\(430\) 0 0
\(431\) −9.21445 7.98437i −0.443845 0.384594i 0.404069 0.914729i \(-0.367596\pi\)
−0.847913 + 0.530135i \(0.822141\pi\)
\(432\) 0 0
\(433\) 1.46008 20.4146i 0.0701670 0.981063i −0.833415 0.552648i \(-0.813617\pi\)
0.903582 0.428415i \(-0.140928\pi\)
\(434\) 0 0
\(435\) −5.12672 + 10.8919i −0.245807 + 0.522225i
\(436\) 0 0
\(437\) 11.4876 14.6325i 0.549528 0.699966i
\(438\) 0 0
\(439\) −3.95455 1.80598i −0.188740 0.0861948i 0.318803 0.947821i \(-0.396719\pi\)
−0.507544 + 0.861626i \(0.669446\pi\)
\(440\) 0 0
\(441\) 3.26590 + 3.76906i 0.155519 + 0.179479i
\(442\) 0 0
\(443\) −1.67307 23.3926i −0.0794899 1.11141i −0.868057 0.496465i \(-0.834631\pi\)
0.788567 0.614949i \(-0.210823\pi\)
\(444\) 0 0
\(445\) 5.79607 10.3298i 0.274760 0.489679i
\(446\) 0 0
\(447\) 31.2186 + 23.3700i 1.47659 + 1.10536i
\(448\) 0 0
\(449\) −13.3847 + 6.11258i −0.631663 + 0.288471i −0.705403 0.708807i \(-0.749234\pi\)
0.0737400 + 0.997277i \(0.476507\pi\)
\(450\) 0 0
\(451\) 4.30691 6.70169i 0.202805 0.315570i
\(452\) 0 0
\(453\) 5.19577 + 6.94073i 0.244118 + 0.326104i
\(454\) 0 0
\(455\) −21.3546 4.90391i −1.00112 0.229899i
\(456\) 0 0
\(457\) −11.8762 + 6.48490i −0.555546 + 0.303351i −0.732387 0.680888i \(-0.761594\pi\)
0.176841 + 0.984239i \(0.443412\pi\)
\(458\) 0 0
\(459\) 2.34730 0.109562
\(460\) 0 0
\(461\) −6.60004 −0.307395 −0.153697 0.988118i \(-0.549118\pi\)
−0.153697 + 0.988118i \(0.549118\pi\)
\(462\) 0 0
\(463\) −20.6895 + 11.2973i −0.961524 + 0.525032i −0.881717 0.471779i \(-0.843612\pi\)
−0.0798069 + 0.996810i \(0.525430\pi\)
\(464\) 0 0
\(465\) 15.4019 + 24.5845i 0.714247 + 1.14008i
\(466\) 0 0
\(467\) −2.44481 3.26589i −0.113132 0.151127i 0.740401 0.672166i \(-0.234636\pi\)
−0.853533 + 0.521038i \(0.825545\pi\)
\(468\) 0 0
\(469\) −7.15749 + 11.1373i −0.330502 + 0.514272i
\(470\) 0 0
\(471\) −21.1641 + 9.66532i −0.975190 + 0.445354i
\(472\) 0 0
\(473\) 34.4279 + 25.7724i 1.58300 + 1.18502i
\(474\) 0 0
\(475\) 5.03371 + 18.7305i 0.230962 + 0.859412i
\(476\) 0 0
\(477\) 0.237813 + 3.32507i 0.0108887 + 0.152244i
\(478\) 0 0
\(479\) 0.515743 + 0.595199i 0.0235649 + 0.0271954i 0.767410 0.641157i \(-0.221545\pi\)
−0.743845 + 0.668352i \(0.767000\pi\)
\(480\) 0 0
\(481\) −23.8515 10.8926i −1.08753 0.496660i
\(482\) 0 0
\(483\) 7.92935 32.8030i 0.360798 1.49259i
\(484\) 0 0
\(485\) −24.3245 11.4494i −1.10452 0.519889i
\(486\) 0 0
\(487\) 0.722269 10.0986i 0.0327291 0.457613i −0.954490 0.298243i \(-0.903599\pi\)
0.987219 0.159370i \(-0.0509462\pi\)
\(488\) 0 0
\(489\) −1.13320 0.981921i −0.0512450 0.0444040i
\(490\) 0 0
\(491\) −3.15216 + 0.925557i −0.142255 + 0.0417698i −0.352085 0.935968i \(-0.614527\pi\)
0.209830 + 0.977738i \(0.432709\pi\)
\(492\) 0 0
\(493\) −0.915183 + 1.22254i −0.0412178 + 0.0550605i
\(494\) 0 0
\(495\) −7.93197 3.06309i −0.356515 0.137676i
\(496\) 0 0
\(497\) −34.4445 + 7.49294i −1.54505 + 0.336104i
\(498\) 0 0
\(499\) −26.8020 3.85354i −1.19982 0.172508i −0.486713 0.873562i \(-0.661804\pi\)
−0.713108 + 0.701054i \(0.752713\pi\)
\(500\) 0 0
\(501\) −33.1806 + 21.3239i −1.48240 + 0.952682i
\(502\) 0 0
\(503\) −11.8460 21.6943i −0.528186 0.967300i −0.996488 0.0837321i \(-0.973316\pi\)
0.468302 0.883568i \(-0.344866\pi\)
\(504\) 0 0
\(505\) 4.27595 4.17847i 0.190277 0.185940i
\(506\) 0 0
\(507\) 7.67685 + 7.67685i 0.340941 + 0.340941i
\(508\) 0 0
\(509\) 5.34342 18.1980i 0.236843 0.806613i −0.752193 0.658942i \(-0.771004\pi\)
0.989037 0.147671i \(-0.0471777\pi\)
\(510\) 0 0
\(511\) 2.56915 + 3.99767i 0.113652 + 0.176847i
\(512\) 0 0
\(513\) −13.0933 + 9.80149i −0.578082 + 0.432747i
\(514\) 0 0
\(515\) −27.4398 18.0849i −1.20914 0.796915i
\(516\) 0 0
\(517\) 30.4431 + 11.3547i 1.33889 + 0.499378i
\(518\) 0 0
\(519\) 35.1416 5.05259i 1.54254 0.221784i
\(520\) 0 0
\(521\) 10.2736 + 34.9886i 0.450094 + 1.53288i 0.802279 + 0.596949i \(0.203621\pi\)
−0.352185 + 0.935930i \(0.614561\pi\)
\(522\) 0 0
\(523\) −9.02237 + 0.645293i −0.394521 + 0.0282167i −0.267191 0.963644i \(-0.586095\pi\)
−0.127330 + 0.991860i \(0.540641\pi\)
\(524\) 0 0
\(525\) 22.4217 + 27.1148i 0.978564 + 1.18339i
\(526\) 0 0
\(527\) 1.28612 + 3.44822i 0.0560242 + 0.150207i
\(528\) 0 0
\(529\) −21.3384 + 8.58335i −0.927755 + 0.373189i
\(530\) 0 0
\(531\) 4.44140 9.72531i 0.192740 0.422043i
\(532\) 0 0
\(533\) −4.86274 0.347790i −0.210629 0.0150645i
\(534\) 0 0
\(535\) 15.5409 + 13.7831i 0.671891 + 0.595896i
\(536\) 0 0
\(537\) 26.0184 + 14.2071i 1.12278 + 0.613082i
\(538\) 0 0
\(539\) 3.72192 + 25.8865i 0.160314 + 1.11501i
\(540\) 0 0
\(541\) −11.5031 25.1883i −0.494557 1.08293i −0.978200 0.207664i \(-0.933414\pi\)
0.483643 0.875265i \(-0.339313\pi\)
\(542\) 0 0
\(543\) 9.33340 + 42.9050i 0.400535 + 1.84123i
\(544\) 0 0
\(545\) 3.97498 + 5.43956i 0.170269 + 0.233005i
\(546\) 0 0
\(547\) −35.8167 7.79146i −1.53141 0.333139i −0.633651 0.773619i \(-0.718445\pi\)
−0.897762 + 0.440480i \(0.854808\pi\)
\(548\) 0 0
\(549\) −1.63362 0.479674i −0.0697211 0.0204720i
\(550\) 0 0
\(551\) 10.6409i 0.453315i
\(552\) 0 0
\(553\) 33.0408 33.0408i 1.40504 1.40504i
\(554\) 0 0
\(555\) 19.7521 + 37.1862i 0.838431 + 1.57847i
\(556\) 0 0
\(557\) −9.43561 + 43.3748i −0.399800 + 1.83785i 0.132356 + 0.991202i \(0.457746\pi\)
−0.532155 + 0.846647i \(0.678618\pi\)
\(558\) 0 0
\(559\) 3.74549 26.0505i 0.158417 1.10182i
\(560\) 0 0
\(561\) −4.10431 2.63768i −0.173284 0.111363i
\(562\) 0 0
\(563\) 8.49568 22.7778i 0.358050 0.959970i −0.625642 0.780110i \(-0.715163\pi\)
0.983692 0.179860i \(-0.0575643\pi\)
\(564\) 0 0
\(565\) −1.09796 8.31599i −0.0461915 0.349856i
\(566\) 0 0
\(567\) −18.6094 + 34.0806i −0.781523 + 1.43125i
\(568\) 0 0
\(569\) −0.410673 + 0.473942i −0.0172163 + 0.0198687i −0.764292 0.644870i \(-0.776912\pi\)
0.747076 + 0.664738i \(0.231457\pi\)
\(570\) 0 0
\(571\) 10.0446 8.70374i 0.420356 0.364240i −0.418849 0.908056i \(-0.637566\pi\)
0.839205 + 0.543816i \(0.183021\pi\)
\(572\) 0 0
\(573\) 45.3798 16.9258i 1.89577 0.707085i
\(574\) 0 0
\(575\) 6.17002 23.1718i 0.257307 0.966330i
\(576\) 0 0
\(577\) 12.0005 4.47596i 0.499588 0.186337i −0.0870221 0.996206i \(-0.527735\pi\)
0.586610 + 0.809870i \(0.300462\pi\)
\(578\) 0 0
\(579\) 9.41691 8.15980i 0.391354 0.339110i
\(580\) 0 0
\(581\) −4.68175 + 5.40303i −0.194232 + 0.224155i
\(582\) 0 0
\(583\) −8.37783 + 15.3428i −0.346974 + 0.635436i
\(584\) 0 0
\(585\) 0.681109 + 5.15875i 0.0281604 + 0.213288i
\(586\) 0 0
\(587\) −1.56268 + 4.18972i −0.0644988 + 0.172928i −0.965201 0.261509i \(-0.915780\pi\)
0.900702 + 0.434437i \(0.143053\pi\)
\(588\) 0 0
\(589\) −21.5726 13.8639i −0.888882 0.571250i
\(590\) 0 0
\(591\) −5.70468 + 39.6769i −0.234659 + 1.63209i
\(592\) 0 0
\(593\) −7.80403 + 35.8746i −0.320473 + 1.47319i 0.481825 + 0.876268i \(0.339974\pi\)
−0.802298 + 0.596924i \(0.796389\pi\)
\(594\) 0 0
\(595\) 2.09381 + 3.94189i 0.0858377 + 0.161602i
\(596\) 0 0
\(597\) 33.9175 33.9175i 1.38815 1.38815i
\(598\) 0 0
\(599\) 38.3973i 1.56887i 0.620211 + 0.784435i \(0.287047\pi\)
−0.620211 + 0.784435i \(0.712953\pi\)
\(600\) 0 0
\(601\) 30.1055 + 8.83977i 1.22803 + 0.360582i 0.830506 0.557010i \(-0.188052\pi\)
0.397523 + 0.917592i \(0.369870\pi\)
\(602\) 0 0
\(603\) 3.07226 + 0.668329i 0.125112 + 0.0272165i
\(604\) 0 0
\(605\) −11.7956 16.1416i −0.479557 0.656250i
\(606\) 0 0
\(607\) −9.79459 45.0250i −0.397550 1.82751i −0.544997 0.838438i \(-0.683469\pi\)
0.147447 0.989070i \(-0.452894\pi\)
\(608\) 0 0
\(609\) −8.01897 17.5591i −0.324945 0.711530i
\(610\) 0 0
\(611\) −2.82979 19.6816i −0.114481 0.796234i
\(612\) 0 0
\(613\) −6.45267 3.52343i −0.260621 0.142310i 0.343627 0.939106i \(-0.388344\pi\)
−0.604248 + 0.796796i \(0.706526\pi\)
\(614\) 0 0
\(615\) 5.85703 + 5.19457i 0.236178 + 0.209465i
\(616\) 0 0
\(617\) −11.8880 0.850249i −0.478594 0.0342297i −0.170041 0.985437i \(-0.554390\pi\)
−0.308553 + 0.951207i \(0.599845\pi\)
\(618\) 0 0
\(619\) −5.01318 + 10.9773i −0.201497 + 0.441216i −0.983223 0.182405i \(-0.941612\pi\)
0.781727 + 0.623621i \(0.214339\pi\)
\(620\) 0 0
\(621\) 20.0762 2.41716i 0.805631 0.0969972i
\(622\) 0 0
\(623\) 6.63755 + 17.7960i 0.265928 + 0.712980i
\(624\) 0 0
\(625\) 15.4831 + 19.6284i 0.619325 + 0.785135i
\(626\) 0 0
\(627\) 33.9080 2.42514i 1.35415 0.0968510i
\(628\) 0 0
\(629\) 1.50490 + 5.12523i 0.0600044 + 0.204356i
\(630\) 0 0
\(631\) 40.8290 5.87032i 1.62538 0.233694i 0.731445 0.681900i \(-0.238846\pi\)
0.893930 + 0.448207i \(0.147937\pi\)
\(632\) 0 0
\(633\) −21.9306 8.17970i −0.871664 0.325114i
\(634\) 0 0
\(635\) 39.6725 + 26.1471i 1.57435 + 1.03762i
\(636\) 0 0
\(637\) 12.8124 9.59128i 0.507648 0.380020i
\(638\) 0 0
\(639\) 4.52600 + 7.04260i 0.179046 + 0.278601i
\(640\) 0 0
\(641\) −1.06304 + 3.62038i −0.0419875 + 0.142996i −0.977819 0.209451i \(-0.932832\pi\)
0.935832 + 0.352447i \(0.114650\pi\)
\(642\) 0 0
\(643\) −29.3903 29.3903i −1.15904 1.15904i −0.984683 0.174356i \(-0.944216\pi\)
−0.174356 0.984683i \(-0.555784\pi\)
\(644\) 0 0
\(645\) −30.2269 + 29.5378i −1.19018 + 1.16305i
\(646\) 0 0
\(647\) −5.62490 10.3012i −0.221138 0.404983i 0.743432 0.668811i \(-0.233197\pi\)
−0.964570 + 0.263828i \(0.915015\pi\)
\(648\) 0 0
\(649\) 47.1657 30.3116i 1.85142 1.18983i
\(650\) 0 0
\(651\) −46.0460 6.62041i −1.80468 0.259474i
\(652\) 0 0
\(653\) −6.96199 + 1.51449i −0.272444 + 0.0592665i −0.346711 0.937972i \(-0.612702\pi\)
0.0742677 + 0.997238i \(0.476338\pi\)
\(654\) 0 0
\(655\) −3.08762 1.19235i −0.120643 0.0465890i
\(656\) 0 0
\(657\) 0.676323 0.903462i 0.0263859 0.0352474i
\(658\) 0 0
\(659\) 24.9273 7.31932i 0.971030 0.285120i 0.242513 0.970148i \(-0.422028\pi\)
0.728517 + 0.685028i \(0.240210\pi\)
\(660\) 0 0
\(661\) 9.29786 + 8.05665i 0.361645 + 0.313367i 0.816663 0.577115i \(-0.195822\pi\)
−0.455018 + 0.890482i \(0.650367\pi\)
\(662\) 0 0
\(663\) −0.212997 + 2.97808i −0.00827211 + 0.115659i
\(664\) 0 0
\(665\) −28.1393 13.2450i −1.09119 0.513617i
\(666\) 0 0
\(667\) −6.56856 + 11.3987i −0.254336 + 0.441360i
\(668\) 0 0
\(669\) −27.6540 12.6292i −1.06917 0.488272i
\(670\) 0 0
\(671\) −5.84682 6.74759i −0.225714 0.260488i
\(672\) 0 0
\(673\) 2.50054 + 34.9622i 0.0963889 + 1.34769i 0.783614 + 0.621248i \(0.213374\pi\)
−0.687225 + 0.726444i \(0.741171\pi\)
\(674\) 0 0
\(675\) −10.5275 + 18.2654i −0.405203 + 0.703037i
\(676\) 0 0
\(677\) 7.53068 + 5.63740i 0.289428 + 0.216663i 0.734119 0.679021i \(-0.237596\pi\)
−0.444691 + 0.895684i \(0.646686\pi\)
\(678\) 0 0
\(679\) 39.2143 17.9086i 1.50491 0.687267i
\(680\) 0 0
\(681\) 25.6762 39.9530i 0.983914 1.53100i
\(682\) 0 0
\(683\) 7.71182 + 10.3018i 0.295084 + 0.394187i 0.923442 0.383738i \(-0.125363\pi\)
−0.628358 + 0.777925i \(0.716272\pi\)
\(684\) 0 0
\(685\) 4.20768 + 6.71629i 0.160767 + 0.256616i
\(686\) 0 0
\(687\) 14.5957 7.96984i 0.556860 0.304068i
\(688\) 0 0
\(689\) 10.6980 0.407561
\(690\) 0 0
\(691\) 13.6127 0.517852 0.258926 0.965897i \(-0.416631\pi\)
0.258926 + 0.965897i \(0.416631\pi\)
\(692\) 0 0
\(693\) 11.9668 6.53438i 0.454582 0.248221i
\(694\) 0 0
\(695\) 24.7539 + 5.68454i 0.938970 + 0.215627i
\(696\) 0 0
\(697\) 0.595167 + 0.795050i 0.0225436 + 0.0301147i
\(698\) 0 0
\(699\) 16.7438 26.0538i 0.633308 0.985447i
\(700\) 0 0
\(701\) −41.7809 + 19.0807i −1.57804 + 0.720668i −0.995731 0.0922988i \(-0.970578\pi\)
−0.582311 + 0.812966i \(0.697851\pi\)
\(702\) 0 0
\(703\) −29.7956 22.3047i −1.12376 0.841237i
\(704\) 0 0
\(705\) −15.6247 + 27.8463i −0.588459 + 1.04875i
\(706\) 0 0
\(707\) 0.683917 + 9.56242i 0.0257214 + 0.359632i
\(708\) 0 0
\(709\) −15.2275 17.5735i −0.571883 0.659988i 0.393957 0.919129i \(-0.371106\pi\)
−0.965839 + 0.259141i \(0.916560\pi\)
\(710\) 0 0
\(711\) −10.0943 4.60993i −0.378567 0.172886i
\(712\) 0 0
\(713\) 14.5509 + 28.1679i 0.544936 + 1.05490i
\(714\) 0 0
\(715\) −11.6209 + 24.6890i −0.434597 + 0.923315i
\(716\) 0 0
\(717\) 0.446969 6.24944i 0.0166924 0.233390i
\(718\) 0 0
\(719\) 6.84728 + 5.93321i 0.255361 + 0.221271i 0.773128 0.634250i \(-0.218691\pi\)
−0.517767 + 0.855522i \(0.673237\pi\)
\(720\) 0 0
\(721\) 50.5630 14.8467i 1.88307 0.552918i
\(722\) 0 0
\(723\) 29.4879 39.3913i 1.09667 1.46498i
\(724\) 0 0
\(725\) −5.40864 12.6045i −0.200872 0.468120i
\(726\) 0 0
\(727\) −40.7562 + 8.86598i −1.51156 + 0.328821i −0.890516 0.454951i \(-0.849657\pi\)
−0.621049 + 0.783772i \(0.713293\pi\)
\(728\) 0 0
\(729\) −15.4439 2.22050i −0.571998 0.0822408i
\(730\) 0 0
\(731\) −4.51032 + 2.89861i −0.166820 + 0.107209i
\(732\) 0 0
\(733\) −21.5999 39.5573i −0.797811 1.46108i −0.885352 0.464921i \(-0.846083\pi\)
0.0875412 0.996161i \(-0.472099\pi\)
\(734\) 0 0
\(735\) −25.6992 0.296298i −0.947928 0.0109291i
\(736\) 0 0
\(737\) 11.6586 + 11.6586i 0.429449 + 0.429449i
\(738\) 0 0
\(739\) 6.40170 21.8022i 0.235490 0.802007i −0.753933 0.656951i \(-0.771846\pi\)
0.989424 0.145056i \(-0.0463361\pi\)
\(740\) 0 0
\(741\) −11.2474 17.5012i −0.413182 0.642923i
\(742\) 0 0
\(743\) 19.2841 14.4359i 0.707466 0.529602i −0.183867 0.982951i \(-0.558862\pi\)
0.891333 + 0.453349i \(0.149771\pi\)
\(744\) 0 0
\(745\) −43.5227 + 8.94356i −1.59455 + 0.327667i
\(746\) 0 0
\(747\) 1.59082 + 0.593346i 0.0582051 + 0.0217094i
\(748\) 0 0
\(749\) −32.9702 + 4.74040i −1.20471 + 0.173211i
\(750\) 0 0
\(751\) 13.0371 + 44.4003i 0.475730 + 1.62019i 0.752038 + 0.659120i \(0.229071\pi\)
−0.276308 + 0.961069i \(0.589111\pi\)
\(752\) 0 0
\(753\) −1.31760 + 0.0942367i −0.0480161 + 0.00343418i
\(754\) 0 0
\(755\) −9.84451 0.818269i −0.358278 0.0297799i
\(756\) 0 0
\(757\) −2.84441 7.62617i −0.103382 0.277178i 0.874952 0.484209i \(-0.160893\pi\)
−0.978334 + 0.207031i \(0.933620\pi\)
\(758\) 0 0
\(759\) −37.8200 18.3334i −1.37278 0.665460i
\(760\) 0 0
\(761\) −0.464781 + 1.01773i −0.0168483 + 0.0368926i −0.917869 0.396883i \(-0.870092\pi\)
0.901021 + 0.433776i \(0.142819\pi\)
\(762\) 0 0
\(763\) −10.7757 0.770695i −0.390108 0.0279010i
\(764\) 0 0
\(765\) 0.703363 0.793062i 0.0254301 0.0286732i
\(766\) 0 0
\(767\) −30.1139 16.4434i −1.08735 0.593738i
\(768\) 0 0
\(769\) 1.36684 + 9.50656i 0.0492894 + 0.342815i 0.999512 + 0.0312429i \(0.00994655\pi\)
−0.950222 + 0.311572i \(0.899144\pi\)
\(770\) 0 0
\(771\) −19.0238 41.6562i −0.685124 1.50021i
\(772\) 0 0
\(773\) 6.44819 + 29.6419i 0.231925 + 1.06614i 0.934895 + 0.354924i \(0.115493\pi\)
−0.702970 + 0.711220i \(0.748143\pi\)
\(774\) 0 0
\(775\) −32.6004 5.45716i −1.17104 0.196027i
\(776\) 0 0
\(777\) −65.9762 14.3523i −2.36688 0.514884i
\(778\) 0 0
\(779\) −6.63971 1.94959i −0.237892 0.0698515i
\(780\) 0 0
\(781\) 43.9003i 1.57088i
\(782\) 0 0
\(783\) 8.17869 8.17869i 0.292283 0.292283i
\(784\) 0 0
\(785\) 7.76133 25.3479i 0.277014 0.904705i
\(786\) 0 0
\(787\) −4.53106 + 20.8289i −0.161515 + 0.742472i 0.823123 + 0.567863i \(0.192230\pi\)
−0.984638 + 0.174609i \(0.944134\pi\)
\(788\) 0 0
\(789\) −3.31306 + 23.0428i −0.117948 + 0.820346i
\(790\) 0 0
\(791\) 11.3154 + 7.27199i 0.402331 + 0.258562i
\(792\) 0 0
\(793\) −1.90944 + 5.11940i −0.0678061 + 0.181795i
\(794\) 0 0
\(795\) −13.6330 10.4530i −0.483513 0.370728i
\(796\) 0 0
\(797\) −14.0009 + 25.6408i −0.495938 + 0.908243i 0.503093 + 0.864232i \(0.332195\pi\)
−0.999031 + 0.0440104i \(0.985987\pi\)
\(798\) 0 0
\(799\) −2.65262 + 3.06129i −0.0938429 + 0.108300i
\(800\) 0 0
\(801\) 3.40902 2.95393i 0.120452 0.104372i
\(802\) 0 0
\(803\) 5.54504 2.06819i 0.195680 0.0729849i
\(804\) 0 0
\(805\) 21.9674 + 31.5586i 0.774248 + 1.11229i
\(806\) 0 0
\(807\) −10.4468 + 3.89647i −0.367746 + 0.137162i
\(808\) 0 0
\(809\) −35.7298 + 30.9600i −1.25619 + 1.08850i −0.263904 + 0.964549i \(0.585010\pi\)
−0.992289 + 0.123948i \(0.960444\pi\)
\(810\) 0 0
\(811\) −16.3664 + 18.8879i −0.574703 + 0.663242i −0.966457 0.256828i \(-0.917323\pi\)
0.391755 + 0.920070i \(0.371868\pi\)
\(812\) 0 0
\(813\) −16.9718 + 31.0816i −0.595228 + 1.09008i
\(814\) 0 0
\(815\) 1.69372 0.223622i 0.0593285 0.00783314i
\(816\) 0 0
\(817\) 13.0551 35.0020i 0.456739 1.22457i
\(818\) 0 0
\(819\) −7.01943 4.51111i −0.245279 0.157631i
\(820\) 0 0
\(821\) 4.21780 29.3354i 0.147202 1.02381i −0.773570 0.633711i \(-0.781531\pi\)
0.920772 0.390102i \(-0.127560\pi\)
\(822\) 0 0
\(823\) −4.40896 + 20.2677i −0.153687 + 0.706486i 0.834220 + 0.551433i \(0.185919\pi\)
−0.987906 + 0.155053i \(0.950445\pi\)
\(824\) 0 0
\(825\) 38.9326 20.1077i 1.35546 0.700062i
\(826\) 0 0
\(827\) −18.2291 + 18.2291i −0.633888 + 0.633888i −0.949041 0.315153i \(-0.897944\pi\)
0.315153 + 0.949041i \(0.397944\pi\)
\(828\) 0 0
\(829\) 41.4811i 1.44070i −0.693611 0.720350i \(-0.743981\pi\)
0.693611 0.720350i \(-0.256019\pi\)
\(830\) 0 0
\(831\) 47.4817 + 13.9419i 1.64712 + 0.483639i
\(832\) 0 0
\(833\) −3.18588 0.693046i −0.110384 0.0240126i
\(834\) 0 0
\(835\) 6.90790 44.4051i 0.239058 1.53670i
\(836\) 0 0
\(837\) −5.92502 27.2369i −0.204799 0.941444i
\(838\) 0 0
\(839\) −2.61049 5.71618i −0.0901242 0.197344i 0.859202 0.511636i \(-0.170960\pi\)
−0.949327 + 0.314292i \(0.898233\pi\)
\(840\) 0 0
\(841\) −3.05620 21.2563i −0.105386 0.732977i
\(842\) 0 0
\(843\) −19.4989 10.6472i −0.671579 0.366710i
\(844\) 0 0
\(845\) −12.3477 + 0.740153i −0.424774 + 0.0254620i
\(846\) 0 0
\(847\) 31.9764 + 2.28700i 1.09872 + 0.0785822i
\(848\) 0 0
\(849\) 10.7027 23.4357i 0.367317 0.804312i
\(850\) 0 0
\(851\) 18.1491 + 42.2860i 0.622143 + 1.44954i
\(852\) 0 0
\(853\) −4.31021 11.5561i −0.147579 0.395674i 0.842036 0.539422i \(-0.181357\pi\)
−0.989614 + 0.143748i \(0.954085\pi\)
\(854\) 0 0
\(855\) −0.611818 + 7.36071i −0.0209237 + 0.251731i
\(856\) 0 0
\(857\) −19.1019 + 1.36619i −0.652507 + 0.0466682i −0.393669 0.919252i \(-0.628794\pi\)
−0.258838 + 0.965921i \(0.583340\pi\)
\(858\) 0 0
\(859\) 8.14556 + 27.7412i 0.277923 + 0.946518i 0.973619 + 0.228182i \(0.0732781\pi\)
−0.695696 + 0.718337i \(0.744904\pi\)
\(860\) 0 0
\(861\) −12.4258 + 1.78656i −0.423470 + 0.0608857i
\(862\) 0 0
\(863\) 31.3541 + 11.6945i 1.06731 + 0.398085i 0.820894 0.571080i \(-0.193476\pi\)
0.246412 + 0.969165i \(0.420748\pi\)
\(864\) 0 0
\(865\) −22.2604 + 33.7753i −0.756878 + 1.14840i
\(866\) 0 0
\(867\) −26.2216 + 19.6293i −0.890533 + 0.666645i
\(868\) 0 0
\(869\) −31.4617 48.9554i −1.06727 1.66070i
\(870\) 0 0
\(871\) 2.84269 9.68130i 0.0963207 0.328038i
\(872\) 0 0
\(873\) −7.23952 7.23952i −0.245021 0.245021i
\(874\) 0 0
\(875\) −40.0644 1.38625i −1.35442 0.0468639i
\(876\) 0 0
\(877\) −7.80929 14.3017i −0.263701 0.482933i 0.711959 0.702221i \(-0.247808\pi\)
−0.975660 + 0.219289i \(0.929626\pi\)
\(878\) 0 0
\(879\) −12.1311 + 7.79618i −0.409172 + 0.262959i
\(880\) 0 0
\(881\) 20.2874 + 2.91689i 0.683500 + 0.0982724i 0.475313 0.879817i \(-0.342335\pi\)
0.208187 + 0.978089i \(0.433244\pi\)
\(882\) 0 0
\(883\) 43.3507 9.43036i 1.45887 0.317357i 0.587994 0.808866i \(-0.299918\pi\)
0.870873 + 0.491509i \(0.163554\pi\)
\(884\) 0 0
\(885\) 22.3090 + 50.3789i 0.749908 + 1.69347i
\(886\) 0 0
\(887\) 35.0681 46.8455i 1.17747 1.57292i 0.439243 0.898368i \(-0.355247\pi\)
0.738229 0.674550i \(-0.235662\pi\)
\(888\) 0 0
\(889\) −73.1040 + 21.4653i −2.45183 + 0.719922i
\(890\) 0 0
\(891\) 36.5475 + 31.6686i 1.22439 + 1.06094i
\(892\) 0 0
\(893\) 2.01349 28.1523i 0.0673790 0.942082i
\(894\) 0 0
\(895\) −31.7807 + 11.4380i −1.06231 + 0.382329i
\(896\) 0 0
\(897\) 1.24498 + 25.6906i 0.0415686 + 0.857786i
\(898\) 0 0
\(899\) 16.4959 + 7.53341i 0.550168 + 0.251253i
\(900\) 0 0
\(901\) −1.42716 1.64703i −0.0475456 0.0548705i
\(902\) 0 0
\(903\) −4.83465 67.5972i −0.160887 2.24949i
\(904\) 0 0
\(905\) −43.6294 24.4806i −1.45029 0.813762i
\(906\) 0 0
\(907\) −44.2594 33.1322i −1.46961 1.10014i −0.972626 0.232376i \(-0.925350\pi\)
−0.496983 0.867760i \(-0.665559\pi\)
\(908\) 0 0
\(909\) 2.07103 0.945810i 0.0686919 0.0313705i
\(910\) 0 0
\(911\) 10.0085 15.5735i 0.331596 0.515973i −0.634921 0.772577i \(-0.718967\pi\)
0.966517 + 0.256604i \(0.0826037\pi\)
\(912\) 0 0
\(913\) 5.33575 + 7.12772i 0.176587 + 0.235893i
\(914\) 0 0
\(915\) 7.43544 4.65822i 0.245808 0.153996i
\(916\) 0 0
\(917\) 4.65824 2.54359i 0.153829 0.0839968i
\(918\) 0 0
\(919\) −34.7200 −1.14531 −0.572653 0.819798i \(-0.694086\pi\)
−0.572653 + 0.819798i \(0.694086\pi\)
\(920\) 0 0
\(921\) 46.6877 1.53841
\(922\) 0 0
\(923\) 23.5795 12.8754i 0.776130 0.423799i
\(924\) 0 0
\(925\) −46.6313 11.2760i −1.53323 0.370752i
\(926\) 0 0
\(927\) −7.50008 10.0189i −0.246335 0.329065i
\(928\) 0 0
\(929\) −32.0058 + 49.8020i −1.05008 + 1.63395i −0.324389 + 0.945924i \(0.605159\pi\)
−0.725687 + 0.688025i \(0.758478\pi\)
\(930\) 0 0
\(931\) 20.6648 9.43732i 0.677263 0.309296i
\(932\) 0 0
\(933\) −21.8443 16.3525i −0.715151 0.535355i
\(934\) 0 0
\(935\) 5.35132 1.50450i 0.175007 0.0492024i
\(936\) 0 0
\(937\) 0.208935 + 2.92129i 0.00682561 + 0.0954345i 0.999723 0.0235403i \(-0.00749379\pi\)
−0.992897 + 0.118975i \(0.962039\pi\)
\(938\) 0 0
\(939\) 25.2437 + 29.1328i 0.823798 + 0.950713i
\(940\) 0 0
\(941\) −6.26261 2.86004i −0.204155 0.0932346i 0.310713 0.950504i \(-0.399432\pi\)
−0.514869 + 0.857269i \(0.672159\pi\)
\(942\) 0 0
\(943\) 5.90913 + 6.18712i 0.192428 + 0.201480i
\(944\) 0 0
\(945\) −11.4480 31.8084i −0.372403 1.03473i
\(946\) 0 0
\(947\) −1.49553 + 20.9103i −0.0485983 + 0.679493i 0.913508 + 0.406820i \(0.133362\pi\)
−0.962107 + 0.272673i \(0.912092\pi\)
\(948\) 0 0
\(949\) −2.73715 2.37175i −0.0888515 0.0769903i
\(950\) 0 0
\(951\) 45.3791 13.3245i 1.47152 0.432077i
\(952\) 0 0
\(953\) 22.8408 30.5118i 0.739887 0.988373i −0.259855 0.965648i \(-0.583675\pi\)
0.999742 0.0227253i \(-0.00723430\pi\)
\(954\) 0 0
\(955\) −19.8797 + 51.4789i −0.643290 + 1.66582i
\(956\) 0 0
\(957\) −23.4911 + 5.11018i −0.759360 + 0.165189i
\(958\) 0 0
\(959\) −12.5794 1.80865i −0.406210 0.0584042i
\(960\) 0 0
\(961\) 10.6862 6.86760i 0.344716 0.221535i
\(962\) 0 0
\(963\) 3.79116 + 6.94299i 0.122168 + 0.223735i
\(964\) 0 0
\(965\) −0.163673 + 14.1961i −0.00526883 + 0.456989i
\(966\) 0 0
\(967\) −12.8408 12.8408i −0.412933 0.412933i 0.469826 0.882759i \(-0.344317\pi\)
−0.882759 + 0.469826i \(0.844317\pi\)
\(968\) 0 0
\(969\) −1.19399 + 4.06635i −0.0383564 + 0.130630i
\(970\) 0 0
\(971\) 4.10072 + 6.38085i 0.131599 + 0.204771i 0.900799 0.434236i \(-0.142982\pi\)
−0.769201 + 0.639007i \(0.779345\pi\)
\(972\) 0 0
\(973\) −32.6036 + 24.4067i −1.04522 + 0.782444i
\(974\) 0 0
\(975\) −22.2186 15.0140i −0.711565 0.480832i
\(976\) 0 0
\(977\) 25.4964 + 9.50967i 0.815702 + 0.304241i 0.722469 0.691403i \(-0.243007\pi\)
0.0932331 + 0.995644i \(0.470280\pi\)
\(978\) 0 0
\(979\) 23.4137 3.36638i 0.748305 0.107590i
\(980\) 0 0
\(981\) 0.722833 + 2.46174i 0.0230783 + 0.0785974i
\(982\) 0 0
\(983\) −21.1359 + 1.51167i −0.674132 + 0.0482149i −0.404208 0.914667i \(-0.632453\pi\)
−0.269924 + 0.962882i \(0.586998\pi\)
\(984\) 0 0
\(985\) −29.5088 34.8590i −0.940227 1.11070i
\(986\) 0 0
\(987\) −17.8931 47.9732i −0.569543 1.52700i
\(988\) 0 0
\(989\) −35.5915 + 29.4361i −1.13174 + 0.936013i
\(990\) 0 0
\(991\) 7.71006 16.8827i 0.244918 0.536296i −0.746751 0.665103i \(-0.768388\pi\)
0.991670 + 0.128807i \(0.0411148\pi\)
\(992\) 0 0
\(993\) −34.5379 2.47020i −1.09603 0.0783895i
\(994\) 0 0
\(995\) 3.27011 + 54.5541i 0.103669 + 1.72948i
\(996\) 0 0
\(997\) −27.1231 14.8104i −0.858998 0.469049i −0.0115543 0.999933i \(-0.503678\pi\)
−0.847444 + 0.530885i \(0.821860\pi\)
\(998\) 0 0
\(999\) −5.75759 40.0449i −0.182162 1.26696i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.17.8 720
5.3 odd 4 inner 920.2.bv.a.753.8 yes 720
23.19 odd 22 inner 920.2.bv.a.617.8 yes 720
115.88 even 44 inner 920.2.bv.a.433.8 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.8 720 1.1 even 1 trivial
920.2.bv.a.433.8 yes 720 115.88 even 44 inner
920.2.bv.a.617.8 yes 720 23.19 odd 22 inner
920.2.bv.a.753.8 yes 720 5.3 odd 4 inner