Properties

Label 920.2.bv.a.17.7
Level $920$
Weight $2$
Character 920.17
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 17.7
Character \(\chi\) \(=\) 920.17
Dual form 920.2.bv.a.433.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.99325 + 1.08840i) q^{3} +(2.23196 + 0.135499i) q^{5} +(2.37528 + 3.17300i) q^{7} +(1.16653 - 1.81515i) q^{9} +(-4.87592 + 2.22676i) q^{11} +(2.78911 + 2.08790i) q^{13} +(-4.59634 + 2.15918i) q^{15} +(-0.208644 - 2.91722i) q^{17} +(3.34444 + 3.85969i) q^{19} +(-8.18803 - 3.73935i) q^{21} +(-1.73442 - 4.47122i) q^{23} +(4.96328 + 0.604856i) q^{25} +(0.136469 - 1.90809i) q^{27} +(2.80201 + 2.42796i) q^{29} +(2.59751 - 0.762699i) q^{31} +(7.29535 - 9.74544i) q^{33} +(4.87159 + 7.40386i) q^{35} +(-6.77945 + 1.47478i) q^{37} +(-7.83188 - 1.12605i) q^{39} +(-8.94334 + 5.74753i) q^{41} +(4.99899 + 9.15497i) q^{43} +(2.84959 - 3.89328i) q^{45} +(-6.44848 - 6.44848i) q^{47} +(-2.45386 + 8.35707i) q^{49} +(3.59098 + 5.58768i) q^{51} +(1.02005 - 0.763601i) q^{53} +(-11.1846 + 4.30935i) q^{55} +(-10.8672 - 4.05325i) q^{57} +(-6.16760 + 0.886766i) q^{59} +(-2.17763 - 7.41633i) q^{61} +(8.53030 - 0.610099i) q^{63} +(5.94227 + 5.03803i) q^{65} +(2.34825 + 6.29590i) q^{67} +(8.32360 + 7.02454i) q^{69} +(-5.70971 + 12.5025i) q^{71} +(-3.20239 - 0.229039i) q^{73} +(-10.5514 + 4.19640i) q^{75} +(-18.6472 - 10.1821i) q^{77} +(-0.287493 - 1.99956i) q^{79} +(4.49374 + 9.83991i) q^{81} +(-0.0821702 - 0.377730i) q^{83} +(-0.0704040 - 6.53939i) q^{85} +(-8.22770 - 1.78983i) q^{87} +(9.49169 + 2.78701i) q^{89} +13.8092i q^{91} +(-4.34738 + 4.34738i) q^{93} +(6.94166 + 9.06783i) q^{95} +(0.806253 - 3.70628i) q^{97} +(-1.64599 + 11.4481i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.99325 + 1.08840i −1.15081 + 0.628387i −0.937289 0.348552i \(-0.886673\pi\)
−0.213516 + 0.976940i \(0.568492\pi\)
\(4\) 0 0
\(5\) 2.23196 + 0.135499i 0.998162 + 0.0605970i
\(6\) 0 0
\(7\) 2.37528 + 3.17300i 0.897771 + 1.19928i 0.979260 + 0.202607i \(0.0649415\pi\)
−0.0814891 + 0.996674i \(0.525968\pi\)
\(8\) 0 0
\(9\) 1.16653 1.81515i 0.388842 0.605050i
\(10\) 0 0
\(11\) −4.87592 + 2.22676i −1.47015 + 0.671393i −0.979772 0.200119i \(-0.935867\pi\)
−0.490374 + 0.871512i \(0.663140\pi\)
\(12\) 0 0
\(13\) 2.78911 + 2.08790i 0.773560 + 0.579080i 0.911471 0.411365i \(-0.134948\pi\)
−0.137911 + 0.990445i \(0.544039\pi\)
\(14\) 0 0
\(15\) −4.59634 + 2.15918i −1.18677 + 0.557497i
\(16\) 0 0
\(17\) −0.208644 2.91722i −0.0506036 0.707530i −0.957912 0.287064i \(-0.907321\pi\)
0.907308 0.420467i \(-0.138134\pi\)
\(18\) 0 0
\(19\) 3.34444 + 3.85969i 0.767267 + 0.885473i 0.996122 0.0879875i \(-0.0280436\pi\)
−0.228855 + 0.973461i \(0.573498\pi\)
\(20\) 0 0
\(21\) −8.18803 3.73935i −1.78677 0.815992i
\(22\) 0 0
\(23\) −1.73442 4.47122i −0.361651 0.932314i
\(24\) 0 0
\(25\) 4.96328 + 0.604856i 0.992656 + 0.120971i
\(26\) 0 0
\(27\) 0.136469 1.90809i 0.0262635 0.367212i
\(28\) 0 0
\(29\) 2.80201 + 2.42796i 0.520320 + 0.450860i 0.874997 0.484129i \(-0.160863\pi\)
−0.354676 + 0.934989i \(0.615409\pi\)
\(30\) 0 0
\(31\) 2.59751 0.762699i 0.466527 0.136985i −0.0400165 0.999199i \(-0.512741\pi\)
0.506544 + 0.862214i \(0.330923\pi\)
\(32\) 0 0
\(33\) 7.29535 9.74544i 1.26996 1.69646i
\(34\) 0 0
\(35\) 4.87159 + 7.40386i 0.823448 + 1.25148i
\(36\) 0 0
\(37\) −6.77945 + 1.47478i −1.11453 + 0.242452i −0.731876 0.681438i \(-0.761355\pi\)
−0.382658 + 0.923890i \(0.624991\pi\)
\(38\) 0 0
\(39\) −7.83188 1.12605i −1.25410 0.180313i
\(40\) 0 0
\(41\) −8.94334 + 5.74753i −1.39671 + 0.897614i −0.999795 0.0202394i \(-0.993557\pi\)
−0.396919 + 0.917853i \(0.629921\pi\)
\(42\) 0 0
\(43\) 4.99899 + 9.15497i 0.762339 + 1.39612i 0.913178 + 0.407561i \(0.133621\pi\)
−0.150839 + 0.988558i \(0.548198\pi\)
\(44\) 0 0
\(45\) 2.84959 3.89328i 0.424792 0.580376i
\(46\) 0 0
\(47\) −6.44848 6.44848i −0.940608 0.940608i 0.0577249 0.998333i \(-0.481615\pi\)
−0.998333 + 0.0577249i \(0.981615\pi\)
\(48\) 0 0
\(49\) −2.45386 + 8.35707i −0.350551 + 1.19387i
\(50\) 0 0
\(51\) 3.59098 + 5.58768i 0.502838 + 0.782431i
\(52\) 0 0
\(53\) 1.02005 0.763601i 0.140115 0.104889i −0.526921 0.849914i \(-0.676654\pi\)
0.667036 + 0.745026i \(0.267563\pi\)
\(54\) 0 0
\(55\) −11.1846 + 4.30935i −1.50813 + 0.581073i
\(56\) 0 0
\(57\) −10.8672 4.05325i −1.43940 0.536867i
\(58\) 0 0
\(59\) −6.16760 + 0.886766i −0.802952 + 0.115447i −0.531559 0.847021i \(-0.678394\pi\)
−0.271394 + 0.962468i \(0.587484\pi\)
\(60\) 0 0
\(61\) −2.17763 7.41633i −0.278817 0.949564i −0.973200 0.229959i \(-0.926141\pi\)
0.694383 0.719605i \(-0.255677\pi\)
\(62\) 0 0
\(63\) 8.53030 0.610099i 1.07472 0.0768653i
\(64\) 0 0
\(65\) 5.94227 + 5.03803i 0.737048 + 0.624891i
\(66\) 0 0
\(67\) 2.34825 + 6.29590i 0.286885 + 0.769167i 0.997825 + 0.0659152i \(0.0209967\pi\)
−0.710941 + 0.703252i \(0.751731\pi\)
\(68\) 0 0
\(69\) 8.32360 + 7.02454i 1.00204 + 0.845655i
\(70\) 0 0
\(71\) −5.70971 + 12.5025i −0.677618 + 1.48378i 0.187529 + 0.982259i \(0.439952\pi\)
−0.865147 + 0.501518i \(0.832775\pi\)
\(72\) 0 0
\(73\) −3.20239 0.229039i −0.374811 0.0268070i −0.117337 0.993092i \(-0.537436\pi\)
−0.257474 + 0.966285i \(0.582890\pi\)
\(74\) 0 0
\(75\) −10.5514 + 4.19640i −1.21837 + 0.484558i
\(76\) 0 0
\(77\) −18.6472 10.1821i −2.12504 1.16036i
\(78\) 0 0
\(79\) −0.287493 1.99956i −0.0323455 0.224968i 0.967237 0.253877i \(-0.0817058\pi\)
−0.999582 + 0.0289090i \(0.990797\pi\)
\(80\) 0 0
\(81\) 4.49374 + 9.83991i 0.499304 + 1.09332i
\(82\) 0 0
\(83\) −0.0821702 0.377730i −0.00901935 0.0414613i 0.972417 0.233248i \(-0.0749354\pi\)
−0.981437 + 0.191787i \(0.938572\pi\)
\(84\) 0 0
\(85\) −0.0704040 6.53939i −0.00763638 0.709296i
\(86\) 0 0
\(87\) −8.22770 1.78983i −0.882102 0.191890i
\(88\) 0 0
\(89\) 9.49169 + 2.78701i 1.00612 + 0.295423i 0.742964 0.669331i \(-0.233419\pi\)
0.263153 + 0.964754i \(0.415238\pi\)
\(90\) 0 0
\(91\) 13.8092i 1.44760i
\(92\) 0 0
\(93\) −4.34738 + 4.34738i −0.450803 + 0.450803i
\(94\) 0 0
\(95\) 6.94166 + 9.06783i 0.712200 + 0.930340i
\(96\) 0 0
\(97\) 0.806253 3.70628i 0.0818626 0.376316i −0.917929 0.396745i \(-0.870140\pi\)
0.999791 + 0.0204292i \(0.00650326\pi\)
\(98\) 0 0
\(99\) −1.64599 + 11.4481i −0.165428 + 1.15058i
\(100\) 0 0
\(101\) 8.65562 + 5.56263i 0.861266 + 0.553502i 0.895070 0.445926i \(-0.147126\pi\)
−0.0338036 + 0.999428i \(0.510762\pi\)
\(102\) 0 0
\(103\) 1.10515 2.96303i 0.108894 0.291956i −0.871061 0.491175i \(-0.836568\pi\)
0.979955 + 0.199219i \(0.0638404\pi\)
\(104\) 0 0
\(105\) −17.7687 9.45553i −1.73404 0.922766i
\(106\) 0 0
\(107\) 1.70015 3.11360i 0.164360 0.301003i −0.782499 0.622652i \(-0.786055\pi\)
0.946859 + 0.321649i \(0.104237\pi\)
\(108\) 0 0
\(109\) −3.67699 + 4.24347i −0.352192 + 0.406451i −0.904008 0.427515i \(-0.859389\pi\)
0.551817 + 0.833965i \(0.313935\pi\)
\(110\) 0 0
\(111\) 11.9080 10.3184i 1.13026 0.979375i
\(112\) 0 0
\(113\) 2.48942 0.928507i 0.234185 0.0873466i −0.229632 0.973278i \(-0.573752\pi\)
0.463817 + 0.885931i \(0.346479\pi\)
\(114\) 0 0
\(115\) −3.26530 10.2146i −0.304491 0.952515i
\(116\) 0 0
\(117\) 7.04343 2.62706i 0.651165 0.242872i
\(118\) 0 0
\(119\) 8.76076 7.59124i 0.803098 0.695888i
\(120\) 0 0
\(121\) 11.6127 13.4018i 1.05570 1.21834i
\(122\) 0 0
\(123\) 11.5707 21.1902i 1.04330 1.91066i
\(124\) 0 0
\(125\) 10.9959 + 2.02253i 0.983501 + 0.180901i
\(126\) 0 0
\(127\) 5.78190 15.5019i 0.513061 1.37557i −0.379730 0.925097i \(-0.623983\pi\)
0.892791 0.450472i \(-0.148744\pi\)
\(128\) 0 0
\(129\) −19.9285 12.8073i −1.75461 1.12762i
\(130\) 0 0
\(131\) 1.15641 8.04299i 0.101036 0.702719i −0.874843 0.484406i \(-0.839036\pi\)
0.975879 0.218313i \(-0.0700552\pi\)
\(132\) 0 0
\(133\) −4.30282 + 19.7797i −0.373102 + 1.71512i
\(134\) 0 0
\(135\) 0.563138 4.24029i 0.0484672 0.364946i
\(136\) 0 0
\(137\) −2.16259 + 2.16259i −0.184763 + 0.184763i −0.793427 0.608665i \(-0.791705\pi\)
0.608665 + 0.793427i \(0.291705\pi\)
\(138\) 0 0
\(139\) 21.1129i 1.79078i 0.445287 + 0.895388i \(0.353102\pi\)
−0.445287 + 0.895388i \(0.646898\pi\)
\(140\) 0 0
\(141\) 19.8720 + 5.83494i 1.67352 + 0.491391i
\(142\) 0 0
\(143\) −18.2487 3.96977i −1.52604 0.331969i
\(144\) 0 0
\(145\) 5.92499 + 5.79877i 0.492043 + 0.481561i
\(146\) 0 0
\(147\) −4.20467 19.3285i −0.346795 1.59419i
\(148\) 0 0
\(149\) 9.03540 + 19.7848i 0.740209 + 1.62083i 0.783211 + 0.621756i \(0.213581\pi\)
−0.0430021 + 0.999075i \(0.513692\pi\)
\(150\) 0 0
\(151\) −3.32873 23.1518i −0.270888 1.88407i −0.439283 0.898349i \(-0.644768\pi\)
0.168395 0.985720i \(-0.446142\pi\)
\(152\) 0 0
\(153\) −5.53859 3.02430i −0.447768 0.244500i
\(154\) 0 0
\(155\) 5.90089 1.35035i 0.473971 0.108463i
\(156\) 0 0
\(157\) −16.6965 1.19416i −1.33253 0.0953041i −0.613173 0.789949i \(-0.710107\pi\)
−0.719353 + 0.694645i \(0.755562\pi\)
\(158\) 0 0
\(159\) −1.20212 + 2.63227i −0.0953343 + 0.208753i
\(160\) 0 0
\(161\) 10.0675 16.1237i 0.793427 1.27073i
\(162\) 0 0
\(163\) −3.86782 10.3700i −0.302951 0.812243i −0.995833 0.0911921i \(-0.970932\pi\)
0.692882 0.721051i \(-0.256340\pi\)
\(164\) 0 0
\(165\) 17.6034 20.7629i 1.37042 1.61639i
\(166\) 0 0
\(167\) 18.2085 1.30229i 1.40901 0.100775i 0.654005 0.756490i \(-0.273088\pi\)
0.755008 + 0.655716i \(0.227633\pi\)
\(168\) 0 0
\(169\) −0.242721 0.826631i −0.0186708 0.0635870i
\(170\) 0 0
\(171\) 10.9073 1.56823i 0.834101 0.119926i
\(172\) 0 0
\(173\) 7.89669 + 2.94531i 0.600375 + 0.223928i 0.631230 0.775596i \(-0.282550\pi\)
−0.0308554 + 0.999524i \(0.509823\pi\)
\(174\) 0 0
\(175\) 9.86996 + 17.1852i 0.746099 + 1.29908i
\(176\) 0 0
\(177\) 11.3284 8.48036i 0.851497 0.637423i
\(178\) 0 0
\(179\) −3.27201 5.09135i −0.244562 0.380545i 0.697173 0.716903i \(-0.254441\pi\)
−0.941734 + 0.336358i \(0.890805\pi\)
\(180\) 0 0
\(181\) 0.474302 1.61532i 0.0352546 0.120066i −0.939986 0.341214i \(-0.889162\pi\)
0.975240 + 0.221148i \(0.0709802\pi\)
\(182\) 0 0
\(183\) 12.4125 + 12.4125i 0.917559 + 0.917559i
\(184\) 0 0
\(185\) −15.3313 + 2.37304i −1.12718 + 0.174469i
\(186\) 0 0
\(187\) 7.51328 + 13.7595i 0.549425 + 1.00620i
\(188\) 0 0
\(189\) 6.37853 4.09923i 0.463970 0.298175i
\(190\) 0 0
\(191\) −7.29360 1.04866i −0.527746 0.0758785i −0.126709 0.991940i \(-0.540441\pi\)
−0.401038 + 0.916062i \(0.631350\pi\)
\(192\) 0 0
\(193\) 16.0249 3.48601i 1.15350 0.250929i 0.405161 0.914245i \(-0.367215\pi\)
0.748339 + 0.663316i \(0.230852\pi\)
\(194\) 0 0
\(195\) −17.3278 3.57452i −1.24087 0.255976i
\(196\) 0 0
\(197\) 5.50148 7.34912i 0.391964 0.523603i −0.560540 0.828127i \(-0.689406\pi\)
0.952505 + 0.304524i \(0.0984974\pi\)
\(198\) 0 0
\(199\) 15.4804 4.54545i 1.09737 0.322218i 0.317566 0.948236i \(-0.397135\pi\)
0.779808 + 0.626018i \(0.215316\pi\)
\(200\) 0 0
\(201\) −11.5331 9.99350i −0.813483 0.704887i
\(202\) 0 0
\(203\) −1.04835 + 14.6579i −0.0735798 + 1.02878i
\(204\) 0 0
\(205\) −20.7399 + 11.6164i −1.44854 + 0.811328i
\(206\) 0 0
\(207\) −10.1392 2.06757i −0.704722 0.143706i
\(208\) 0 0
\(209\) −24.9018 11.3723i −1.72249 0.786637i
\(210\) 0 0
\(211\) 16.2416 + 18.7438i 1.11812 + 1.29038i 0.952618 + 0.304170i \(0.0983791\pi\)
0.165502 + 0.986209i \(0.447075\pi\)
\(212\) 0 0
\(213\) −2.22683 31.1352i −0.152580 2.13335i
\(214\) 0 0
\(215\) 9.91705 + 21.1109i 0.676337 + 1.43975i
\(216\) 0 0
\(217\) 8.58986 + 6.43029i 0.583118 + 0.436517i
\(218\) 0 0
\(219\) 6.63246 3.02894i 0.448180 0.204677i
\(220\) 0 0
\(221\) 5.50894 8.57208i 0.370572 0.576621i
\(222\) 0 0
\(223\) −5.30883 7.09177i −0.355506 0.474900i 0.586763 0.809759i \(-0.300402\pi\)
−0.942268 + 0.334859i \(0.891311\pi\)
\(224\) 0 0
\(225\) 6.88770 8.30352i 0.459180 0.553568i
\(226\) 0 0
\(227\) 10.4959 5.73121i 0.696639 0.380394i −0.0915720 0.995798i \(-0.529189\pi\)
0.788211 + 0.615405i \(0.211007\pi\)
\(228\) 0 0
\(229\) 17.0601 1.12736 0.563681 0.825993i \(-0.309385\pi\)
0.563681 + 0.825993i \(0.309385\pi\)
\(230\) 0 0
\(231\) 48.2508 3.17467
\(232\) 0 0
\(233\) 0.0637924 0.0348333i 0.00417918 0.00228200i −0.477158 0.878818i \(-0.658333\pi\)
0.481337 + 0.876536i \(0.340151\pi\)
\(234\) 0 0
\(235\) −13.5190 15.2665i −0.881881 0.995877i
\(236\) 0 0
\(237\) 2.74936 + 3.67272i 0.178590 + 0.238569i
\(238\) 0 0
\(239\) −11.7537 + 18.2891i −0.760281 + 1.18302i 0.218042 + 0.975939i \(0.430033\pi\)
−0.978324 + 0.207081i \(0.933603\pi\)
\(240\) 0 0
\(241\) −13.6272 + 6.22332i −0.877802 + 0.400879i −0.802761 0.596301i \(-0.796636\pi\)
−0.0750419 + 0.997180i \(0.523909\pi\)
\(242\) 0 0
\(243\) −15.0727 11.2833i −0.966913 0.723822i
\(244\) 0 0
\(245\) −6.60928 + 18.3201i −0.422252 + 1.17043i
\(246\) 0 0
\(247\) 1.26936 + 17.7480i 0.0807674 + 1.12928i
\(248\) 0 0
\(249\) 0.574907 + 0.663478i 0.0364333 + 0.0420462i
\(250\) 0 0
\(251\) −14.4791 6.61237i −0.913910 0.417369i −0.0977611 0.995210i \(-0.531168\pi\)
−0.816149 + 0.577841i \(0.803895\pi\)
\(252\) 0 0
\(253\) 18.4132 + 17.9392i 1.15763 + 1.12783i
\(254\) 0 0
\(255\) 7.25780 + 12.9580i 0.454501 + 0.811464i
\(256\) 0 0
\(257\) −0.429263 + 6.00188i −0.0267767 + 0.374387i 0.966341 + 0.257265i \(0.0828214\pi\)
−0.993118 + 0.117122i \(0.962633\pi\)
\(258\) 0 0
\(259\) −20.7826 18.0082i −1.29137 1.11897i
\(260\) 0 0
\(261\) 7.67573 2.25380i 0.475116 0.139507i
\(262\) 0 0
\(263\) 16.9052 22.5827i 1.04242 1.39251i 0.126122 0.992015i \(-0.459747\pi\)
0.916298 0.400496i \(-0.131162\pi\)
\(264\) 0 0
\(265\) 2.38018 1.56611i 0.146213 0.0962054i
\(266\) 0 0
\(267\) −21.9527 + 4.77552i −1.34349 + 0.292257i
\(268\) 0 0
\(269\) −11.2892 1.62315i −0.688316 0.0989649i −0.210723 0.977546i \(-0.567582\pi\)
−0.477593 + 0.878581i \(0.658491\pi\)
\(270\) 0 0
\(271\) 2.28151 1.46624i 0.138592 0.0890677i −0.469507 0.882928i \(-0.655569\pi\)
0.608100 + 0.793861i \(0.291932\pi\)
\(272\) 0 0
\(273\) −15.0299 27.5252i −0.909652 1.66590i
\(274\) 0 0
\(275\) −25.5474 + 8.10280i −1.54057 + 0.488617i
\(276\) 0 0
\(277\) 2.52597 + 2.52597i 0.151771 + 0.151771i 0.778908 0.627138i \(-0.215774\pi\)
−0.627138 + 0.778908i \(0.715774\pi\)
\(278\) 0 0
\(279\) 1.64566 5.60459i 0.0985228 0.335538i
\(280\) 0 0
\(281\) −0.829869 1.29130i −0.0495058 0.0770326i 0.815618 0.578590i \(-0.196397\pi\)
−0.865124 + 0.501558i \(0.832761\pi\)
\(282\) 0 0
\(283\) 3.63680 2.72247i 0.216185 0.161834i −0.485697 0.874127i \(-0.661434\pi\)
0.701882 + 0.712293i \(0.252343\pi\)
\(284\) 0 0
\(285\) −23.7059 10.5192i −1.40422 0.623103i
\(286\) 0 0
\(287\) −39.4798 14.7252i −2.33042 0.869202i
\(288\) 0 0
\(289\) 8.36031 1.20203i 0.491783 0.0707077i
\(290\) 0 0
\(291\) 2.42685 + 8.26509i 0.142264 + 0.484508i
\(292\) 0 0
\(293\) 9.68589 0.692748i 0.565856 0.0404708i 0.214519 0.976720i \(-0.431182\pi\)
0.351337 + 0.936249i \(0.385727\pi\)
\(294\) 0 0
\(295\) −13.8860 + 1.14352i −0.808473 + 0.0665785i
\(296\) 0 0
\(297\) 3.58345 + 9.60759i 0.207933 + 0.557489i
\(298\) 0 0
\(299\) 4.49799 16.0920i 0.260125 0.930625i
\(300\) 0 0
\(301\) −17.1747 + 37.6074i −0.989934 + 2.16765i
\(302\) 0 0
\(303\) −23.3072 1.66696i −1.33896 0.0957646i
\(304\) 0 0
\(305\) −3.85548 16.8480i −0.220764 0.964715i
\(306\) 0 0
\(307\) 28.8262 + 15.7403i 1.64520 + 0.898345i 0.989702 + 0.143145i \(0.0457214\pi\)
0.655494 + 0.755200i \(0.272460\pi\)
\(308\) 0 0
\(309\) 1.02211 + 7.10892i 0.0581457 + 0.404412i
\(310\) 0 0
\(311\) −6.34921 13.9028i −0.360031 0.788357i −0.999804 0.0197935i \(-0.993699\pi\)
0.639774 0.768563i \(-0.279028\pi\)
\(312\) 0 0
\(313\) 4.50699 + 20.7183i 0.254750 + 1.17107i 0.909658 + 0.415359i \(0.136344\pi\)
−0.654908 + 0.755709i \(0.727292\pi\)
\(314\) 0 0
\(315\) 19.1219 0.205870i 1.07740 0.0115994i
\(316\) 0 0
\(317\) −13.5407 2.94559i −0.760520 0.165441i −0.184450 0.982842i \(-0.559051\pi\)
−0.576069 + 0.817401i \(0.695414\pi\)
\(318\) 0 0
\(319\) −19.0689 5.59912i −1.06765 0.313491i
\(320\) 0 0
\(321\) 8.05664i 0.449678i
\(322\) 0 0
\(323\) 10.5618 10.5618i 0.587673 0.587673i
\(324\) 0 0
\(325\) 12.5803 + 12.0499i 0.697827 + 0.668406i
\(326\) 0 0
\(327\) 2.71058 12.4603i 0.149896 0.689059i
\(328\) 0 0
\(329\) 5.14410 35.7780i 0.283603 1.97250i
\(330\) 0 0
\(331\) −24.9493 16.0340i −1.37134 0.881306i −0.372433 0.928059i \(-0.621476\pi\)
−0.998906 + 0.0467531i \(0.985113\pi\)
\(332\) 0 0
\(333\) −5.23146 + 14.0261i −0.286682 + 0.768625i
\(334\) 0 0
\(335\) 4.38811 + 14.3704i 0.239748 + 0.785138i
\(336\) 0 0
\(337\) −1.36294 + 2.49603i −0.0742439 + 0.135968i −0.912164 0.409825i \(-0.865590\pi\)
0.837920 + 0.545793i \(0.183771\pi\)
\(338\) 0 0
\(339\) −3.95147 + 4.56024i −0.214614 + 0.247678i
\(340\) 0 0
\(341\) −10.9669 + 9.50290i −0.593892 + 0.514611i
\(342\) 0 0
\(343\) −6.34994 + 2.36840i −0.342864 + 0.127882i
\(344\) 0 0
\(345\) 17.6261 + 16.8063i 0.948959 + 0.904822i
\(346\) 0 0
\(347\) 22.5678 8.41735i 1.21150 0.451867i 0.339145 0.940734i \(-0.389862\pi\)
0.872358 + 0.488867i \(0.162590\pi\)
\(348\) 0 0
\(349\) 7.08349 6.13788i 0.379171 0.328553i −0.444336 0.895860i \(-0.646560\pi\)
0.823506 + 0.567307i \(0.192015\pi\)
\(350\) 0 0
\(351\) 4.36454 5.03694i 0.232962 0.268852i
\(352\) 0 0
\(353\) 13.0434 23.8873i 0.694232 1.27139i −0.258039 0.966135i \(-0.583076\pi\)
0.952270 0.305256i \(-0.0987419\pi\)
\(354\) 0 0
\(355\) −14.4379 + 27.1315i −0.766285 + 1.43999i
\(356\) 0 0
\(357\) −9.20012 + 24.6665i −0.486922 + 1.30549i
\(358\) 0 0
\(359\) 6.59810 + 4.24034i 0.348234 + 0.223797i 0.703051 0.711139i \(-0.251820\pi\)
−0.354817 + 0.934936i \(0.615457\pi\)
\(360\) 0 0
\(361\) −1.00794 + 7.01037i −0.0530494 + 0.368967i
\(362\) 0 0
\(363\) −8.56058 + 39.3523i −0.449314 + 2.06546i
\(364\) 0 0
\(365\) −7.11657 0.945127i −0.372498 0.0494702i
\(366\) 0 0
\(367\) 0.653928 0.653928i 0.0341348 0.0341348i −0.689833 0.723968i \(-0.742316\pi\)
0.723968 + 0.689833i \(0.242316\pi\)
\(368\) 0 0
\(369\) 22.9382i 1.19411i
\(370\) 0 0
\(371\) 4.84582 + 1.42286i 0.251582 + 0.0738712i
\(372\) 0 0
\(373\) 0.534834 + 0.116346i 0.0276926 + 0.00602416i 0.226390 0.974037i \(-0.427308\pi\)
−0.198698 + 0.980061i \(0.563671\pi\)
\(374\) 0 0
\(375\) −24.1189 + 7.93648i −1.24549 + 0.409838i
\(376\) 0 0
\(377\) 2.74578 + 12.6222i 0.141415 + 0.650074i
\(378\) 0 0
\(379\) −2.08835 4.57284i −0.107271 0.234891i 0.848383 0.529384i \(-0.177577\pi\)
−0.955654 + 0.294492i \(0.904849\pi\)
\(380\) 0 0
\(381\) 5.34743 + 37.1922i 0.273957 + 1.90541i
\(382\) 0 0
\(383\) 31.2782 + 17.0792i 1.59824 + 0.872706i 0.997302 + 0.0734107i \(0.0233884\pi\)
0.600939 + 0.799295i \(0.294793\pi\)
\(384\) 0 0
\(385\) −40.2401 25.2528i −2.05082 1.28700i
\(386\) 0 0
\(387\) 22.4491 + 1.60559i 1.14115 + 0.0816168i
\(388\) 0 0
\(389\) −3.31320 + 7.25490i −0.167986 + 0.367838i −0.974838 0.222916i \(-0.928442\pi\)
0.806852 + 0.590754i \(0.201170\pi\)
\(390\) 0 0
\(391\) −12.6817 + 5.99257i −0.641339 + 0.303057i
\(392\) 0 0
\(393\) 6.44897 + 17.2903i 0.325307 + 0.872183i
\(394\) 0 0
\(395\) −0.370734 4.50188i −0.0186537 0.226514i
\(396\) 0 0
\(397\) −15.8118 + 1.13088i −0.793572 + 0.0567574i −0.462237 0.886756i \(-0.652953\pi\)
−0.331334 + 0.943514i \(0.607499\pi\)
\(398\) 0 0
\(399\) −12.9516 44.1092i −0.648393 2.20822i
\(400\) 0 0
\(401\) 24.5180 3.52515i 1.22437 0.176038i 0.500354 0.865821i \(-0.333203\pi\)
0.724016 + 0.689783i \(0.242294\pi\)
\(402\) 0 0
\(403\) 8.83719 + 3.29610i 0.440212 + 0.164191i
\(404\) 0 0
\(405\) 8.69654 + 22.5712i 0.432134 + 1.12157i
\(406\) 0 0
\(407\) 29.7721 22.2871i 1.47575 1.10473i
\(408\) 0 0
\(409\) 14.0692 + 21.8921i 0.695676 + 1.08249i 0.991856 + 0.127361i \(0.0406507\pi\)
−0.296180 + 0.955132i \(0.595713\pi\)
\(410\) 0 0
\(411\) 1.95683 6.66435i 0.0965233 0.328728i
\(412\) 0 0
\(413\) −17.4635 17.4635i −0.859321 0.859321i
\(414\) 0 0
\(415\) −0.132218 0.854212i −0.00649034 0.0419316i
\(416\) 0 0
\(417\) −22.9793 42.0835i −1.12530 2.06084i
\(418\) 0 0
\(419\) 18.6995 12.0175i 0.913532 0.587091i 0.00275771 0.999996i \(-0.499122\pi\)
0.910774 + 0.412905i \(0.135486\pi\)
\(420\) 0 0
\(421\) 25.6379 + 3.68617i 1.24952 + 0.179653i 0.735142 0.677913i \(-0.237115\pi\)
0.514373 + 0.857566i \(0.328025\pi\)
\(422\) 0 0
\(423\) −19.2273 + 4.18264i −0.934863 + 0.203367i
\(424\) 0 0
\(425\) 0.728942 14.6052i 0.0353589 0.708456i
\(426\) 0 0
\(427\) 18.3595 24.5255i 0.888481 1.18687i
\(428\) 0 0
\(429\) 40.6951 11.9491i 1.96478 0.576910i
\(430\) 0 0
\(431\) 0.631605 + 0.547288i 0.0304233 + 0.0263620i 0.669940 0.742415i \(-0.266320\pi\)
−0.639516 + 0.768777i \(0.720865\pi\)
\(432\) 0 0
\(433\) −0.102678 + 1.43562i −0.00493437 + 0.0689915i −0.999323 0.0368007i \(-0.988283\pi\)
0.994388 + 0.105792i \(0.0337379\pi\)
\(434\) 0 0
\(435\) −18.1214 5.10967i −0.868854 0.244990i
\(436\) 0 0
\(437\) 11.4569 21.6480i 0.548056 1.03557i
\(438\) 0 0
\(439\) 18.1653 + 8.29582i 0.866984 + 0.395938i 0.798701 0.601728i \(-0.205521\pi\)
0.0682824 + 0.997666i \(0.478248\pi\)
\(440\) 0 0
\(441\) 12.3069 + 14.2029i 0.586041 + 0.676327i
\(442\) 0 0
\(443\) −1.86383 26.0598i −0.0885533 1.23814i −0.826367 0.563132i \(-0.809596\pi\)
0.737814 0.675004i \(-0.235858\pi\)
\(444\) 0 0
\(445\) 20.8074 + 7.50661i 0.986366 + 0.355847i
\(446\) 0 0
\(447\) −39.5436 29.6019i −1.87035 1.40012i
\(448\) 0 0
\(449\) −13.2972 + 6.07261i −0.627532 + 0.286584i −0.703685 0.710512i \(-0.748463\pi\)
0.0761531 + 0.997096i \(0.475736\pi\)
\(450\) 0 0
\(451\) 30.8086 47.9392i 1.45072 2.25737i
\(452\) 0 0
\(453\) 31.8334 + 42.5245i 1.49566 + 1.99797i
\(454\) 0 0
\(455\) −1.87113 + 30.8216i −0.0877200 + 1.44494i
\(456\) 0 0
\(457\) −20.3587 + 11.1167i −0.952340 + 0.520017i −0.878756 0.477272i \(-0.841626\pi\)
−0.0735844 + 0.997289i \(0.523444\pi\)
\(458\) 0 0
\(459\) −5.59480 −0.261143
\(460\) 0 0
\(461\) 1.56783 0.0730213 0.0365106 0.999333i \(-0.488376\pi\)
0.0365106 + 0.999333i \(0.488376\pi\)
\(462\) 0 0
\(463\) 18.4273 10.0621i 0.856389 0.467624i 0.00985076 0.999951i \(-0.496864\pi\)
0.846538 + 0.532328i \(0.178683\pi\)
\(464\) 0 0
\(465\) −10.2922 + 9.11412i −0.477292 + 0.422657i
\(466\) 0 0
\(467\) 4.09069 + 5.46452i 0.189295 + 0.252868i 0.885141 0.465322i \(-0.154062\pi\)
−0.695847 + 0.718190i \(0.744971\pi\)
\(468\) 0 0
\(469\) −14.3992 + 22.4055i −0.664891 + 1.03459i
\(470\) 0 0
\(471\) 34.5801 15.7922i 1.59337 0.727666i
\(472\) 0 0
\(473\) −44.7606 33.5073i −2.05809 1.54067i
\(474\) 0 0
\(475\) 14.2648 + 21.1796i 0.654515 + 0.971787i
\(476\) 0 0
\(477\) −0.196134 2.74231i −0.00898035 0.125562i
\(478\) 0 0
\(479\) −17.0300 19.6536i −0.778120 0.897998i 0.218852 0.975758i \(-0.429769\pi\)
−0.996972 + 0.0777600i \(0.975223\pi\)
\(480\) 0 0
\(481\) −21.9878 10.0415i −1.00256 0.457853i
\(482\) 0 0
\(483\) −2.51798 + 43.0960i −0.114572 + 1.96094i
\(484\) 0 0
\(485\) 2.30172 8.16303i 0.104516 0.370664i
\(486\) 0 0
\(487\) −2.39737 + 33.5196i −0.108635 + 1.51892i 0.592314 + 0.805707i \(0.298214\pi\)
−0.700949 + 0.713211i \(0.747240\pi\)
\(488\) 0 0
\(489\) 18.9963 + 16.4604i 0.859041 + 0.744363i
\(490\) 0 0
\(491\) −21.8275 + 6.40913i −0.985060 + 0.289240i −0.734312 0.678812i \(-0.762495\pi\)
−0.250749 + 0.968052i \(0.580677\pi\)
\(492\) 0 0
\(493\) 6.49826 8.68067i 0.292667 0.390958i
\(494\) 0 0
\(495\) −5.22499 + 25.3287i −0.234846 + 1.13844i
\(496\) 0 0
\(497\) −53.2327 + 11.5801i −2.38781 + 0.519437i
\(498\) 0 0
\(499\) −15.0357 2.16181i −0.673092 0.0967760i −0.202710 0.979239i \(-0.564975\pi\)
−0.470382 + 0.882463i \(0.655884\pi\)
\(500\) 0 0
\(501\) −34.8767 + 22.4139i −1.55817 + 1.00138i
\(502\) 0 0
\(503\) 18.9326 + 34.6726i 0.844165 + 1.54597i 0.837790 + 0.545993i \(0.183848\pi\)
0.00637548 + 0.999980i \(0.497971\pi\)
\(504\) 0 0
\(505\) 18.5652 + 13.5884i 0.826143 + 0.604675i
\(506\) 0 0
\(507\) 1.38351 + 1.38351i 0.0614438 + 0.0614438i
\(508\) 0 0
\(509\) −3.33427 + 11.3555i −0.147789 + 0.503322i −0.999796 0.0202081i \(-0.993567\pi\)
0.852007 + 0.523530i \(0.175385\pi\)
\(510\) 0 0
\(511\) −6.87982 10.7052i −0.304346 0.473571i
\(512\) 0 0
\(513\) 7.82105 5.85477i 0.345308 0.258494i
\(514\) 0 0
\(515\) 2.86814 6.46362i 0.126386 0.284821i
\(516\) 0 0
\(517\) 45.8015 + 17.0831i 2.01435 + 0.751313i
\(518\) 0 0
\(519\) −18.9458 + 2.72399i −0.831628 + 0.119570i
\(520\) 0 0
\(521\) −4.63767 15.7944i −0.203180 0.691967i −0.996532 0.0832049i \(-0.973484\pi\)
0.793352 0.608763i \(-0.208334\pi\)
\(522\) 0 0
\(523\) −13.0794 + 0.935457i −0.571922 + 0.0409047i −0.354306 0.935130i \(-0.615283\pi\)
−0.217617 + 0.976034i \(0.569828\pi\)
\(524\) 0 0
\(525\) −38.3777 23.5120i −1.67494 1.02615i
\(526\) 0 0
\(527\) −2.76692 7.41839i −0.120529 0.323150i
\(528\) 0 0
\(529\) −16.9836 + 15.5099i −0.738417 + 0.674344i
\(530\) 0 0
\(531\) −5.58505 + 12.2296i −0.242371 + 0.530717i
\(532\) 0 0
\(533\) −36.9442 2.64230i −1.60023 0.114451i
\(534\) 0 0
\(535\) 4.21656 6.71905i 0.182298 0.290490i
\(536\) 0 0
\(537\) 12.0634 + 6.58710i 0.520573 + 0.284254i
\(538\) 0 0
\(539\) −6.64437 46.2126i −0.286193 1.99052i
\(540\) 0 0
\(541\) 3.85214 + 8.43500i 0.165616 + 0.362649i 0.974184 0.225753i \(-0.0724844\pi\)
−0.808568 + 0.588402i \(0.799757\pi\)
\(542\) 0 0
\(543\) 0.812713 + 3.73598i 0.0348768 + 0.160326i
\(544\) 0 0
\(545\) −8.78187 + 8.97302i −0.376174 + 0.384362i
\(546\) 0 0
\(547\) −16.0775 3.49744i −0.687423 0.149540i −0.144730 0.989471i \(-0.546231\pi\)
−0.542692 + 0.839932i \(0.682595\pi\)
\(548\) 0 0
\(549\) −16.0020 4.69862i −0.682950 0.200532i
\(550\) 0 0
\(551\) 18.9350i 0.806660i
\(552\) 0 0
\(553\) 5.66172 5.66172i 0.240761 0.240761i
\(554\) 0 0
\(555\) 27.9763 21.4166i 1.18753 0.909085i
\(556\) 0 0
\(557\) 0.755616 3.47351i 0.0320165 0.147177i −0.958364 0.285550i \(-0.907824\pi\)
0.990380 + 0.138373i \(0.0441872\pi\)
\(558\) 0 0
\(559\) −5.17194 + 35.9716i −0.218750 + 1.52144i
\(560\) 0 0
\(561\) −29.9518 19.2488i −1.26456 0.812686i
\(562\) 0 0
\(563\) −7.63159 + 20.4611i −0.321633 + 0.862332i 0.671031 + 0.741429i \(0.265852\pi\)
−0.992664 + 0.120903i \(0.961421\pi\)
\(564\) 0 0
\(565\) 5.68210 1.73508i 0.239048 0.0729952i
\(566\) 0 0
\(567\) −20.5482 + 37.6312i −0.862942 + 1.58036i
\(568\) 0 0
\(569\) 1.87113 2.15940i 0.0784420 0.0905268i −0.715172 0.698949i \(-0.753652\pi\)
0.793614 + 0.608422i \(0.208197\pi\)
\(570\) 0 0
\(571\) −9.12423 + 7.90619i −0.381837 + 0.330864i −0.824539 0.565805i \(-0.808565\pi\)
0.442702 + 0.896669i \(0.354020\pi\)
\(572\) 0 0
\(573\) 15.6794 5.84810i 0.655015 0.244308i
\(574\) 0 0
\(575\) −5.90395 23.2410i −0.246212 0.969216i
\(576\) 0 0
\(577\) 26.2294 9.78305i 1.09194 0.407274i 0.261969 0.965076i \(-0.415628\pi\)
0.829974 + 0.557802i \(0.188355\pi\)
\(578\) 0 0
\(579\) −28.1476 + 24.3900i −1.16977 + 1.01362i
\(580\) 0 0
\(581\) 1.00336 1.15794i 0.0416264 0.0480395i
\(582\) 0 0
\(583\) −3.27334 + 5.99467i −0.135568 + 0.248274i
\(584\) 0 0
\(585\) 16.0766 4.90912i 0.664686 0.202967i
\(586\) 0 0
\(587\) −7.36035 + 19.7339i −0.303794 + 0.814504i 0.691916 + 0.721978i \(0.256767\pi\)
−0.995710 + 0.0925260i \(0.970506\pi\)
\(588\) 0 0
\(589\) 11.6310 + 7.47479i 0.479247 + 0.307993i
\(590\) 0 0
\(591\) −2.96708 + 20.6365i −0.122049 + 0.848871i
\(592\) 0 0
\(593\) −0.152375 + 0.700456i −0.00625728 + 0.0287643i −0.980170 0.198160i \(-0.936503\pi\)
0.973912 + 0.226924i \(0.0728670\pi\)
\(594\) 0 0
\(595\) 20.5823 15.7563i 0.843790 0.645944i
\(596\) 0 0
\(597\) −25.9090 + 25.9090i −1.06039 + 1.06039i
\(598\) 0 0
\(599\) 1.85961i 0.0759815i 0.999278 + 0.0379907i \(0.0120957\pi\)
−0.999278 + 0.0379907i \(0.987904\pi\)
\(600\) 0 0
\(601\) 25.5142 + 7.49165i 1.04075 + 0.305591i 0.757073 0.653330i \(-0.226629\pi\)
0.283673 + 0.958921i \(0.408447\pi\)
\(602\) 0 0
\(603\) 14.1673 + 3.08191i 0.576938 + 0.125505i
\(604\) 0 0
\(605\) 27.7350 28.3387i 1.12759 1.15213i
\(606\) 0 0
\(607\) 1.31510 + 6.04540i 0.0533781 + 0.245375i 0.996103 0.0881954i \(-0.0281100\pi\)
−0.942725 + 0.333571i \(0.891746\pi\)
\(608\) 0 0
\(609\) −13.8640 30.3579i −0.561796 1.23016i
\(610\) 0 0
\(611\) −4.52173 31.4493i −0.182930 1.27230i
\(612\) 0 0
\(613\) 7.98737 + 4.36144i 0.322607 + 0.176157i 0.632389 0.774651i \(-0.282074\pi\)
−0.309782 + 0.950808i \(0.600256\pi\)
\(614\) 0 0
\(615\) 28.6966 45.7279i 1.15716 1.84393i
\(616\) 0 0
\(617\) −12.2932 0.879229i −0.494907 0.0353964i −0.178344 0.983968i \(-0.557074\pi\)
−0.316562 + 0.948572i \(0.602529\pi\)
\(618\) 0 0
\(619\) 6.64250 14.5450i 0.266984 0.584614i −0.727894 0.685689i \(-0.759501\pi\)
0.994879 + 0.101075i \(0.0322282\pi\)
\(620\) 0 0
\(621\) −8.76819 + 2.69924i −0.351855 + 0.108317i
\(622\) 0 0
\(623\) 13.7022 + 36.7371i 0.548968 + 1.47184i
\(624\) 0 0
\(625\) 24.2683 + 6.00414i 0.970732 + 0.240166i
\(626\) 0 0
\(627\) 62.0132 4.43527i 2.47657 0.177128i
\(628\) 0 0
\(629\) 5.71675 + 19.4695i 0.227942 + 0.776298i
\(630\) 0 0
\(631\) −10.8402 + 1.55859i −0.431543 + 0.0620465i −0.354664 0.934994i \(-0.615405\pi\)
−0.0768792 + 0.997040i \(0.524496\pi\)
\(632\) 0 0
\(633\) −52.7745 19.6839i −2.09760 0.782363i
\(634\) 0 0
\(635\) 15.0055 33.8161i 0.595473 1.34195i
\(636\) 0 0
\(637\) −24.2928 + 18.1854i −0.962517 + 0.720531i
\(638\) 0 0
\(639\) 16.0334 + 24.9485i 0.634273 + 0.986948i
\(640\) 0 0
\(641\) −7.17857 + 24.4480i −0.283537 + 0.965637i 0.687396 + 0.726283i \(0.258754\pi\)
−0.970932 + 0.239354i \(0.923064\pi\)
\(642\) 0 0
\(643\) −9.17426 9.17426i −0.361797 0.361797i 0.502677 0.864474i \(-0.332349\pi\)
−0.864474 + 0.502677i \(0.832349\pi\)
\(644\) 0 0
\(645\) −42.7442 31.2856i −1.68305 1.23187i
\(646\) 0 0
\(647\) −16.6546 30.5006i −0.654759 1.19910i −0.968363 0.249547i \(-0.919718\pi\)
0.313604 0.949554i \(-0.398464\pi\)
\(648\) 0 0
\(649\) 28.0981 18.0575i 1.10295 0.708821i
\(650\) 0 0
\(651\) −24.1205 3.46800i −0.945357 0.135922i
\(652\) 0 0
\(653\) −21.5314 + 4.68388i −0.842591 + 0.183294i −0.613089 0.790014i \(-0.710073\pi\)
−0.229502 + 0.973308i \(0.573710\pi\)
\(654\) 0 0
\(655\) 3.67087 17.7949i 0.143433 0.695305i
\(656\) 0 0
\(657\) −4.15141 + 5.54564i −0.161962 + 0.216356i
\(658\) 0 0
\(659\) 40.8529 11.9955i 1.59140 0.467278i 0.638264 0.769817i \(-0.279653\pi\)
0.953137 + 0.302540i \(0.0978345\pi\)
\(660\) 0 0
\(661\) 9.26694 + 8.02985i 0.360442 + 0.312325i 0.816190 0.577784i \(-0.196082\pi\)
−0.455747 + 0.890109i \(0.650628\pi\)
\(662\) 0 0
\(663\) −1.65088 + 23.0823i −0.0641147 + 0.896441i
\(664\) 0 0
\(665\) −12.2838 + 43.5645i −0.476347 + 1.68936i
\(666\) 0 0
\(667\) 5.99607 16.7395i 0.232169 0.648156i
\(668\) 0 0
\(669\) 18.3005 + 8.35757i 0.707539 + 0.323122i
\(670\) 0 0
\(671\) 27.1323 + 31.3124i 1.04743 + 1.20880i
\(672\) 0 0
\(673\) −1.23559 17.2758i −0.0476285 0.665933i −0.964050 0.265720i \(-0.914390\pi\)
0.916422 0.400214i \(-0.131064\pi\)
\(674\) 0 0
\(675\) 1.83146 9.38785i 0.0704928 0.361338i
\(676\) 0 0
\(677\) 34.4064 + 25.7563i 1.32235 + 0.989896i 0.999049 + 0.0435979i \(0.0138820\pi\)
0.323297 + 0.946298i \(0.395209\pi\)
\(678\) 0 0
\(679\) 13.6751 6.24522i 0.524803 0.239669i
\(680\) 0 0
\(681\) −14.6832 + 22.8475i −0.562662 + 0.875519i
\(682\) 0 0
\(683\) 19.6794 + 26.2886i 0.753012 + 1.00591i 0.999326 + 0.0367160i \(0.0116897\pi\)
−0.246314 + 0.969190i \(0.579219\pi\)
\(684\) 0 0
\(685\) −5.11984 + 4.53378i −0.195619 + 0.173227i
\(686\) 0 0
\(687\) −34.0051 + 18.5682i −1.29737 + 0.708420i
\(688\) 0 0
\(689\) 4.43936 0.169126
\(690\) 0 0
\(691\) −38.8556 −1.47814 −0.739069 0.673630i \(-0.764734\pi\)
−0.739069 + 0.673630i \(0.764734\pi\)
\(692\) 0 0
\(693\) −40.2345 + 21.9697i −1.52838 + 0.834561i
\(694\) 0 0
\(695\) −2.86078 + 47.1232i −0.108516 + 1.78749i
\(696\) 0 0
\(697\) 18.6328 + 24.8905i 0.705768 + 0.942795i
\(698\) 0 0
\(699\) −0.0892419 + 0.138863i −0.00337544 + 0.00525228i
\(700\) 0 0
\(701\) −12.1821 + 5.56340i −0.460113 + 0.210127i −0.631966 0.774996i \(-0.717752\pi\)
0.171853 + 0.985123i \(0.445025\pi\)
\(702\) 0 0
\(703\) −28.3656 21.2342i −1.06983 0.800865i
\(704\) 0 0
\(705\) 43.5628 + 15.7160i 1.64067 + 0.591898i
\(706\) 0 0
\(707\) 2.90928 + 40.6771i 0.109415 + 1.52982i
\(708\) 0 0
\(709\) −4.77476 5.51037i −0.179320 0.206946i 0.658973 0.752167i \(-0.270991\pi\)
−0.838293 + 0.545221i \(0.816446\pi\)
\(710\) 0 0
\(711\) −3.96487 1.81069i −0.148694 0.0679063i
\(712\) 0 0
\(713\) −7.91537 10.2912i −0.296433 0.385409i
\(714\) 0 0
\(715\) −40.1925 11.3330i −1.50312 0.423832i
\(716\) 0 0
\(717\) 3.52224 49.2474i 0.131541 1.83918i
\(718\) 0 0
\(719\) 14.4960 + 12.5609i 0.540610 + 0.468441i 0.881847 0.471536i \(-0.156300\pi\)
−0.341237 + 0.939977i \(0.610846\pi\)
\(720\) 0 0
\(721\) 12.0267 3.53137i 0.447899 0.131515i
\(722\) 0 0
\(723\) 20.3889 27.2364i 0.758273 1.01293i
\(724\) 0 0
\(725\) 12.4386 + 13.7454i 0.461958 + 0.510493i
\(726\) 0 0
\(727\) −2.37463 + 0.516568i −0.0880700 + 0.0191585i −0.256384 0.966575i \(-0.582531\pi\)
0.168314 + 0.985733i \(0.446168\pi\)
\(728\) 0 0
\(729\) 10.2023 + 1.46687i 0.377864 + 0.0543286i
\(730\) 0 0
\(731\) 25.6641 16.4933i 0.949219 0.610026i
\(732\) 0 0
\(733\) −20.3552 37.2777i −0.751836 1.37688i −0.920314 0.391180i \(-0.872067\pi\)
0.168478 0.985705i \(-0.446115\pi\)
\(734\) 0 0
\(735\) −6.76565 43.7102i −0.249555 1.61228i
\(736\) 0 0
\(737\) −25.4693 25.4693i −0.938175 0.938175i
\(738\) 0 0
\(739\) −3.22051 + 10.9680i −0.118468 + 0.403466i −0.997280 0.0737024i \(-0.976519\pi\)
0.878812 + 0.477168i \(0.158337\pi\)
\(740\) 0 0
\(741\) −21.8470 33.9946i −0.802570 1.24882i
\(742\) 0 0
\(743\) −7.93373 + 5.93912i −0.291060 + 0.217885i −0.734822 0.678260i \(-0.762734\pi\)
0.443762 + 0.896145i \(0.353644\pi\)
\(744\) 0 0
\(745\) 17.4858 + 45.3831i 0.640631 + 1.66271i
\(746\) 0 0
\(747\) −0.781491 0.291481i −0.0285933 0.0106647i
\(748\) 0 0
\(749\) 13.9178 2.00108i 0.508545 0.0731177i
\(750\) 0 0
\(751\) −3.01659 10.2736i −0.110077 0.374888i 0.885967 0.463748i \(-0.153496\pi\)
−0.996044 + 0.0888604i \(0.971678\pi\)
\(752\) 0 0
\(753\) 36.0573 2.57887i 1.31400 0.0939793i
\(754\) 0 0
\(755\) −4.29254 52.1249i −0.156221 1.89702i
\(756\) 0 0
\(757\) −16.8754 45.2446i −0.613345 1.64444i −0.755925 0.654659i \(-0.772812\pi\)
0.142580 0.989783i \(-0.454460\pi\)
\(758\) 0 0
\(759\) −56.2272 15.7164i −2.04092 0.570470i
\(760\) 0 0
\(761\) −19.7963 + 43.3479i −0.717617 + 1.57136i 0.0995982 + 0.995028i \(0.468244\pi\)
−0.817215 + 0.576333i \(0.804483\pi\)
\(762\) 0 0
\(763\) −22.1984 1.58766i −0.803636 0.0574772i
\(764\) 0 0
\(765\) −11.9521 7.50058i −0.432129 0.271184i
\(766\) 0 0
\(767\) −19.0536 10.4040i −0.687985 0.375668i
\(768\) 0 0
\(769\) −2.07172 14.4092i −0.0747083 0.519607i −0.992471 0.122479i \(-0.960916\pi\)
0.917763 0.397129i \(-0.129993\pi\)
\(770\) 0 0
\(771\) −5.67681 12.4305i −0.204445 0.447673i
\(772\) 0 0
\(773\) −2.41399 11.0969i −0.0868252 0.399129i 0.913138 0.407650i \(-0.133651\pi\)
−0.999964 + 0.00852039i \(0.997288\pi\)
\(774\) 0 0
\(775\) 13.3535 2.21437i 0.479672 0.0795424i
\(776\) 0 0
\(777\) 61.0250 + 13.2752i 2.18926 + 0.476244i
\(778\) 0 0
\(779\) −52.0941 15.2962i −1.86647 0.548044i
\(780\) 0 0
\(781\) 73.6755i 2.63632i
\(782\) 0 0
\(783\) 5.01515 5.01515i 0.179227 0.179227i
\(784\) 0 0
\(785\) −37.1041 4.92767i −1.32430 0.175876i
\(786\) 0 0
\(787\) 0.515542 2.36991i 0.0183771 0.0844782i −0.967045 0.254606i \(-0.918054\pi\)
0.985422 + 0.170128i \(0.0544180\pi\)
\(788\) 0 0
\(789\) −9.11738 + 63.4127i −0.324587 + 2.25755i
\(790\) 0 0
\(791\) 8.85923 + 5.69348i 0.314998 + 0.202437i
\(792\) 0 0
\(793\) 9.41092 25.2317i 0.334192 0.896002i
\(794\) 0 0
\(795\) −3.03975 + 5.71224i −0.107809 + 0.202592i
\(796\) 0 0
\(797\) 11.2615 20.6239i 0.398903 0.730536i −0.598609 0.801042i \(-0.704280\pi\)
0.997511 + 0.0705058i \(0.0224613\pi\)
\(798\) 0 0
\(799\) −17.4662 + 20.1571i −0.617910 + 0.713106i
\(800\) 0 0
\(801\) 16.1312 13.9777i 0.569966 0.493879i
\(802\) 0 0
\(803\) 16.1246 6.01417i 0.569025 0.212235i
\(804\) 0 0
\(805\) 24.6549 34.6233i 0.868971 1.22031i
\(806\) 0 0
\(807\) 24.2689 9.05184i 0.854306 0.318640i
\(808\) 0 0
\(809\) 20.5641 17.8189i 0.722994 0.626478i −0.213589 0.976924i \(-0.568515\pi\)
0.936583 + 0.350446i \(0.113970\pi\)
\(810\) 0 0
\(811\) −9.60647 + 11.0865i −0.337329 + 0.389298i −0.898917 0.438118i \(-0.855645\pi\)
0.561588 + 0.827417i \(0.310190\pi\)
\(812\) 0 0
\(813\) −2.95178 + 5.40579i −0.103524 + 0.189589i
\(814\) 0 0
\(815\) −7.22768 23.6695i −0.253175 0.829108i
\(816\) 0 0
\(817\) −18.6165 + 49.9128i −0.651309 + 1.74623i
\(818\) 0 0
\(819\) 25.0658 + 16.1088i 0.875869 + 0.562887i
\(820\) 0 0
\(821\) 6.82727 47.4847i 0.238273 1.65723i −0.422292 0.906460i \(-0.638774\pi\)
0.660566 0.750768i \(-0.270316\pi\)
\(822\) 0 0
\(823\) 6.92018 31.8115i 0.241222 1.10888i −0.684008 0.729475i \(-0.739765\pi\)
0.925230 0.379406i \(-0.123872\pi\)
\(824\) 0 0
\(825\) 42.1034 43.9567i 1.46585 1.53038i
\(826\) 0 0
\(827\) 3.20948 3.20948i 0.111605 0.111605i −0.649099 0.760704i \(-0.724854\pi\)
0.760704 + 0.649099i \(0.224854\pi\)
\(828\) 0 0
\(829\) 2.07144i 0.0719442i −0.999353 0.0359721i \(-0.988547\pi\)
0.999353 0.0359721i \(-0.0114527\pi\)
\(830\) 0 0
\(831\) −7.78416 2.28564i −0.270030 0.0792879i
\(832\) 0 0
\(833\) 24.8914 + 5.41480i 0.862437 + 0.187612i
\(834\) 0 0
\(835\) 40.8170 0.439441i 1.41253 0.0152075i
\(836\) 0 0
\(837\) −1.10082 5.06038i −0.0380498 0.174912i
\(838\) 0 0
\(839\) 21.5980 + 47.2930i 0.745645 + 1.63273i 0.774040 + 0.633137i \(0.218233\pi\)
−0.0283949 + 0.999597i \(0.509040\pi\)
\(840\) 0 0
\(841\) −2.17084 15.0985i −0.0748565 0.520638i
\(842\) 0 0
\(843\) 3.05959 + 1.67066i 0.105378 + 0.0575407i
\(844\) 0 0
\(845\) −0.429735 1.87790i −0.0147833 0.0646016i
\(846\) 0 0
\(847\) 70.1072 + 5.01416i 2.40891 + 0.172289i
\(848\) 0 0
\(849\) −4.28593 + 9.38487i −0.147093 + 0.322088i
\(850\) 0 0
\(851\) 18.3525 + 27.7545i 0.629114 + 0.951413i
\(852\) 0 0
\(853\) 7.07203 + 18.9608i 0.242142 + 0.649207i 0.999995 0.00321843i \(-0.00102446\pi\)
−0.757853 + 0.652425i \(0.773752\pi\)
\(854\) 0 0
\(855\) 24.5571 2.02230i 0.839836 0.0691613i
\(856\) 0 0
\(857\) −10.7245 + 0.767030i −0.366341 + 0.0262013i −0.253297 0.967389i \(-0.581515\pi\)
−0.113045 + 0.993590i \(0.536060\pi\)
\(858\) 0 0
\(859\) 7.25059 + 24.6933i 0.247387 + 0.842523i 0.985764 + 0.168135i \(0.0537744\pi\)
−0.738377 + 0.674388i \(0.764407\pi\)
\(860\) 0 0
\(861\) 94.7203 13.6187i 3.22806 0.464125i
\(862\) 0 0
\(863\) 0.250868 + 0.0935691i 0.00853966 + 0.00318513i 0.353730 0.935347i \(-0.384913\pi\)
−0.345191 + 0.938533i \(0.612186\pi\)
\(864\) 0 0
\(865\) 17.2260 + 7.64381i 0.585702 + 0.259897i
\(866\) 0 0
\(867\) −15.3559 + 11.4953i −0.521515 + 0.390401i
\(868\) 0 0
\(869\) 5.85432 + 9.10951i 0.198594 + 0.309019i
\(870\) 0 0
\(871\) −6.59570 + 22.4629i −0.223487 + 0.761126i
\(872\) 0 0
\(873\) −5.78695 5.78695i −0.195859 0.195859i
\(874\) 0 0
\(875\) 19.7008 + 39.6940i 0.666008 + 1.34190i
\(876\) 0 0
\(877\) −20.9719 38.4071i −0.708170 1.29692i −0.945543 0.325498i \(-0.894468\pi\)
0.237373 0.971419i \(-0.423714\pi\)
\(878\) 0 0
\(879\) −18.5524 + 11.9229i −0.625758 + 0.402151i
\(880\) 0 0
\(881\) −51.8686 7.45758i −1.74750 0.251252i −0.806878 0.590718i \(-0.798845\pi\)
−0.940618 + 0.339466i \(0.889754\pi\)
\(882\) 0 0
\(883\) 36.1409 7.86196i 1.21624 0.264576i 0.441734 0.897146i \(-0.354364\pi\)
0.774503 + 0.632570i \(0.218000\pi\)
\(884\) 0 0
\(885\) 26.4337 17.3928i 0.888558 0.584653i
\(886\) 0 0
\(887\) −5.48215 + 7.32330i −0.184073 + 0.245892i −0.883080 0.469222i \(-0.844534\pi\)
0.699008 + 0.715114i \(0.253625\pi\)
\(888\) 0 0
\(889\) 62.9211 18.4753i 2.11031 0.619642i
\(890\) 0 0
\(891\) −43.8222 37.9722i −1.46810 1.27212i
\(892\) 0 0
\(893\) 3.32258 46.4557i 0.111186 1.55458i
\(894\) 0 0
\(895\) −6.61312 11.8070i −0.221052 0.394666i
\(896\) 0 0
\(897\) 8.54891 + 36.9711i 0.285440 + 1.23443i
\(898\) 0 0
\(899\) 9.13006 + 4.16956i 0.304505 + 0.139063i
\(900\) 0 0
\(901\) −2.44042 2.81640i −0.0813022 0.0938278i
\(902\) 0 0
\(903\) −6.69827 93.6540i −0.222904 3.11661i
\(904\) 0 0
\(905\) 1.27750 3.54107i 0.0424654 0.117709i
\(906\) 0 0
\(907\) −34.7268 25.9961i −1.15308 0.863187i −0.160776 0.986991i \(-0.551400\pi\)
−0.992307 + 0.123804i \(0.960491\pi\)
\(908\) 0 0
\(909\) 20.1940 9.22230i 0.669793 0.305884i
\(910\) 0 0
\(911\) 16.4956 25.6677i 0.546524 0.850409i −0.452623 0.891702i \(-0.649512\pi\)
0.999147 + 0.0412936i \(0.0131479\pi\)
\(912\) 0 0
\(913\) 1.24177 + 1.65881i 0.0410966 + 0.0548986i
\(914\) 0 0
\(915\) 26.0223 + 29.3861i 0.860271 + 0.971474i
\(916\) 0 0
\(917\) 28.2672 15.4351i 0.933465 0.509710i
\(918\) 0 0
\(919\) −8.67897 −0.286293 −0.143146 0.989702i \(-0.545722\pi\)
−0.143146 + 0.989702i \(0.545722\pi\)
\(920\) 0 0
\(921\) −74.5896 −2.45781
\(922\) 0 0
\(923\) −42.0291 + 22.9496i −1.38340 + 0.755395i
\(924\) 0 0
\(925\) −34.5403 + 3.21915i −1.13568 + 0.105845i
\(926\) 0 0
\(927\) −4.08916 5.46247i −0.134306 0.179411i
\(928\) 0 0
\(929\) 3.52606 5.48666i 0.115686 0.180011i −0.778582 0.627543i \(-0.784061\pi\)
0.894268 + 0.447532i \(0.147697\pi\)
\(930\) 0 0
\(931\) −40.4625 + 18.4786i −1.32610 + 0.605611i
\(932\) 0 0
\(933\) 27.7874 + 20.8014i 0.909719 + 0.681007i
\(934\) 0 0
\(935\) 14.9049 + 31.7288i 0.487443 + 1.03764i
\(936\) 0 0
\(937\) 0.473246 + 6.61684i 0.0154603 + 0.216163i 0.999309 + 0.0371622i \(0.0118318\pi\)
−0.983849 + 0.179001i \(0.942714\pi\)
\(938\) 0 0
\(939\) −31.5334 36.3914i −1.02905 1.18759i
\(940\) 0 0
\(941\) 22.1158 + 10.1000i 0.720955 + 0.329249i 0.741881 0.670532i \(-0.233934\pi\)
−0.0209258 + 0.999781i \(0.506661\pi\)
\(942\) 0 0
\(943\) 41.2100 + 30.0190i 1.34198 + 0.977553i
\(944\) 0 0
\(945\) 14.7921 8.28503i 0.481186 0.269512i
\(946\) 0 0
\(947\) −1.66347 + 23.2584i −0.0540555 + 0.755795i 0.896067 + 0.443919i \(0.146412\pi\)
−0.950123 + 0.311877i \(0.899042\pi\)
\(948\) 0 0
\(949\) −8.45360 7.32509i −0.274416 0.237782i
\(950\) 0 0
\(951\) 30.1960 8.86634i 0.979171 0.287511i
\(952\) 0 0
\(953\) 34.4398 46.0062i 1.11561 1.49029i 0.265185 0.964198i \(-0.414567\pi\)
0.850430 0.526089i \(-0.176342\pi\)
\(954\) 0 0
\(955\) −16.1369 3.32884i −0.522178 0.107719i
\(956\) 0 0
\(957\) 44.1032 9.59405i 1.42565 0.310132i
\(958\) 0 0
\(959\) −11.9987 1.72515i −0.387457 0.0557079i
\(960\) 0 0
\(961\) −19.9135 + 12.7976i −0.642371 + 0.412827i
\(962\) 0 0
\(963\) −3.66838 6.71813i −0.118212 0.216489i
\(964\) 0 0
\(965\) 36.2394 5.60927i 1.16659 0.180569i
\(966\) 0 0
\(967\) 20.5203 + 20.5203i 0.659889 + 0.659889i 0.955354 0.295465i \(-0.0954745\pi\)
−0.295465 + 0.955354i \(0.595475\pi\)
\(968\) 0 0
\(969\) −9.55687 + 32.5477i −0.307011 + 1.04558i
\(970\) 0 0
\(971\) 28.9995 + 45.1242i 0.930639 + 1.44810i 0.893638 + 0.448788i \(0.148144\pi\)
0.0370009 + 0.999315i \(0.488220\pi\)
\(972\) 0 0
\(973\) −66.9914 + 50.1491i −2.14764 + 1.60771i
\(974\) 0 0
\(975\) −38.1907 10.3261i −1.22308 0.330699i
\(976\) 0 0
\(977\) 41.1218 + 15.3376i 1.31560 + 0.490694i 0.906659 0.421865i \(-0.138624\pi\)
0.408944 + 0.912560i \(0.365897\pi\)
\(978\) 0 0
\(979\) −52.4867 + 7.54645i −1.67748 + 0.241186i
\(980\) 0 0
\(981\) 3.41323 + 11.6244i 0.108976 + 0.371139i
\(982\) 0 0
\(983\) −49.0502 + 3.50814i −1.56446 + 0.111892i −0.826493 0.562947i \(-0.809667\pi\)
−0.737964 + 0.674840i \(0.764213\pi\)
\(984\) 0 0
\(985\) 13.2749 15.6575i 0.422973 0.498889i
\(986\) 0 0
\(987\) 28.6872 + 76.9134i 0.913124 + 2.44818i
\(988\) 0 0
\(989\) 32.2635 38.2301i 1.02592 1.21565i
\(990\) 0 0
\(991\) 0.114747 0.251262i 0.00364507 0.00798159i −0.907801 0.419402i \(-0.862240\pi\)
0.911446 + 0.411420i \(0.134967\pi\)
\(992\) 0 0
\(993\) 67.1817 + 4.80493i 2.13195 + 0.152480i
\(994\) 0 0
\(995\) 35.1674 8.04767i 1.11488 0.255128i
\(996\) 0 0
\(997\) −16.4442 8.97919i −0.520792 0.284374i 0.197275 0.980348i \(-0.436791\pi\)
−0.718067 + 0.695974i \(0.754973\pi\)
\(998\) 0 0
\(999\) 1.88883 + 13.1371i 0.0597598 + 0.415639i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.17.7 720
5.3 odd 4 inner 920.2.bv.a.753.7 yes 720
23.19 odd 22 inner 920.2.bv.a.617.7 yes 720
115.88 even 44 inner 920.2.bv.a.433.7 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.7 720 1.1 even 1 trivial
920.2.bv.a.433.7 yes 720 115.88 even 44 inner
920.2.bv.a.617.7 yes 720 23.19 odd 22 inner
920.2.bv.a.753.7 yes 720 5.3 odd 4 inner