Properties

Label 920.2.bv.a.17.6
Level $920$
Weight $2$
Character 920.17
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 17.6
Character \(\chi\) \(=\) 920.17
Dual form 920.2.bv.a.433.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.01190 + 1.09858i) q^{3} +(0.842192 + 2.07140i) q^{5} +(-0.883794 - 1.18061i) q^{7} +(1.21895 - 1.89673i) q^{9} +(-1.98634 + 0.907130i) q^{11} +(0.198154 + 0.148336i) q^{13} +(-3.97002 - 3.24225i) q^{15} +(0.428234 + 5.98749i) q^{17} +(-4.04133 - 4.66394i) q^{19} +(3.07511 + 1.40435i) q^{21} +(0.803484 + 4.72805i) q^{23} +(-3.58143 + 3.48904i) q^{25} +(0.121889 - 1.70423i) q^{27} +(-6.18882 - 5.36265i) q^{29} +(3.84624 - 1.12936i) q^{31} +(2.99976 - 4.00721i) q^{33} +(1.70120 - 2.82500i) q^{35} +(-0.158968 + 0.0345815i) q^{37} +(-0.561627 - 0.0807498i) q^{39} +(0.671458 - 0.431520i) q^{41} +(-3.66249 - 6.70736i) q^{43} +(4.95548 + 0.927535i) q^{45} +(-0.703539 - 0.703539i) q^{47} +(1.35938 - 4.62962i) q^{49} +(-7.43933 - 11.5758i) q^{51} +(2.68173 - 2.00752i) q^{53} +(-3.55191 - 3.35053i) q^{55} +(13.2545 + 4.94367i) q^{57} +(-9.94388 + 1.42971i) q^{59} +(-3.21033 - 10.9334i) q^{61} +(-3.31660 + 0.237208i) q^{63} +(-0.140381 + 0.535385i) q^{65} +(2.23540 + 5.99335i) q^{67} +(-6.81068 - 8.62968i) q^{69} +(-2.70281 + 5.91832i) q^{71} +(-7.94370 - 0.568145i) q^{73} +(3.37249 - 10.9541i) q^{75} +(2.82648 + 1.54337i) q^{77} +(-1.89883 - 13.2066i) q^{79} +(4.43685 + 9.71534i) q^{81} +(-2.54996 - 11.7220i) q^{83} +(-12.0419 + 5.92966i) q^{85} +(18.3426 + 3.99020i) q^{87} +(1.66699 + 0.489473i) q^{89} -0.365042i q^{91} +(-6.49758 + 6.49758i) q^{93} +(6.25734 - 12.2992i) q^{95} +(0.258745 - 1.18943i) q^{97} +(-0.700673 + 4.87329i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.01190 + 1.09858i −1.16157 + 0.634267i −0.940100 0.340899i \(-0.889269\pi\)
−0.221474 + 0.975166i \(0.571087\pi\)
\(4\) 0 0
\(5\) 0.842192 + 2.07140i 0.376640 + 0.926360i
\(6\) 0 0
\(7\) −0.883794 1.18061i −0.334043 0.446229i 0.601800 0.798647i \(-0.294450\pi\)
−0.935843 + 0.352418i \(0.885360\pi\)
\(8\) 0 0
\(9\) 1.21895 1.89673i 0.406318 0.632242i
\(10\) 0 0
\(11\) −1.98634 + 0.907130i −0.598903 + 0.273510i −0.691711 0.722174i \(-0.743143\pi\)
0.0928082 + 0.995684i \(0.470416\pi\)
\(12\) 0 0
\(13\) 0.198154 + 0.148336i 0.0549581 + 0.0411411i 0.626404 0.779499i \(-0.284526\pi\)
−0.571445 + 0.820640i \(0.693617\pi\)
\(14\) 0 0
\(15\) −3.97002 3.24225i −1.02505 0.837145i
\(16\) 0 0
\(17\) 0.428234 + 5.98749i 0.103862 + 1.45218i 0.735820 + 0.677178i \(0.236797\pi\)
−0.631958 + 0.775003i \(0.717748\pi\)
\(18\) 0 0
\(19\) −4.04133 4.66394i −0.927145 1.06998i −0.997372 0.0724512i \(-0.976918\pi\)
0.0702271 0.997531i \(-0.477628\pi\)
\(20\) 0 0
\(21\) 3.07511 + 1.40435i 0.671044 + 0.306455i
\(22\) 0 0
\(23\) 0.803484 + 4.72805i 0.167538 + 0.985866i
\(24\) 0 0
\(25\) −3.58143 + 3.48904i −0.716285 + 0.697808i
\(26\) 0 0
\(27\) 0.121889 1.70423i 0.0234575 0.327979i
\(28\) 0 0
\(29\) −6.18882 5.36265i −1.14924 0.995819i −0.999975 0.00702060i \(-0.997765\pi\)
−0.149260 0.988798i \(-0.547689\pi\)
\(30\) 0 0
\(31\) 3.84624 1.12936i 0.690805 0.202839i 0.0825580 0.996586i \(-0.473691\pi\)
0.608247 + 0.793748i \(0.291873\pi\)
\(32\) 0 0
\(33\) 2.99976 4.00721i 0.522192 0.697566i
\(34\) 0 0
\(35\) 1.70120 2.82500i 0.287555 0.477511i
\(36\) 0 0
\(37\) −0.158968 + 0.0345815i −0.0261342 + 0.00568516i −0.225613 0.974217i \(-0.572439\pi\)
0.199479 + 0.979902i \(0.436075\pi\)
\(38\) 0 0
\(39\) −0.561627 0.0807498i −0.0899324 0.0129303i
\(40\) 0 0
\(41\) 0.671458 0.431520i 0.104864 0.0673921i −0.487158 0.873314i \(-0.661966\pi\)
0.592022 + 0.805922i \(0.298330\pi\)
\(42\) 0 0
\(43\) −3.66249 6.70736i −0.558525 1.02286i −0.992536 0.121955i \(-0.961084\pi\)
0.434010 0.900908i \(-0.357098\pi\)
\(44\) 0 0
\(45\) 4.95548 + 0.927535i 0.738719 + 0.138269i
\(46\) 0 0
\(47\) −0.703539 0.703539i −0.102622 0.102622i 0.653932 0.756554i \(-0.273118\pi\)
−0.756554 + 0.653932i \(0.773118\pi\)
\(48\) 0 0
\(49\) 1.35938 4.62962i 0.194197 0.661374i
\(50\) 0 0
\(51\) −7.43933 11.5758i −1.04171 1.62094i
\(52\) 0 0
\(53\) 2.68173 2.00752i 0.368364 0.275754i −0.399019 0.916943i \(-0.630649\pi\)
0.767383 + 0.641189i \(0.221558\pi\)
\(54\) 0 0
\(55\) −3.55191 3.35053i −0.478939 0.451785i
\(56\) 0 0
\(57\) 13.2545 + 4.94367i 1.75560 + 0.654806i
\(58\) 0 0
\(59\) −9.94388 + 1.42971i −1.29458 + 0.186133i −0.754958 0.655773i \(-0.772343\pi\)
−0.539625 + 0.841906i \(0.681434\pi\)
\(60\) 0 0
\(61\) −3.21033 10.9334i −0.411041 1.39988i −0.861808 0.507234i \(-0.830668\pi\)
0.450768 0.892641i \(-0.351150\pi\)
\(62\) 0 0
\(63\) −3.31660 + 0.237208i −0.417852 + 0.0298854i
\(64\) 0 0
\(65\) −0.140381 + 0.535385i −0.0174121 + 0.0664064i
\(66\) 0 0
\(67\) 2.23540 + 5.99335i 0.273098 + 0.732204i 0.999013 + 0.0444195i \(0.0141438\pi\)
−0.725915 + 0.687784i \(0.758583\pi\)
\(68\) 0 0
\(69\) −6.81068 8.62968i −0.819910 1.03889i
\(70\) 0 0
\(71\) −2.70281 + 5.91832i −0.320764 + 0.702376i −0.999487 0.0320187i \(-0.989806\pi\)
0.678723 + 0.734394i \(0.262534\pi\)
\(72\) 0 0
\(73\) −7.94370 0.568145i −0.929740 0.0664963i −0.401752 0.915748i \(-0.631599\pi\)
−0.527988 + 0.849252i \(0.677053\pi\)
\(74\) 0 0
\(75\) 3.37249 10.9541i 0.389422 1.26487i
\(76\) 0 0
\(77\) 2.82648 + 1.54337i 0.322107 + 0.175884i
\(78\) 0 0
\(79\) −1.89883 13.2066i −0.213635 1.48586i −0.760881 0.648891i \(-0.775233\pi\)
0.547246 0.836972i \(-0.315676\pi\)
\(80\) 0 0
\(81\) 4.43685 + 9.71534i 0.492983 + 1.07948i
\(82\) 0 0
\(83\) −2.54996 11.7220i −0.279894 1.28665i −0.875438 0.483330i \(-0.839427\pi\)
0.595544 0.803323i \(-0.296936\pi\)
\(84\) 0 0
\(85\) −12.0419 + 5.92966i −1.30612 + 0.643162i
\(86\) 0 0
\(87\) 18.3426 + 3.99020i 1.96654 + 0.427794i
\(88\) 0 0
\(89\) 1.66699 + 0.489473i 0.176701 + 0.0518840i 0.368886 0.929475i \(-0.379739\pi\)
−0.192185 + 0.981359i \(0.561557\pi\)
\(90\) 0 0
\(91\) 0.365042i 0.0382668i
\(92\) 0 0
\(93\) −6.49758 + 6.49758i −0.673767 + 0.673767i
\(94\) 0 0
\(95\) 6.25734 12.2992i 0.641989 1.26187i
\(96\) 0 0
\(97\) 0.258745 1.18943i 0.0262716 0.120769i −0.962144 0.272543i \(-0.912135\pi\)
0.988415 + 0.151775i \(0.0484988\pi\)
\(98\) 0 0
\(99\) −0.700673 + 4.87329i −0.0704203 + 0.489784i
\(100\) 0 0
\(101\) 0.462483 + 0.297220i 0.0460188 + 0.0295745i 0.563448 0.826152i \(-0.309475\pi\)
−0.517429 + 0.855726i \(0.673111\pi\)
\(102\) 0 0
\(103\) −6.54740 + 17.5542i −0.645134 + 1.72967i 0.0378966 + 0.999282i \(0.487934\pi\)
−0.683031 + 0.730390i \(0.739338\pi\)
\(104\) 0 0
\(105\) −0.319155 + 7.55253i −0.0311464 + 0.737051i
\(106\) 0 0
\(107\) −6.49817 + 11.9005i −0.628202 + 1.15047i 0.348792 + 0.937200i \(0.386592\pi\)
−0.976994 + 0.213266i \(0.931590\pi\)
\(108\) 0 0
\(109\) 6.62457 7.64517i 0.634519 0.732274i −0.343877 0.939015i \(-0.611740\pi\)
0.978396 + 0.206741i \(0.0662857\pi\)
\(110\) 0 0
\(111\) 0.281839 0.244215i 0.0267509 0.0231798i
\(112\) 0 0
\(113\) −8.20614 + 3.06073i −0.771969 + 0.287929i −0.704417 0.709786i \(-0.748791\pi\)
−0.0675517 + 0.997716i \(0.521519\pi\)
\(114\) 0 0
\(115\) −9.11700 + 5.64626i −0.850165 + 0.526517i
\(116\) 0 0
\(117\) 0.522894 0.195030i 0.0483416 0.0180305i
\(118\) 0 0
\(119\) 6.69043 5.79729i 0.613311 0.531437i
\(120\) 0 0
\(121\) −4.08082 + 4.70951i −0.370983 + 0.428138i
\(122\) 0 0
\(123\) −0.876849 + 1.60583i −0.0790628 + 0.144793i
\(124\) 0 0
\(125\) −10.2435 4.48014i −0.916202 0.400716i
\(126\) 0 0
\(127\) −3.05818 + 8.19930i −0.271370 + 0.727571i 0.727759 + 0.685833i \(0.240562\pi\)
−0.999129 + 0.0417374i \(0.986711\pi\)
\(128\) 0 0
\(129\) 14.7372 + 9.47101i 1.29754 + 0.833876i
\(130\) 0 0
\(131\) 0.908481 6.31862i 0.0793743 0.552061i −0.910867 0.412699i \(-0.864586\pi\)
0.990242 0.139361i \(-0.0445049\pi\)
\(132\) 0 0
\(133\) −1.93460 + 8.89321i −0.167751 + 0.771139i
\(134\) 0 0
\(135\) 3.63280 1.18281i 0.312661 0.101800i
\(136\) 0 0
\(137\) 8.93288 8.93288i 0.763187 0.763187i −0.213710 0.976897i \(-0.568555\pi\)
0.976897 + 0.213710i \(0.0685548\pi\)
\(138\) 0 0
\(139\) 0.841079i 0.0713394i 0.999364 + 0.0356697i \(0.0113564\pi\)
−0.999364 + 0.0356697i \(0.988644\pi\)
\(140\) 0 0
\(141\) 2.18835 + 0.642558i 0.184292 + 0.0541131i
\(142\) 0 0
\(143\) −0.528162 0.114895i −0.0441671 0.00960796i
\(144\) 0 0
\(145\) 5.89603 17.3359i 0.489639 1.43967i
\(146\) 0 0
\(147\) 2.35108 + 10.8077i 0.193914 + 0.891407i
\(148\) 0 0
\(149\) 2.91795 + 6.38942i 0.239048 + 0.523441i 0.990691 0.136128i \(-0.0434659\pi\)
−0.751644 + 0.659570i \(0.770739\pi\)
\(150\) 0 0
\(151\) 0.937136 + 6.51793i 0.0762631 + 0.530421i 0.991761 + 0.128099i \(0.0408876\pi\)
−0.915498 + 0.402322i \(0.868203\pi\)
\(152\) 0 0
\(153\) 11.8786 + 6.48623i 0.960331 + 0.524380i
\(154\) 0 0
\(155\) 5.57863 + 7.01598i 0.448086 + 0.563537i
\(156\) 0 0
\(157\) 5.06230 + 0.362063i 0.404015 + 0.0288957i 0.271869 0.962334i \(-0.412358\pi\)
0.132147 + 0.991230i \(0.457813\pi\)
\(158\) 0 0
\(159\) −3.18996 + 6.98504i −0.252980 + 0.553949i
\(160\) 0 0
\(161\) 4.87187 5.12722i 0.383957 0.404082i
\(162\) 0 0
\(163\) 7.07496 + 18.9687i 0.554154 + 1.48574i 0.848055 + 0.529908i \(0.177773\pi\)
−0.293902 + 0.955836i \(0.594954\pi\)
\(164\) 0 0
\(165\) 10.8269 + 2.83888i 0.842876 + 0.221006i
\(166\) 0 0
\(167\) −5.84948 + 0.418363i −0.452646 + 0.0323739i −0.295802 0.955249i \(-0.595587\pi\)
−0.156845 + 0.987623i \(0.550132\pi\)
\(168\) 0 0
\(169\) −3.64526 12.4146i −0.280405 0.954971i
\(170\) 0 0
\(171\) −13.7724 + 1.98018i −1.05320 + 0.151428i
\(172\) 0 0
\(173\) 16.1109 + 6.00904i 1.22489 + 0.456859i 0.876915 0.480646i \(-0.159598\pi\)
0.347971 + 0.937505i \(0.386871\pi\)
\(174\) 0 0
\(175\) 7.28444 + 1.14468i 0.550652 + 0.0865296i
\(176\) 0 0
\(177\) 18.4355 13.8006i 1.38570 1.03732i
\(178\) 0 0
\(179\) 9.16948 + 14.2680i 0.685359 + 1.06644i 0.993359 + 0.115053i \(0.0367039\pi\)
−0.308000 + 0.951386i \(0.599660\pi\)
\(180\) 0 0
\(181\) −6.39709 + 21.7865i −0.475492 + 1.61938i 0.277065 + 0.960851i \(0.410638\pi\)
−0.752557 + 0.658527i \(0.771180\pi\)
\(182\) 0 0
\(183\) 18.4701 + 18.4701i 1.36535 + 1.36535i
\(184\) 0 0
\(185\) −0.205514 0.300164i −0.0151097 0.0220685i
\(186\) 0 0
\(187\) −6.28205 11.5047i −0.459389 0.841308i
\(188\) 0 0
\(189\) −2.11975 + 1.36228i −0.154189 + 0.0990915i
\(190\) 0 0
\(191\) −7.86954 1.13147i −0.569420 0.0818703i −0.148410 0.988926i \(-0.547415\pi\)
−0.421011 + 0.907056i \(0.638324\pi\)
\(192\) 0 0
\(193\) −13.7074 + 2.98186i −0.986681 + 0.214639i −0.676825 0.736144i \(-0.736644\pi\)
−0.309856 + 0.950783i \(0.600281\pi\)
\(194\) 0 0
\(195\) −0.305732 1.23136i −0.0218940 0.0881798i
\(196\) 0 0
\(197\) −3.67760 + 4.91270i −0.262018 + 0.350015i −0.912187 0.409775i \(-0.865607\pi\)
0.650169 + 0.759790i \(0.274698\pi\)
\(198\) 0 0
\(199\) 13.2337 3.88576i 0.938112 0.275455i 0.223283 0.974754i \(-0.428323\pi\)
0.714829 + 0.699299i \(0.246504\pi\)
\(200\) 0 0
\(201\) −11.0816 9.60227i −0.781636 0.677292i
\(202\) 0 0
\(203\) −0.861552 + 12.0461i −0.0604691 + 0.845468i
\(204\) 0 0
\(205\) 1.45935 + 1.02744i 0.101925 + 0.0717594i
\(206\) 0 0
\(207\) 9.94722 + 4.23927i 0.691380 + 0.294650i
\(208\) 0 0
\(209\) 12.2582 + 5.59815i 0.847921 + 0.387232i
\(210\) 0 0
\(211\) 4.01927 + 4.63848i 0.276698 + 0.319326i 0.877040 0.480417i \(-0.159515\pi\)
−0.600343 + 0.799743i \(0.704969\pi\)
\(212\) 0 0
\(213\) −1.06398 14.8764i −0.0729026 1.01931i
\(214\) 0 0
\(215\) 10.8091 13.2354i 0.737176 0.902646i
\(216\) 0 0
\(217\) −4.73262 3.54279i −0.321271 0.240501i
\(218\) 0 0
\(219\) 16.6061 7.58376i 1.12214 0.512463i
\(220\) 0 0
\(221\) −0.803307 + 1.24997i −0.0540363 + 0.0840821i
\(222\) 0 0
\(223\) −5.43753 7.26369i −0.364124 0.486413i 0.580642 0.814159i \(-0.302802\pi\)
−0.944766 + 0.327746i \(0.893711\pi\)
\(224\) 0 0
\(225\) 2.25216 + 11.0460i 0.150144 + 0.736397i
\(226\) 0 0
\(227\) −8.22203 + 4.48957i −0.545715 + 0.297983i −0.728359 0.685196i \(-0.759716\pi\)
0.182643 + 0.983179i \(0.441535\pi\)
\(228\) 0 0
\(229\) −19.4102 −1.28266 −0.641330 0.767265i \(-0.721617\pi\)
−0.641330 + 0.767265i \(0.721617\pi\)
\(230\) 0 0
\(231\) −7.38213 −0.485709
\(232\) 0 0
\(233\) 2.28393 1.24712i 0.149625 0.0817016i −0.402692 0.915335i \(-0.631925\pi\)
0.552317 + 0.833634i \(0.313744\pi\)
\(234\) 0 0
\(235\) 0.864799 2.04983i 0.0564133 0.133716i
\(236\) 0 0
\(237\) 18.3289 + 24.4845i 1.19059 + 1.59044i
\(238\) 0 0
\(239\) −10.3795 + 16.1508i −0.671395 + 1.04471i 0.323735 + 0.946148i \(0.395061\pi\)
−0.995131 + 0.0985639i \(0.968575\pi\)
\(240\) 0 0
\(241\) −0.282296 + 0.128920i −0.0181843 + 0.00830448i −0.424486 0.905434i \(-0.639545\pi\)
0.406302 + 0.913739i \(0.366818\pi\)
\(242\) 0 0
\(243\) −15.4962 11.6003i −0.994084 0.744162i
\(244\) 0 0
\(245\) 10.7347 1.08320i 0.685812 0.0692034i
\(246\) 0 0
\(247\) −0.108974 1.52366i −0.00693386 0.0969480i
\(248\) 0 0
\(249\) 18.0078 + 20.7821i 1.14120 + 1.31701i
\(250\) 0 0
\(251\) 9.60342 + 4.38573i 0.606162 + 0.276825i 0.694759 0.719243i \(-0.255511\pi\)
−0.0885968 + 0.996068i \(0.528238\pi\)
\(252\) 0 0
\(253\) −5.88494 8.66263i −0.369983 0.544615i
\(254\) 0 0
\(255\) 17.7128 25.1589i 1.10922 1.57551i
\(256\) 0 0
\(257\) 0.124781 1.74466i 0.00778362 0.108829i −0.992075 0.125648i \(-0.959899\pi\)
0.999859 + 0.0168183i \(0.00535370\pi\)
\(258\) 0 0
\(259\) 0.181323 + 0.157117i 0.0112668 + 0.00976277i
\(260\) 0 0
\(261\) −17.7154 + 5.20170i −1.09655 + 0.321977i
\(262\) 0 0
\(263\) −6.61177 + 8.83229i −0.407699 + 0.544623i −0.956653 0.291230i \(-0.905935\pi\)
0.548954 + 0.835853i \(0.315026\pi\)
\(264\) 0 0
\(265\) 6.41691 + 3.86423i 0.394188 + 0.237378i
\(266\) 0 0
\(267\) −3.89156 + 0.846556i −0.238159 + 0.0518084i
\(268\) 0 0
\(269\) −27.0923 3.89529i −1.65185 0.237500i −0.747490 0.664273i \(-0.768741\pi\)
−0.904359 + 0.426773i \(0.859650\pi\)
\(270\) 0 0
\(271\) −14.4170 + 9.26523i −0.875769 + 0.562822i −0.899512 0.436896i \(-0.856078\pi\)
0.0237434 + 0.999718i \(0.492442\pi\)
\(272\) 0 0
\(273\) 0.401029 + 0.734430i 0.0242714 + 0.0444497i
\(274\) 0 0
\(275\) 3.94891 10.1792i 0.238128 0.613830i
\(276\) 0 0
\(277\) −9.13896 9.13896i −0.549107 0.549107i 0.377076 0.926183i \(-0.376930\pi\)
−0.926183 + 0.377076i \(0.876930\pi\)
\(278\) 0 0
\(279\) 2.54630 8.67190i 0.152443 0.519173i
\(280\) 0 0
\(281\) −10.5007 16.3395i −0.626422 0.974732i −0.998909 0.0466944i \(-0.985131\pi\)
0.372487 0.928037i \(-0.378505\pi\)
\(282\) 0 0
\(283\) 10.2167 7.64815i 0.607322 0.454635i −0.250830 0.968031i \(-0.580704\pi\)
0.858152 + 0.513396i \(0.171613\pi\)
\(284\) 0 0
\(285\) 0.922488 + 31.6189i 0.0546435 + 1.87294i
\(286\) 0 0
\(287\) −1.10289 0.411356i −0.0651014 0.0242816i
\(288\) 0 0
\(289\) −18.8397 + 2.70875i −1.10822 + 0.159338i
\(290\) 0 0
\(291\) 0.786119 + 2.67728i 0.0460831 + 0.156945i
\(292\) 0 0
\(293\) −24.1439 + 1.72680i −1.41050 + 0.100881i −0.755699 0.654919i \(-0.772703\pi\)
−0.654802 + 0.755800i \(0.727248\pi\)
\(294\) 0 0
\(295\) −11.3362 19.3937i −0.660017 1.12914i
\(296\) 0 0
\(297\) 1.30384 + 3.49574i 0.0756566 + 0.202843i
\(298\) 0 0
\(299\) −0.542128 + 1.05607i −0.0313521 + 0.0610740i
\(300\) 0 0
\(301\) −4.68189 + 10.2519i −0.269860 + 0.590910i
\(302\) 0 0
\(303\) −1.25699 0.0899018i −0.0722123 0.00516472i
\(304\) 0 0
\(305\) 19.9437 15.8579i 1.14197 0.908020i
\(306\) 0 0
\(307\) −17.2883 9.44013i −0.986696 0.538777i −0.0969775 0.995287i \(-0.530917\pi\)
−0.889718 + 0.456510i \(0.849099\pi\)
\(308\) 0 0
\(309\) −6.11206 42.5103i −0.347703 2.41833i
\(310\) 0 0
\(311\) −6.33828 13.8789i −0.359411 0.787000i −0.999820 0.0189663i \(-0.993962\pi\)
0.640409 0.768034i \(-0.278765\pi\)
\(312\) 0 0
\(313\) 4.16273 + 19.1358i 0.235292 + 1.08162i 0.931489 + 0.363768i \(0.118510\pi\)
−0.696198 + 0.717850i \(0.745126\pi\)
\(314\) 0 0
\(315\) −3.28457 6.67024i −0.185064 0.375826i
\(316\) 0 0
\(317\) 32.6430 + 7.10105i 1.83341 + 0.398835i 0.990305 0.138909i \(-0.0443595\pi\)
0.843108 + 0.537744i \(0.180723\pi\)
\(318\) 0 0
\(319\) 17.1577 + 5.03796i 0.960647 + 0.282071i
\(320\) 0 0
\(321\) 31.0815i 1.73480i
\(322\) 0 0
\(323\) 26.1947 26.1947i 1.45751 1.45751i
\(324\) 0 0
\(325\) −1.22723 + 0.160112i −0.0680743 + 0.00888141i
\(326\) 0 0
\(327\) −4.92916 + 22.6590i −0.272583 + 1.25304i
\(328\) 0 0
\(329\) −0.208822 + 1.45239i −0.0115127 + 0.0800729i
\(330\) 0 0
\(331\) 6.64717 + 4.27188i 0.365361 + 0.234804i 0.710421 0.703777i \(-0.248505\pi\)
−0.345059 + 0.938581i \(0.612141\pi\)
\(332\) 0 0
\(333\) −0.128183 + 0.343673i −0.00702441 + 0.0188332i
\(334\) 0 0
\(335\) −10.5320 + 9.67797i −0.575425 + 0.528764i
\(336\) 0 0
\(337\) 10.6518 19.5072i 0.580238 1.06263i −0.408470 0.912772i \(-0.633938\pi\)
0.988708 0.149855i \(-0.0478806\pi\)
\(338\) 0 0
\(339\) 13.1475 15.1730i 0.714074 0.824086i
\(340\) 0 0
\(341\) −6.61546 + 5.73233i −0.358247 + 0.310423i
\(342\) 0 0
\(343\) −16.3397 + 6.09438i −0.882259 + 0.329065i
\(344\) 0 0
\(345\) 12.1397 21.3755i 0.653577 1.15082i
\(346\) 0 0
\(347\) 12.2823 4.58106i 0.659349 0.245924i 0.00255740 0.999997i \(-0.499186\pi\)
0.656791 + 0.754072i \(0.271913\pi\)
\(348\) 0 0
\(349\) −17.2634 + 14.9588i −0.924089 + 0.800727i −0.980264 0.197694i \(-0.936655\pi\)
0.0561753 + 0.998421i \(0.482109\pi\)
\(350\) 0 0
\(351\) 0.276952 0.319619i 0.0147826 0.0170600i
\(352\) 0 0
\(353\) 5.87818 10.7651i 0.312864 0.572967i −0.673175 0.739483i \(-0.735070\pi\)
0.986039 + 0.166516i \(0.0532517\pi\)
\(354\) 0 0
\(355\) −14.5355 0.614243i −0.771465 0.0326006i
\(356\) 0 0
\(357\) −7.09170 + 19.0136i −0.375333 + 1.00631i
\(358\) 0 0
\(359\) 17.4334 + 11.2038i 0.920101 + 0.591313i 0.912687 0.408660i \(-0.134004\pi\)
0.00741398 + 0.999973i \(0.497640\pi\)
\(360\) 0 0
\(361\) −2.71604 + 18.8905i −0.142949 + 0.994236i
\(362\) 0 0
\(363\) 3.03642 13.9582i 0.159371 0.732616i
\(364\) 0 0
\(365\) −5.51326 16.9331i −0.288577 0.886319i
\(366\) 0 0
\(367\) 6.60439 6.60439i 0.344747 0.344747i −0.513402 0.858148i \(-0.671615\pi\)
0.858148 + 0.513402i \(0.171615\pi\)
\(368\) 0 0
\(369\) 1.79957i 0.0936821i
\(370\) 0 0
\(371\) −4.74019 1.39185i −0.246099 0.0722611i
\(372\) 0 0
\(373\) −28.7399 6.25198i −1.48809 0.323715i −0.606257 0.795269i \(-0.707330\pi\)
−0.881837 + 0.471554i \(0.843693\pi\)
\(374\) 0 0
\(375\) 25.5307 2.23967i 1.31840 0.115656i
\(376\) 0 0
\(377\) −0.430866 1.98066i −0.0221907 0.102009i
\(378\) 0 0
\(379\) 13.0305 + 28.5327i 0.669330 + 1.46563i 0.873566 + 0.486706i \(0.161802\pi\)
−0.204236 + 0.978922i \(0.565471\pi\)
\(380\) 0 0
\(381\) −2.85484 19.8559i −0.146258 1.01725i
\(382\) 0 0
\(383\) 5.24589 + 2.86447i 0.268053 + 0.146368i 0.607654 0.794201i \(-0.292111\pi\)
−0.339602 + 0.940569i \(0.610292\pi\)
\(384\) 0 0
\(385\) −0.816514 + 7.15460i −0.0416134 + 0.364632i
\(386\) 0 0
\(387\) −17.1864 1.22920i −0.873636 0.0624837i
\(388\) 0 0
\(389\) −3.35266 + 7.34129i −0.169986 + 0.372218i −0.975383 0.220518i \(-0.929225\pi\)
0.805396 + 0.592737i \(0.201952\pi\)
\(390\) 0 0
\(391\) −27.9651 + 6.83557i −1.41425 + 0.345690i
\(392\) 0 0
\(393\) 5.11375 + 13.7105i 0.257955 + 0.691603i
\(394\) 0 0
\(395\) 25.7571 15.0558i 1.29598 0.757538i
\(396\) 0 0
\(397\) −34.0952 + 2.43854i −1.71119 + 0.122387i −0.892264 0.451513i \(-0.850884\pi\)
−0.818925 + 0.573900i \(0.805430\pi\)
\(398\) 0 0
\(399\) −5.87770 20.0176i −0.294253 1.00213i
\(400\) 0 0
\(401\) 34.8432 5.00969i 1.73998 0.250172i 0.802117 0.597167i \(-0.203707\pi\)
0.937867 + 0.346995i \(0.112798\pi\)
\(402\) 0 0
\(403\) 0.929674 + 0.346751i 0.0463104 + 0.0172729i
\(404\) 0 0
\(405\) −16.3877 + 17.3727i −0.814312 + 0.863255i
\(406\) 0 0
\(407\) 0.284395 0.212895i 0.0140969 0.0105528i
\(408\) 0 0
\(409\) 14.2159 + 22.1204i 0.702933 + 1.09379i 0.990697 + 0.136084i \(0.0434516\pi\)
−0.287764 + 0.957701i \(0.592912\pi\)
\(410\) 0 0
\(411\) −8.15859 + 27.7856i −0.402433 + 1.37056i
\(412\) 0 0
\(413\) 10.4763 + 10.4763i 0.515504 + 0.515504i
\(414\) 0 0
\(415\) 22.1334 15.1541i 1.08648 0.743887i
\(416\) 0 0
\(417\) −0.923995 1.69217i −0.0452482 0.0828660i
\(418\) 0 0
\(419\) −12.6403 + 8.12344i −0.617520 + 0.396856i −0.811670 0.584116i \(-0.801441\pi\)
0.194150 + 0.980972i \(0.437805\pi\)
\(420\) 0 0
\(421\) −14.1128 2.02912i −0.687818 0.0988932i −0.210460 0.977602i \(-0.567496\pi\)
−0.477357 + 0.878709i \(0.658405\pi\)
\(422\) 0 0
\(423\) −2.19200 + 0.476841i −0.106579 + 0.0231848i
\(424\) 0 0
\(425\) −22.4243 19.9496i −1.08774 0.967700i
\(426\) 0 0
\(427\) −10.0708 + 13.4530i −0.487360 + 0.651036i
\(428\) 0 0
\(429\) 1.18883 0.349073i 0.0573973 0.0168534i
\(430\) 0 0
\(431\) 9.84043 + 8.52678i 0.473997 + 0.410721i 0.858826 0.512267i \(-0.171194\pi\)
−0.384829 + 0.922988i \(0.625740\pi\)
\(432\) 0 0
\(433\) −1.52747 + 21.3568i −0.0734054 + 1.02634i 0.818614 + 0.574344i \(0.194743\pi\)
−0.892019 + 0.451997i \(0.850712\pi\)
\(434\) 0 0
\(435\) 7.18271 + 41.3555i 0.344385 + 1.98285i
\(436\) 0 0
\(437\) 18.8042 22.8550i 0.899527 1.09330i
\(438\) 0 0
\(439\) −11.3485 5.18269i −0.541635 0.247356i 0.125759 0.992061i \(-0.459863\pi\)
−0.667395 + 0.744704i \(0.732591\pi\)
\(440\) 0 0
\(441\) −7.12410 8.22165i −0.339243 0.391507i
\(442\) 0 0
\(443\) −2.05323 28.7079i −0.0975519 1.36395i −0.776662 0.629918i \(-0.783089\pi\)
0.679110 0.734037i \(-0.262366\pi\)
\(444\) 0 0
\(445\) 0.390031 + 3.86524i 0.0184892 + 0.183230i
\(446\) 0 0
\(447\) −12.8899 9.64929i −0.609673 0.456396i
\(448\) 0 0
\(449\) 19.4816 8.89695i 0.919394 0.419873i 0.101233 0.994863i \(-0.467721\pi\)
0.818161 + 0.574990i \(0.194994\pi\)
\(450\) 0 0
\(451\) −0.942297 + 1.46624i −0.0443710 + 0.0690427i
\(452\) 0 0
\(453\) −9.04591 12.0839i −0.425014 0.567752i
\(454\) 0 0
\(455\) 0.756149 0.307435i 0.0354488 0.0144128i
\(456\) 0 0
\(457\) −24.2815 + 13.2587i −1.13584 + 0.620215i −0.933314 0.359062i \(-0.883097\pi\)
−0.202525 + 0.979277i \(0.564915\pi\)
\(458\) 0 0
\(459\) 10.2562 0.478721
\(460\) 0 0
\(461\) 0.663206 0.0308886 0.0154443 0.999881i \(-0.495084\pi\)
0.0154443 + 0.999881i \(0.495084\pi\)
\(462\) 0 0
\(463\) 21.4407 11.7075i 0.996432 0.544093i 0.103665 0.994612i \(-0.466943\pi\)
0.892767 + 0.450519i \(0.148761\pi\)
\(464\) 0 0
\(465\) −18.9313 7.98690i −0.877918 0.370384i
\(466\) 0 0
\(467\) −2.32328 3.10354i −0.107509 0.143615i 0.743560 0.668669i \(-0.233136\pi\)
−0.851069 + 0.525055i \(0.824045\pi\)
\(468\) 0 0
\(469\) 5.10017 7.93603i 0.235504 0.366452i
\(470\) 0 0
\(471\) −10.5826 + 4.83292i −0.487621 + 0.222689i
\(472\) 0 0
\(473\) 13.3594 + 10.0007i 0.614266 + 0.459833i
\(474\) 0 0
\(475\) 30.7464 + 2.60322i 1.41074 + 0.119444i
\(476\) 0 0
\(477\) −0.538812 7.53358i −0.0246705 0.344939i
\(478\) 0 0
\(479\) −6.96317 8.03592i −0.318155 0.367171i 0.574035 0.818831i \(-0.305377\pi\)
−0.892190 + 0.451660i \(0.850832\pi\)
\(480\) 0 0
\(481\) −0.0366300 0.0167283i −0.00167018 0.000762747i
\(482\) 0 0
\(483\) −4.16905 + 15.6676i −0.189698 + 0.712902i
\(484\) 0 0
\(485\) 2.68171 0.465764i 0.121770 0.0211493i
\(486\) 0 0
\(487\) −0.873464 + 12.2126i −0.0395804 + 0.553407i 0.938514 + 0.345243i \(0.112203\pi\)
−0.978094 + 0.208164i \(0.933251\pi\)
\(488\) 0 0
\(489\) −35.0728 30.3908i −1.58605 1.37432i
\(490\) 0 0
\(491\) 22.3820 6.57195i 1.01009 0.296588i 0.265498 0.964112i \(-0.414464\pi\)
0.744589 + 0.667523i \(0.232646\pi\)
\(492\) 0 0
\(493\) 29.4586 39.3520i 1.32675 1.77233i
\(494\) 0 0
\(495\) −10.6846 + 2.65287i −0.480239 + 0.119237i
\(496\) 0 0
\(497\) 9.37596 2.03962i 0.420569 0.0914893i
\(498\) 0 0
\(499\) 37.2405 + 5.35438i 1.66711 + 0.239695i 0.910304 0.413939i \(-0.135847\pi\)
0.756810 + 0.653634i \(0.226757\pi\)
\(500\) 0 0
\(501\) 11.3090 7.26784i 0.505248 0.324703i
\(502\) 0 0
\(503\) −10.4543 19.1456i −0.466134 0.853661i −0.999967 0.00807128i \(-0.997431\pi\)
0.533833 0.845590i \(-0.320751\pi\)
\(504\) 0 0
\(505\) −0.226163 + 1.20830i −0.0100641 + 0.0537688i
\(506\) 0 0
\(507\) 20.9724 + 20.9724i 0.931417 + 0.931417i
\(508\) 0 0
\(509\) −5.59523 + 19.0556i −0.248004 + 0.844625i 0.737554 + 0.675288i \(0.235981\pi\)
−0.985558 + 0.169337i \(0.945838\pi\)
\(510\) 0 0
\(511\) 6.34984 + 9.88054i 0.280900 + 0.437089i
\(512\) 0 0
\(513\) −8.44101 + 6.31886i −0.372680 + 0.278985i
\(514\) 0 0
\(515\) −41.8761 + 1.22174i −1.84528 + 0.0538364i
\(516\) 0 0
\(517\) 2.03567 + 0.759265i 0.0895286 + 0.0333924i
\(518\) 0 0
\(519\) −39.0149 + 5.60950i −1.71257 + 0.246230i
\(520\) 0 0
\(521\) −12.1777 41.4734i −0.533514 1.81698i −0.575418 0.817860i \(-0.695161\pi\)
0.0419039 0.999122i \(-0.486658\pi\)
\(522\) 0 0
\(523\) −18.6687 + 1.33521i −0.816323 + 0.0583846i −0.473255 0.880926i \(-0.656921\pi\)
−0.343069 + 0.939310i \(0.611466\pi\)
\(524\) 0 0
\(525\) −15.9131 + 5.69958i −0.694506 + 0.248750i
\(526\) 0 0
\(527\) 8.40912 + 22.5457i 0.366307 + 0.982107i
\(528\) 0 0
\(529\) −21.7088 + 7.59782i −0.943862 + 0.330340i
\(530\) 0 0
\(531\) −9.40934 + 20.6036i −0.408331 + 0.894119i
\(532\) 0 0
\(533\) 0.197062 + 0.0140942i 0.00853572 + 0.000610487i
\(534\) 0 0
\(535\) −30.1235 3.43783i −1.30235 0.148630i
\(536\) 0 0
\(537\) −34.1227 18.6324i −1.47250 0.804047i
\(538\) 0 0
\(539\) 1.49948 + 10.4291i 0.0645872 + 0.449214i
\(540\) 0 0
\(541\) −15.8456 34.6971i −0.681256 1.49174i −0.861307 0.508085i \(-0.830353\pi\)
0.180051 0.983657i \(-0.442374\pi\)
\(542\) 0 0
\(543\) −11.0639 50.8601i −0.474799 2.18262i
\(544\) 0 0
\(545\) 21.4154 + 7.28347i 0.917334 + 0.311990i
\(546\) 0 0
\(547\) −18.6365 4.05412i −0.796838 0.173341i −0.204326 0.978903i \(-0.565500\pi\)
−0.592512 + 0.805561i \(0.701864\pi\)
\(548\) 0 0
\(549\) −24.6509 7.23815i −1.05207 0.308917i
\(550\) 0 0
\(551\) 50.5366i 2.15293i
\(552\) 0 0
\(553\) −13.9137 + 13.9137i −0.591672 + 0.591672i
\(554\) 0 0
\(555\) 0.743229 + 0.378126i 0.0315483 + 0.0160506i
\(556\) 0 0
\(557\) 0.118984 0.546959i 0.00504150 0.0231754i −0.974557 0.224138i \(-0.928043\pi\)
0.979599 + 0.200963i \(0.0644070\pi\)
\(558\) 0 0
\(559\) 0.269207 1.87237i 0.0113862 0.0791930i
\(560\) 0 0
\(561\) 25.2778 + 16.2450i 1.06723 + 0.685866i
\(562\) 0 0
\(563\) −2.29958 + 6.16541i −0.0969158 + 0.259841i −0.976356 0.216168i \(-0.930644\pi\)
0.879441 + 0.476009i \(0.157917\pi\)
\(564\) 0 0
\(565\) −13.2512 14.4205i −0.557480 0.606675i
\(566\) 0 0
\(567\) 7.54877 13.8245i 0.317019 0.580576i
\(568\) 0 0
\(569\) −27.7985 + 32.0812i −1.16537 + 1.34491i −0.237783 + 0.971318i \(0.576421\pi\)
−0.927592 + 0.373596i \(0.878125\pi\)
\(570\) 0 0
\(571\) 13.8599 12.0097i 0.580018 0.502589i −0.314717 0.949186i \(-0.601910\pi\)
0.894735 + 0.446597i \(0.147364\pi\)
\(572\) 0 0
\(573\) 17.0758 6.36894i 0.713351 0.266066i
\(574\) 0 0
\(575\) −19.3739 14.1298i −0.807950 0.589252i
\(576\) 0 0
\(577\) 35.0224 13.0627i 1.45800 0.543807i 0.509470 0.860488i \(-0.329841\pi\)
0.948532 + 0.316682i \(0.102569\pi\)
\(578\) 0 0
\(579\) 24.3022 21.0579i 1.00996 0.875138i
\(580\) 0 0
\(581\) −11.5854 + 13.3703i −0.480645 + 0.554694i
\(582\) 0 0
\(583\) −3.50574 + 6.42028i −0.145193 + 0.265901i
\(584\) 0 0
\(585\) 0.844362 + 0.918873i 0.0349101 + 0.0379907i
\(586\) 0 0
\(587\) −1.75806 + 4.71355i −0.0725631 + 0.194549i −0.968168 0.250301i \(-0.919470\pi\)
0.895605 + 0.444850i \(0.146743\pi\)
\(588\) 0 0
\(589\) −20.8112 13.3745i −0.857510 0.551089i
\(590\) 0 0
\(591\) 2.00197 13.9240i 0.0823502 0.572758i
\(592\) 0 0
\(593\) 2.03087 9.33575i 0.0833978 0.383373i −0.916462 0.400122i \(-0.868968\pi\)
0.999860 + 0.0167485i \(0.00533145\pi\)
\(594\) 0 0
\(595\) 17.6432 + 8.97615i 0.723299 + 0.367986i
\(596\) 0 0
\(597\) −22.3561 + 22.3561i −0.914974 + 0.914974i
\(598\) 0 0
\(599\) 29.3946i 1.20103i 0.799613 + 0.600516i \(0.205038\pi\)
−0.799613 + 0.600516i \(0.794962\pi\)
\(600\) 0 0
\(601\) 21.5470 + 6.32678i 0.878922 + 0.258075i 0.689906 0.723899i \(-0.257652\pi\)
0.189016 + 0.981974i \(0.439470\pi\)
\(602\) 0 0
\(603\) 14.0926 + 3.06566i 0.573895 + 0.124843i
\(604\) 0 0
\(605\) −13.1921 4.48671i −0.536337 0.182411i
\(606\) 0 0
\(607\) −1.23951 5.69792i −0.0503100 0.231271i 0.945126 0.326707i \(-0.105939\pi\)
−0.995436 + 0.0954359i \(0.969575\pi\)
\(608\) 0 0
\(609\) −11.5002 25.1820i −0.466013 1.02043i
\(610\) 0 0
\(611\) −0.0350488 0.243770i −0.00141792 0.00986187i
\(612\) 0 0
\(613\) −1.30867 0.714588i −0.0528567 0.0288619i 0.452603 0.891712i \(-0.350495\pi\)
−0.505460 + 0.862850i \(0.668677\pi\)
\(614\) 0 0
\(615\) −4.06479 0.463892i −0.163908 0.0187059i
\(616\) 0 0
\(617\) 33.3847 + 2.38772i 1.34402 + 0.0961259i 0.724726 0.689037i \(-0.241966\pi\)
0.619289 + 0.785163i \(0.287421\pi\)
\(618\) 0 0
\(619\) 10.7610 23.5633i 0.432522 0.947091i −0.560389 0.828230i \(-0.689348\pi\)
0.992911 0.118861i \(-0.0379244\pi\)
\(620\) 0 0
\(621\) 8.15560 0.793024i 0.327273 0.0318230i
\(622\) 0 0
\(623\) −0.895401 2.40066i −0.0358735 0.0961805i
\(624\) 0 0
\(625\) 0.653228 24.9915i 0.0261291 0.999659i
\(626\) 0 0
\(627\) −30.8125 + 2.20375i −1.23053 + 0.0880093i
\(628\) 0 0
\(629\) −0.275132 0.937014i −0.0109702 0.0373612i
\(630\) 0 0
\(631\) 11.9278 1.71496i 0.474840 0.0682717i 0.0992597 0.995062i \(-0.468353\pi\)
0.375580 + 0.926790i \(0.377443\pi\)
\(632\) 0 0
\(633\) −13.1821 4.91669i −0.523943 0.195421i
\(634\) 0 0
\(635\) −19.5596 + 0.570656i −0.776201 + 0.0226458i
\(636\) 0 0
\(637\) 0.956108 0.715733i 0.0378824 0.0283584i
\(638\) 0 0
\(639\) 7.93085 + 12.3406i 0.313740 + 0.488188i
\(640\) 0 0
\(641\) 11.0107 37.4991i 0.434898 1.48113i −0.392628 0.919697i \(-0.628434\pi\)
0.827526 0.561428i \(-0.189748\pi\)
\(642\) 0 0
\(643\) −15.0031 15.0031i −0.591664 0.591664i 0.346416 0.938081i \(-0.387398\pi\)
−0.938081 + 0.346416i \(0.887398\pi\)
\(644\) 0 0
\(645\) −7.20675 + 38.5031i −0.283766 + 1.51606i
\(646\) 0 0
\(647\) 0.0313600 + 0.0574315i 0.00123289 + 0.00225787i 0.878295 0.478120i \(-0.158681\pi\)
−0.877062 + 0.480378i \(0.840500\pi\)
\(648\) 0 0
\(649\) 18.4550 11.8603i 0.724421 0.465557i
\(650\) 0 0
\(651\) 13.4136 + 1.92859i 0.525722 + 0.0755873i
\(652\) 0 0
\(653\) 28.4019 6.17846i 1.11145 0.241782i 0.380886 0.924622i \(-0.375619\pi\)
0.730568 + 0.682840i \(0.239255\pi\)
\(654\) 0 0
\(655\) 13.8535 3.43966i 0.541302 0.134399i
\(656\) 0 0
\(657\) −10.7606 + 14.3745i −0.419811 + 0.560802i
\(658\) 0 0
\(659\) 24.6663 7.24269i 0.960864 0.282135i 0.236561 0.971617i \(-0.423980\pi\)
0.724303 + 0.689482i \(0.242162\pi\)
\(660\) 0 0
\(661\) −0.891819 0.772765i −0.0346877 0.0300571i 0.637344 0.770579i \(-0.280033\pi\)
−0.672032 + 0.740522i \(0.734578\pi\)
\(662\) 0 0
\(663\) 0.242981 3.39732i 0.00943661 0.131941i
\(664\) 0 0
\(665\) −20.0507 + 3.48245i −0.777534 + 0.135044i
\(666\) 0 0
\(667\) 20.3822 33.5698i 0.789203 1.29983i
\(668\) 0 0
\(669\) 18.9196 + 8.64027i 0.731472 + 0.334052i
\(670\) 0 0
\(671\) 16.2948 + 18.8052i 0.629053 + 0.725966i
\(672\) 0 0
\(673\) 3.12678 + 43.7181i 0.120529 + 1.68521i 0.594050 + 0.804428i \(0.297528\pi\)
−0.473522 + 0.880782i \(0.657017\pi\)
\(674\) 0 0
\(675\) 5.50958 + 6.52884i 0.212064 + 0.251295i
\(676\) 0 0
\(677\) −7.00991 5.24755i −0.269413 0.201680i 0.456026 0.889966i \(-0.349272\pi\)
−0.725439 + 0.688287i \(0.758363\pi\)
\(678\) 0 0
\(679\) −1.63293 + 0.745736i −0.0626662 + 0.0286187i
\(680\) 0 0
\(681\) 11.6098 18.0652i 0.444888 0.692259i
\(682\) 0 0
\(683\) 7.18275 + 9.59503i 0.274840 + 0.367144i 0.916630 0.399737i \(-0.130899\pi\)
−0.641790 + 0.766881i \(0.721808\pi\)
\(684\) 0 0
\(685\) 26.0268 + 10.9804i 0.994432 + 0.419539i
\(686\) 0 0
\(687\) 39.0514 21.3237i 1.48990 0.813550i
\(688\) 0 0
\(689\) 0.829184 0.0315894
\(690\) 0 0
\(691\) 32.7965 1.24764 0.623819 0.781569i \(-0.285580\pi\)
0.623819 + 0.781569i \(0.285580\pi\)
\(692\) 0 0
\(693\) 6.37271 3.47976i 0.242079 0.132185i
\(694\) 0 0
\(695\) −1.74221 + 0.708350i −0.0660859 + 0.0268692i
\(696\) 0 0
\(697\) 2.87126 + 3.83556i 0.108757 + 0.145282i
\(698\) 0 0
\(699\) −3.22499 + 5.01818i −0.121980 + 0.189805i
\(700\) 0 0
\(701\) −18.6167 + 8.50198i −0.703145 + 0.321116i −0.734705 0.678386i \(-0.762680\pi\)
0.0315605 + 0.999502i \(0.489952\pi\)
\(702\) 0 0
\(703\) 0.803730 + 0.601665i 0.0303133 + 0.0226922i
\(704\) 0 0
\(705\) 0.512014 + 5.07411i 0.0192836 + 0.191102i
\(706\) 0 0
\(707\) −0.0578389 0.808693i −0.00217525 0.0304140i
\(708\) 0 0
\(709\) −20.2557 23.3763i −0.760719 0.877917i 0.234842 0.972034i \(-0.424543\pi\)
−0.995561 + 0.0941170i \(0.969997\pi\)
\(710\) 0 0
\(711\) −27.3640 12.4967i −1.02623 0.468663i
\(712\) 0 0
\(713\) 8.43005 + 17.2778i 0.315708 + 0.647058i
\(714\) 0 0
\(715\) −0.206820 1.19080i −0.00773464 0.0445334i
\(716\) 0 0
\(717\) 3.13956 43.8967i 0.117249 1.63935i
\(718\) 0 0
\(719\) −30.0590 26.0463i −1.12101 0.971364i −0.121239 0.992623i \(-0.538687\pi\)
−0.999774 + 0.0212598i \(0.993232\pi\)
\(720\) 0 0
\(721\) 26.5113 7.78442i 0.987332 0.289907i
\(722\) 0 0
\(723\) 0.426323 0.569500i 0.0158551 0.0211800i
\(724\) 0 0
\(725\) 40.8753 2.38712i 1.51807 0.0886554i
\(726\) 0 0
\(727\) −28.9452 + 6.29665i −1.07352 + 0.233530i −0.714383 0.699755i \(-0.753292\pi\)
−0.359137 + 0.933285i \(0.616929\pi\)
\(728\) 0 0
\(729\) 12.2055 + 1.75489i 0.452055 + 0.0649958i
\(730\) 0 0
\(731\) 38.5919 24.8015i 1.42737 0.917316i
\(732\) 0 0
\(733\) −10.4175 19.0782i −0.384779 0.704669i 0.611464 0.791272i \(-0.290581\pi\)
−0.996243 + 0.0866026i \(0.972399\pi\)
\(734\) 0 0
\(735\) −20.4071 + 13.9722i −0.752728 + 0.515373i
\(736\) 0 0
\(737\) −9.87701 9.87701i −0.363824 0.363824i
\(738\) 0 0
\(739\) −9.31537 + 31.7252i −0.342671 + 1.16703i 0.590331 + 0.807161i \(0.298997\pi\)
−0.933002 + 0.359870i \(0.882821\pi\)
\(740\) 0 0
\(741\) 1.89311 + 2.94574i 0.0695451 + 0.108214i
\(742\) 0 0
\(743\) −38.2630 + 28.6433i −1.40373 + 1.05082i −0.413636 + 0.910443i \(0.635741\pi\)
−0.990098 + 0.140379i \(0.955168\pi\)
\(744\) 0 0
\(745\) −10.7776 + 11.4254i −0.394860 + 0.418593i
\(746\) 0 0
\(747\) −25.3416 9.45194i −0.927202 0.345828i
\(748\) 0 0
\(749\) 19.7929 2.84579i 0.723218 0.103983i
\(750\) 0 0
\(751\) −9.37652 31.9335i −0.342154 1.16527i −0.933418 0.358792i \(-0.883189\pi\)
0.591264 0.806478i \(-0.298629\pi\)
\(752\) 0 0
\(753\) −24.1392 + 1.72647i −0.879683 + 0.0629162i
\(754\) 0 0
\(755\) −12.7120 + 7.43053i −0.462637 + 0.270425i
\(756\) 0 0
\(757\) 0.803043 + 2.15304i 0.0291871 + 0.0782537i 0.950726 0.310032i \(-0.100340\pi\)
−0.921539 + 0.388286i \(0.873067\pi\)
\(758\) 0 0
\(759\) 21.3566 + 10.9633i 0.775194 + 0.397942i
\(760\) 0 0
\(761\) −3.90978 + 8.56122i −0.141729 + 0.310344i −0.967164 0.254154i \(-0.918203\pi\)
0.825434 + 0.564498i \(0.190930\pi\)
\(762\) 0 0
\(763\) −14.8807 1.06429i −0.538718 0.0385299i
\(764\) 0 0
\(765\) −3.43150 + 30.0681i −0.124066 + 1.08711i
\(766\) 0 0
\(767\) −2.18250 1.19174i −0.0788056 0.0430311i
\(768\) 0 0
\(769\) −5.38385 37.4455i −0.194147 1.35032i −0.820887 0.571091i \(-0.806520\pi\)
0.626740 0.779228i \(-0.284389\pi\)
\(770\) 0 0
\(771\) 1.66561 + 3.64718i 0.0599855 + 0.131350i
\(772\) 0 0
\(773\) 11.4931 + 52.8327i 0.413377 + 1.90026i 0.434871 + 0.900493i \(0.356794\pi\)
−0.0214939 + 0.999769i \(0.506842\pi\)
\(774\) 0 0
\(775\) −9.83466 + 17.4644i −0.353271 + 0.627340i
\(776\) 0 0
\(777\) −0.537410 0.116906i −0.0192795 0.00419399i
\(778\) 0 0
\(779\) −4.72617 1.38773i −0.169332 0.0497205i
\(780\) 0 0
\(781\) 14.2076i 0.508387i
\(782\) 0 0
\(783\) −9.89352 + 9.89352i −0.353565 + 0.353565i
\(784\) 0 0
\(785\) 3.51345 + 10.7910i 0.125400 + 0.385147i
\(786\) 0 0
\(787\) 7.21883 33.1844i 0.257324 1.18290i −0.649159 0.760653i \(-0.724879\pi\)
0.906482 0.422244i \(-0.138758\pi\)
\(788\) 0 0
\(789\) 3.59925 25.0333i 0.128137 0.891209i
\(790\) 0 0
\(791\) 10.8661 + 6.98320i 0.386353 + 0.248294i
\(792\) 0 0
\(793\) 0.985678 2.64270i 0.0350024 0.0938452i
\(794\) 0 0
\(795\) −17.1554 0.724953i −0.608439 0.0257114i
\(796\) 0 0
\(797\) −8.02442 + 14.6956i −0.284239 + 0.520546i −0.980319 0.197419i \(-0.936744\pi\)
0.696080 + 0.717964i \(0.254926\pi\)
\(798\) 0 0
\(799\) 3.91116 4.51372i 0.138367 0.159684i
\(800\) 0 0
\(801\) 2.96038 2.56518i 0.104600 0.0906363i
\(802\) 0 0
\(803\) 16.2942 6.07744i 0.575011 0.214468i
\(804\) 0 0
\(805\) 14.7236 + 5.77350i 0.518938 + 0.203489i
\(806\) 0 0
\(807\) 58.7865 21.9262i 2.06938 0.771840i
\(808\) 0 0
\(809\) 9.98746 8.65419i 0.351141 0.304265i −0.461374 0.887206i \(-0.652643\pi\)
0.812515 + 0.582941i \(0.198098\pi\)
\(810\) 0 0
\(811\) 10.7303 12.3834i 0.376791 0.434840i −0.535404 0.844596i \(-0.679841\pi\)
0.912195 + 0.409756i \(0.134386\pi\)
\(812\) 0 0
\(813\) 18.8270 34.4790i 0.660290 1.20923i
\(814\) 0 0
\(815\) −33.3334 + 30.6304i −1.16762 + 1.07294i
\(816\) 0 0
\(817\) −16.4814 + 44.1883i −0.576611 + 1.54595i
\(818\) 0 0
\(819\) −0.692385 0.444969i −0.0241939 0.0155485i
\(820\) 0 0
\(821\) −5.44827 + 37.8935i −0.190146 + 1.32249i 0.641473 + 0.767146i \(0.278324\pi\)
−0.831618 + 0.555347i \(0.812585\pi\)
\(822\) 0 0
\(823\) −5.56427 + 25.5785i −0.193958 + 0.891611i 0.772546 + 0.634959i \(0.218983\pi\)
−0.966504 + 0.256652i \(0.917381\pi\)
\(824\) 0 0
\(825\) 3.23789 + 24.8178i 0.112729 + 0.864046i
\(826\) 0 0
\(827\) −5.47033 + 5.47033i −0.190222 + 0.190222i −0.795792 0.605570i \(-0.792945\pi\)
0.605570 + 0.795792i \(0.292945\pi\)
\(828\) 0 0
\(829\) 41.0401i 1.42538i 0.701478 + 0.712691i \(0.252524\pi\)
−0.701478 + 0.712691i \(0.747476\pi\)
\(830\) 0 0
\(831\) 28.4266 + 8.34681i 0.986109 + 0.289548i
\(832\) 0 0
\(833\) 28.3019 + 6.15671i 0.980604 + 0.213317i
\(834\) 0 0
\(835\) −5.79298 11.7643i −0.200474 0.407120i
\(836\) 0 0
\(837\) −1.45587 6.69253i −0.0503222 0.231328i
\(838\) 0 0
\(839\) −5.73657 12.5613i −0.198048 0.433665i 0.784386 0.620273i \(-0.212978\pi\)
−0.982435 + 0.186607i \(0.940251\pi\)
\(840\) 0 0
\(841\) 5.41644 + 37.6721i 0.186774 + 1.29904i
\(842\) 0 0
\(843\) 39.0768 + 21.3375i 1.34588 + 0.734904i
\(844\) 0 0
\(845\) 22.6457 18.0063i 0.779035 0.619436i
\(846\) 0 0
\(847\) 9.16671 + 0.655616i 0.314972 + 0.0225272i
\(848\) 0 0
\(849\) −12.1530 + 26.6113i −0.417089 + 0.913297i
\(850\) 0 0
\(851\) −0.291231 0.723824i −0.00998328 0.0248124i
\(852\) 0 0
\(853\) 14.3439 + 38.4575i 0.491126 + 1.31676i 0.912204 + 0.409736i \(0.134379\pi\)
−0.421078 + 0.907025i \(0.638348\pi\)
\(854\) 0 0
\(855\) −15.7008 26.8606i −0.536955 0.918612i
\(856\) 0 0
\(857\) −18.3066 + 1.30932i −0.625342 + 0.0447254i −0.380415 0.924816i \(-0.624219\pi\)
−0.244928 + 0.969541i \(0.578764\pi\)
\(858\) 0 0
\(859\) 12.3679 + 42.1211i 0.421987 + 1.43715i 0.846818 + 0.531882i \(0.178515\pi\)
−0.424832 + 0.905272i \(0.639667\pi\)
\(860\) 0 0
\(861\) 2.67081 0.384005i 0.0910210 0.0130868i
\(862\) 0 0
\(863\) 7.52030 + 2.80493i 0.255994 + 0.0954808i 0.474185 0.880425i \(-0.342743\pi\)
−0.218191 + 0.975906i \(0.570016\pi\)
\(864\) 0 0
\(865\) 1.12128 + 38.4329i 0.0381248 + 1.30676i
\(866\) 0 0
\(867\) 34.9280 26.1468i 1.18622 0.887990i
\(868\) 0 0
\(869\) 15.7518 + 24.5104i 0.534345 + 0.831457i
\(870\) 0 0
\(871\) −0.446077 + 1.51920i −0.0151147 + 0.0514761i
\(872\) 0 0
\(873\) −1.94063 1.94063i −0.0656804 0.0656804i
\(874\) 0 0
\(875\) 3.76380 + 16.0531i 0.127240 + 0.542692i
\(876\) 0 0
\(877\) 1.85138 + 3.39055i 0.0625167 + 0.114491i 0.907068 0.420983i \(-0.138315\pi\)
−0.844552 + 0.535474i \(0.820133\pi\)
\(878\) 0 0
\(879\) 46.6782 29.9982i 1.57442 1.01182i
\(880\) 0 0
\(881\) 41.9629 + 6.03336i 1.41377 + 0.203269i 0.806502 0.591231i \(-0.201358\pi\)
0.607264 + 0.794500i \(0.292267\pi\)
\(882\) 0 0
\(883\) −39.5988 + 8.61419i −1.33261 + 0.289891i −0.821785 0.569797i \(-0.807022\pi\)
−0.510820 + 0.859688i \(0.670658\pi\)
\(884\) 0 0
\(885\) 44.1129 + 26.5645i 1.48284 + 0.892957i
\(886\) 0 0
\(887\) −18.4009 + 24.5808i −0.617843 + 0.825342i −0.994902 0.100848i \(-0.967845\pi\)
0.377059 + 0.926189i \(0.376935\pi\)
\(888\) 0 0
\(889\) 12.3830 3.63597i 0.415312 0.121947i
\(890\) 0 0
\(891\) −17.6261 15.2731i −0.590498 0.511669i
\(892\) 0 0
\(893\) −0.438033 + 6.12450i −0.0146582 + 0.204949i
\(894\) 0 0
\(895\) −21.8323 + 31.0101i −0.729774 + 1.03655i
\(896\) 0 0
\(897\) −0.0694699 2.72028i −0.00231953 0.0908275i
\(898\) 0 0
\(899\) −29.8601 13.6366i −0.995889 0.454807i
\(900\) 0 0
\(901\) 13.1684 + 15.1972i 0.438703 + 0.506291i
\(902\) 0 0
\(903\) −1.84306 25.7693i −0.0613331 0.857548i
\(904\) 0 0
\(905\) −50.5162 + 5.09745i −1.67922 + 0.169445i
\(906\) 0 0
\(907\) −44.0916 33.0066i −1.46404 1.09597i −0.974607 0.223924i \(-0.928113\pi\)
−0.489432 0.872042i \(-0.662796\pi\)
\(908\) 0 0
\(909\) 1.12749 0.514907i 0.0373965 0.0170784i
\(910\) 0 0
\(911\) −2.81195 + 4.37548i −0.0931641 + 0.144966i −0.884707 0.466147i \(-0.845642\pi\)
0.791543 + 0.611113i \(0.209278\pi\)
\(912\) 0 0
\(913\) 15.6984 + 20.9706i 0.519542 + 0.694026i
\(914\) 0 0
\(915\) −22.7037 + 53.8144i −0.750560 + 1.77905i
\(916\) 0 0
\(917\) −8.26274 + 4.51180i −0.272860 + 0.148993i
\(918\) 0 0
\(919\) 35.0195 1.15519 0.577594 0.816324i \(-0.303992\pi\)
0.577594 + 0.816324i \(0.303992\pi\)
\(920\) 0 0
\(921\) 45.1532 1.48785
\(922\) 0 0
\(923\) −1.41348 + 0.771816i −0.0465251 + 0.0254046i
\(924\) 0 0
\(925\) 0.448678 0.678498i 0.0147524 0.0223089i
\(926\) 0 0
\(927\) 25.3147 + 33.8164i 0.831442 + 1.11068i
\(928\) 0 0
\(929\) −10.5682 + 16.4445i −0.346732 + 0.539525i −0.970194 0.242328i \(-0.922089\pi\)
0.623462 + 0.781853i \(0.285725\pi\)
\(930\) 0 0
\(931\) −27.0860 + 12.3697i −0.887707 + 0.405402i
\(932\) 0 0
\(933\) 27.9991 + 20.9599i 0.916651 + 0.686196i
\(934\) 0 0
\(935\) 18.5402 22.7018i 0.606330 0.742430i
\(936\) 0 0
\(937\) 2.18999 + 30.6201i 0.0715439 + 1.00031i 0.898763 + 0.438435i \(0.144467\pi\)
−0.827219 + 0.561879i \(0.810079\pi\)
\(938\) 0 0
\(939\) −29.3973 33.9262i −0.959343 1.10714i
\(940\) 0 0
\(941\) 8.72687 + 3.98543i 0.284488 + 0.129921i 0.552548 0.833481i \(-0.313655\pi\)
−0.268061 + 0.963402i \(0.586383\pi\)
\(942\) 0 0
\(943\) 2.57975 + 2.82796i 0.0840082 + 0.0920912i
\(944\) 0 0
\(945\) −4.60708 3.24356i −0.149868 0.105513i
\(946\) 0 0
\(947\) −3.14952 + 44.0360i −0.102345 + 1.43098i 0.643800 + 0.765194i \(0.277357\pi\)
−0.746145 + 0.665783i \(0.768098\pi\)
\(948\) 0 0
\(949\) −1.48980 1.29092i −0.0483610 0.0419051i
\(950\) 0 0
\(951\) −73.4757 + 21.5744i −2.38261 + 0.699598i
\(952\) 0 0
\(953\) 28.3936 37.9294i 0.919760 1.22866i −0.0534115 0.998573i \(-0.517009\pi\)
0.973171 0.230082i \(-0.0738996\pi\)
\(954\) 0 0
\(955\) −4.28393 17.2539i −0.138625 0.558324i
\(956\) 0 0
\(957\) −40.0543 + 8.71328i −1.29477 + 0.281660i
\(958\) 0 0
\(959\) −18.4411 2.65143i −0.595493 0.0856190i
\(960\) 0 0
\(961\) −12.5607 + 8.07230i −0.405185 + 0.260397i
\(962\) 0 0
\(963\) 14.6511 + 26.8314i 0.472124 + 0.864631i
\(964\) 0 0
\(965\) −17.7209 25.8823i −0.570456 0.833180i
\(966\) 0 0
\(967\) −29.6971 29.6971i −0.954993 0.954993i 0.0440368 0.999030i \(-0.485978\pi\)
−0.999030 + 0.0440368i \(0.985978\pi\)
\(968\) 0 0
\(969\) −23.9242 + 81.4783i −0.768556 + 2.61746i
\(970\) 0 0
\(971\) −22.8501 35.5555i −0.733295 1.14103i −0.984887 0.173196i \(-0.944591\pi\)
0.251592 0.967833i \(-0.419046\pi\)
\(972\) 0 0
\(973\) 0.992987 0.743341i 0.0318337 0.0238304i
\(974\) 0 0
\(975\) 2.29317 1.67034i 0.0734401 0.0534937i
\(976\) 0 0
\(977\) −18.2796 6.81792i −0.584815 0.218125i 0.0396025 0.999216i \(-0.487391\pi\)
−0.624417 + 0.781091i \(0.714664\pi\)
\(978\) 0 0
\(979\) −3.75522 + 0.539920i −0.120017 + 0.0172559i
\(980\) 0 0
\(981\) −6.42575 21.8841i −0.205158 0.698706i
\(982\) 0 0
\(983\) 30.0743 2.15096i 0.959222 0.0686049i 0.417060 0.908879i \(-0.363060\pi\)
0.542162 + 0.840274i \(0.317606\pi\)
\(984\) 0 0
\(985\) −13.2734 3.48036i −0.422927 0.110894i
\(986\) 0 0
\(987\) −1.17544 3.15148i −0.0374147 0.100313i
\(988\) 0 0
\(989\) 28.7699 22.7057i 0.914831 0.721999i
\(990\) 0 0
\(991\) 6.48741 14.2054i 0.206079 0.451251i −0.778166 0.628059i \(-0.783850\pi\)
0.984245 + 0.176808i \(0.0565771\pi\)
\(992\) 0 0
\(993\) −18.0665 1.29214i −0.573322 0.0410048i
\(994\) 0 0
\(995\) 19.1943 + 24.1398i 0.608500 + 0.765282i
\(996\) 0 0
\(997\) 51.0557 + 27.8785i 1.61695 + 0.882922i 0.995001 + 0.0998661i \(0.0318415\pi\)
0.621951 + 0.783056i \(0.286340\pi\)
\(998\) 0 0
\(999\) 0.0395582 + 0.275133i 0.00125157 + 0.00870484i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.17.6 720
5.3 odd 4 inner 920.2.bv.a.753.6 yes 720
23.19 odd 22 inner 920.2.bv.a.617.6 yes 720
115.88 even 44 inner 920.2.bv.a.433.6 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.6 720 1.1 even 1 trivial
920.2.bv.a.433.6 yes 720 115.88 even 44 inner
920.2.bv.a.617.6 yes 720 23.19 odd 22 inner
920.2.bv.a.753.6 yes 720 5.3 odd 4 inner