Properties

Label 920.2.bv.a.17.5
Level $920$
Weight $2$
Character 920.17
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 17.5
Character \(\chi\) \(=\) 920.17
Dual form 920.2.bv.a.433.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.16592 + 1.18268i) q^{3} +(-1.96360 - 1.06972i) q^{5} +(0.350713 + 0.468498i) q^{7} +(1.67054 - 2.59942i) q^{9} +(5.54914 - 2.53421i) q^{11} +(-2.22491 - 1.66555i) q^{13} +(5.51812 - 0.00538709i) q^{15} +(0.520071 + 7.27155i) q^{17} +(3.45019 + 3.98174i) q^{19} +(-1.31370 - 0.599946i) q^{21} +(-4.53719 - 1.55366i) q^{23} +(2.71141 + 4.20098i) q^{25} +(-0.0158327 + 0.221370i) q^{27} +(-4.83131 - 4.18635i) q^{29} +(-1.95159 + 0.573039i) q^{31} +(-9.02182 + 12.0517i) q^{33} +(-0.187499 - 1.29510i) q^{35} +(-5.39542 + 1.17370i) q^{37} +(6.78878 + 0.976079i) q^{39} +(-10.6281 + 6.83025i) q^{41} +(-1.29547 - 2.37248i) q^{43} +(-6.06091 + 3.31719i) q^{45} +(-1.31669 - 1.31669i) q^{47} +(1.87564 - 6.38783i) q^{49} +(-9.72635 - 15.1345i) q^{51} +(0.488117 - 0.365400i) q^{53} +(-13.6071 - 0.959851i) q^{55} +(-12.1820 - 4.54364i) q^{57} +(2.62745 - 0.377771i) q^{59} +(2.84942 + 9.70424i) q^{61} +(1.80370 - 0.129003i) q^{63} +(2.58716 + 5.65048i) q^{65} +(4.62955 + 12.4123i) q^{67} +(11.6647 - 2.00095i) q^{69} +(-5.57231 + 12.2017i) q^{71} +(-9.46161 - 0.676708i) q^{73} +(-10.8411 - 5.89225i) q^{75} +(3.13343 + 1.71098i) q^{77} +(0.0759873 + 0.528503i) q^{79} +(3.62330 + 7.93391i) q^{81} +(-0.122202 - 0.561752i) q^{83} +(6.75729 - 14.8347i) q^{85} +(15.4153 + 3.35340i) q^{87} +(1.01298 + 0.297438i) q^{89} -1.62649i q^{91} +(3.54926 - 3.54926i) q^{93} +(-2.51545 - 11.5092i) q^{95} +(-3.06193 + 14.0755i) q^{97} +(2.68262 - 18.6580i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.16592 + 1.18268i −1.25049 + 0.682821i −0.961578 0.274534i \(-0.911477\pi\)
−0.288916 + 0.957355i \(0.593295\pi\)
\(4\) 0 0
\(5\) −1.96360 1.06972i −0.878146 0.478392i
\(6\) 0 0
\(7\) 0.350713 + 0.468498i 0.132557 + 0.177076i 0.861909 0.507063i \(-0.169269\pi\)
−0.729352 + 0.684139i \(0.760178\pi\)
\(8\) 0 0
\(9\) 1.67054 2.59942i 0.556848 0.866472i
\(10\) 0 0
\(11\) 5.54914 2.53421i 1.67313 0.764092i 0.673437 0.739245i \(-0.264817\pi\)
0.999691 0.0248475i \(-0.00791003\pi\)
\(12\) 0 0
\(13\) −2.22491 1.66555i −0.617079 0.461939i 0.244441 0.969664i \(-0.421396\pi\)
−0.861519 + 0.507725i \(0.830487\pi\)
\(14\) 0 0
\(15\) 5.51812 0.00538709i 1.42477 0.00139094i
\(16\) 0 0
\(17\) 0.520071 + 7.27155i 0.126136 + 1.76361i 0.529256 + 0.848462i \(0.322471\pi\)
−0.403120 + 0.915147i \(0.632074\pi\)
\(18\) 0 0
\(19\) 3.45019 + 3.98174i 0.791529 + 0.913473i 0.997885 0.0650040i \(-0.0207060\pi\)
−0.206356 + 0.978477i \(0.566161\pi\)
\(20\) 0 0
\(21\) −1.31370 0.599946i −0.286673 0.130919i
\(22\) 0 0
\(23\) −4.53719 1.55366i −0.946070 0.323961i
\(24\) 0 0
\(25\) 2.71141 + 4.20098i 0.542282 + 0.840196i
\(26\) 0 0
\(27\) −0.0158327 + 0.221370i −0.00304700 + 0.0426027i
\(28\) 0 0
\(29\) −4.83131 4.18635i −0.897151 0.777386i 0.0784539 0.996918i \(-0.475002\pi\)
−0.975605 + 0.219532i \(0.929547\pi\)
\(30\) 0 0
\(31\) −1.95159 + 0.573039i −0.350516 + 0.102921i −0.452251 0.891891i \(-0.649379\pi\)
0.101735 + 0.994812i \(0.467561\pi\)
\(32\) 0 0
\(33\) −9.02182 + 12.0517i −1.57050 + 2.09794i
\(34\) 0 0
\(35\) −0.187499 1.29510i −0.0316930 0.218913i
\(36\) 0 0
\(37\) −5.39542 + 1.17370i −0.887002 + 0.192955i −0.632911 0.774225i \(-0.718140\pi\)
−0.254091 + 0.967180i \(0.581776\pi\)
\(38\) 0 0
\(39\) 6.78878 + 0.976079i 1.08707 + 0.156298i
\(40\) 0 0
\(41\) −10.6281 + 6.83025i −1.65983 + 1.06671i −0.741442 + 0.671017i \(0.765858\pi\)
−0.918385 + 0.395689i \(0.870506\pi\)
\(42\) 0 0
\(43\) −1.29547 2.37248i −0.197558 0.361800i 0.760055 0.649859i \(-0.225172\pi\)
−0.957613 + 0.288059i \(0.906990\pi\)
\(44\) 0 0
\(45\) −6.06091 + 3.31719i −0.903508 + 0.494498i
\(46\) 0 0
\(47\) −1.31669 1.31669i −0.192059 0.192059i 0.604526 0.796585i \(-0.293362\pi\)
−0.796585 + 0.604526i \(0.793362\pi\)
\(48\) 0 0
\(49\) 1.87564 6.38783i 0.267948 0.912548i
\(50\) 0 0
\(51\) −9.72635 15.1345i −1.36196 2.11925i
\(52\) 0 0
\(53\) 0.488117 0.365400i 0.0670481 0.0501916i −0.565228 0.824935i \(-0.691212\pi\)
0.632276 + 0.774743i \(0.282121\pi\)
\(54\) 0 0
\(55\) −13.6071 0.959851i −1.83479 0.129426i
\(56\) 0 0
\(57\) −12.1820 4.54364i −1.61354 0.601819i
\(58\) 0 0
\(59\) 2.62745 0.377771i 0.342065 0.0491816i 0.0308585 0.999524i \(-0.490176\pi\)
0.311207 + 0.950342i \(0.399267\pi\)
\(60\) 0 0
\(61\) 2.84942 + 9.70424i 0.364831 + 1.24250i 0.913630 + 0.406546i \(0.133267\pi\)
−0.548799 + 0.835954i \(0.684915\pi\)
\(62\) 0 0
\(63\) 1.80370 0.129003i 0.227245 0.0162529i
\(64\) 0 0
\(65\) 2.58716 + 5.65048i 0.320897 + 0.700856i
\(66\) 0 0
\(67\) 4.62955 + 12.4123i 0.565590 + 1.51641i 0.833252 + 0.552893i \(0.186476\pi\)
−0.267662 + 0.963513i \(0.586251\pi\)
\(68\) 0 0
\(69\) 11.6647 2.00095i 1.40426 0.240886i
\(70\) 0 0
\(71\) −5.57231 + 12.2017i −0.661312 + 1.44807i 0.219983 + 0.975504i \(0.429400\pi\)
−0.881295 + 0.472567i \(0.843328\pi\)
\(72\) 0 0
\(73\) −9.46161 0.676708i −1.10740 0.0792027i −0.494361 0.869257i \(-0.664598\pi\)
−0.613037 + 0.790054i \(0.710052\pi\)
\(74\) 0 0
\(75\) −10.8411 5.89225i −1.25182 0.680378i
\(76\) 0 0
\(77\) 3.13343 + 1.71098i 0.357087 + 0.194984i
\(78\) 0 0
\(79\) 0.0759873 + 0.528503i 0.00854924 + 0.0594613i 0.993649 0.112520i \(-0.0358922\pi\)
−0.985100 + 0.171981i \(0.944983\pi\)
\(80\) 0 0
\(81\) 3.62330 + 7.93391i 0.402588 + 0.881546i
\(82\) 0 0
\(83\) −0.122202 0.561752i −0.0134134 0.0616603i 0.969954 0.243290i \(-0.0782265\pi\)
−0.983367 + 0.181629i \(0.941863\pi\)
\(84\) 0 0
\(85\) 6.75729 14.8347i 0.732931 1.60905i
\(86\) 0 0
\(87\) 15.4153 + 3.35340i 1.65270 + 0.359522i
\(88\) 0 0
\(89\) 1.01298 + 0.297438i 0.107376 + 0.0315284i 0.334979 0.942226i \(-0.391271\pi\)
−0.227603 + 0.973754i \(0.573089\pi\)
\(90\) 0 0
\(91\) 1.62649i 0.170503i
\(92\) 0 0
\(93\) 3.54926 3.54926i 0.368042 0.368042i
\(94\) 0 0
\(95\) −2.51545 11.5092i −0.258080 1.18082i
\(96\) 0 0
\(97\) −3.06193 + 14.0755i −0.310892 + 1.42915i 0.511037 + 0.859558i \(0.329261\pi\)
−0.821929 + 0.569589i \(0.807102\pi\)
\(98\) 0 0
\(99\) 2.68262 18.6580i 0.269613 1.87520i
\(100\) 0 0
\(101\) −11.5402 7.41644i −1.14829 0.737963i −0.178995 0.983850i \(-0.557285\pi\)
−0.969299 + 0.245887i \(0.920921\pi\)
\(102\) 0 0
\(103\) −4.91213 + 13.1699i −0.484007 + 1.29767i 0.433930 + 0.900947i \(0.357127\pi\)
−0.917937 + 0.396726i \(0.870146\pi\)
\(104\) 0 0
\(105\) 1.93780 + 2.58334i 0.189110 + 0.252108i
\(106\) 0 0
\(107\) 3.62685 6.64208i 0.350621 0.642114i −0.641539 0.767091i \(-0.721704\pi\)
0.992160 + 0.124976i \(0.0398855\pi\)
\(108\) 0 0
\(109\) −10.6912 + 12.3383i −1.02403 + 1.18180i −0.0408506 + 0.999165i \(0.513007\pi\)
−0.983182 + 0.182631i \(0.941539\pi\)
\(110\) 0 0
\(111\) 10.2979 8.92320i 0.977436 0.846953i
\(112\) 0 0
\(113\) −1.67821 + 0.625940i −0.157873 + 0.0588835i −0.427158 0.904177i \(-0.640485\pi\)
0.269285 + 0.963060i \(0.413213\pi\)
\(114\) 0 0
\(115\) 7.24723 + 7.90428i 0.675808 + 0.737078i
\(116\) 0 0
\(117\) −8.04625 + 3.00110i −0.743877 + 0.277452i
\(118\) 0 0
\(119\) −3.22431 + 2.79388i −0.295572 + 0.256115i
\(120\) 0 0
\(121\) 17.1673 19.8121i 1.56066 1.80110i
\(122\) 0 0
\(123\) 14.9415 27.3634i 1.34723 2.46727i
\(124\) 0 0
\(125\) −0.830254 11.1495i −0.0742602 0.997239i
\(126\) 0 0
\(127\) −2.72980 + 7.31887i −0.242230 + 0.649445i −0.999995 0.00308290i \(-0.999019\pi\)
0.757765 + 0.652528i \(0.226291\pi\)
\(128\) 0 0
\(129\) 5.61177 + 3.60647i 0.494089 + 0.317532i
\(130\) 0 0
\(131\) 0.404796 2.81542i 0.0353672 0.245984i −0.964467 0.264204i \(-0.914891\pi\)
0.999834 + 0.0182197i \(0.00579983\pi\)
\(132\) 0 0
\(133\) −0.655407 + 3.01286i −0.0568310 + 0.261248i
\(134\) 0 0
\(135\) 0.267892 0.417744i 0.0230565 0.0359537i
\(136\) 0 0
\(137\) 7.48167 7.48167i 0.639202 0.639202i −0.311156 0.950359i \(-0.600716\pi\)
0.950359 + 0.311156i \(0.100716\pi\)
\(138\) 0 0
\(139\) 3.16283i 0.268268i 0.990963 + 0.134134i \(0.0428253\pi\)
−0.990963 + 0.134134i \(0.957175\pi\)
\(140\) 0 0
\(141\) 4.40906 + 1.29462i 0.371310 + 0.109026i
\(142\) 0 0
\(143\) −16.5672 3.60397i −1.38542 0.301379i
\(144\) 0 0
\(145\) 5.00852 + 13.3884i 0.415935 + 1.11185i
\(146\) 0 0
\(147\) 3.49229 + 16.0538i 0.288039 + 1.32410i
\(148\) 0 0
\(149\) −1.93768 4.24292i −0.158741 0.347594i 0.813504 0.581559i \(-0.197557\pi\)
−0.972245 + 0.233965i \(0.924830\pi\)
\(150\) 0 0
\(151\) 1.72430 + 11.9928i 0.140322 + 0.975958i 0.931336 + 0.364161i \(0.118644\pi\)
−0.791015 + 0.611797i \(0.790447\pi\)
\(152\) 0 0
\(153\) 19.7706 + 10.7956i 1.59836 + 0.872769i
\(154\) 0 0
\(155\) 4.44512 + 0.962434i 0.357041 + 0.0773045i
\(156\) 0 0
\(157\) −14.8328 1.06086i −1.18379 0.0846660i −0.534472 0.845186i \(-0.679489\pi\)
−0.649314 + 0.760520i \(0.724944\pi\)
\(158\) 0 0
\(159\) −0.625071 + 1.36871i −0.0495713 + 0.108546i
\(160\) 0 0
\(161\) −0.863366 2.67056i −0.0680428 0.210469i
\(162\) 0 0
\(163\) 2.96097 + 7.93867i 0.231921 + 0.621804i 0.999824 0.0187619i \(-0.00597244\pi\)
−0.767903 + 0.640566i \(0.778700\pi\)
\(164\) 0 0
\(165\) 30.6072 14.0139i 2.38276 1.09098i
\(166\) 0 0
\(167\) 0.334715 0.0239393i 0.0259010 0.00185248i −0.0583827 0.998294i \(-0.518594\pi\)
0.0842837 + 0.996442i \(0.473140\pi\)
\(168\) 0 0
\(169\) −1.48635 5.06204i −0.114334 0.389387i
\(170\) 0 0
\(171\) 16.1139 2.31683i 1.23226 0.177172i
\(172\) 0 0
\(173\) 13.2004 + 4.92348i 1.00361 + 0.374326i 0.796922 0.604082i \(-0.206460\pi\)
0.206684 + 0.978408i \(0.433733\pi\)
\(174\) 0 0
\(175\) −1.01722 + 2.74363i −0.0768949 + 0.207399i
\(176\) 0 0
\(177\) −5.24407 + 3.92566i −0.394168 + 0.295071i
\(178\) 0 0
\(179\) −14.1797 22.0641i −1.05984 1.64915i −0.696612 0.717448i \(-0.745310\pi\)
−0.363231 0.931699i \(-0.618326\pi\)
\(180\) 0 0
\(181\) −1.04562 + 3.56107i −0.0777207 + 0.264692i −0.989182 0.146693i \(-0.953137\pi\)
0.911461 + 0.411386i \(0.134955\pi\)
\(182\) 0 0
\(183\) −17.6486 17.6486i −1.30462 1.30462i
\(184\) 0 0
\(185\) 11.8500 + 3.46690i 0.871226 + 0.254891i
\(186\) 0 0
\(187\) 21.3136 + 39.0329i 1.55860 + 2.85437i
\(188\) 0 0
\(189\) −0.109264 + 0.0702198i −0.00794779 + 0.00510774i
\(190\) 0 0
\(191\) 16.7799 + 2.41259i 1.21415 + 0.174569i 0.719481 0.694512i \(-0.244380\pi\)
0.494670 + 0.869081i \(0.335289\pi\)
\(192\) 0 0
\(193\) −8.07943 + 1.75757i −0.581570 + 0.126513i −0.493720 0.869621i \(-0.664363\pi\)
−0.0878501 + 0.996134i \(0.528000\pi\)
\(194\) 0 0
\(195\) −12.2863 9.17869i −0.879839 0.657300i
\(196\) 0 0
\(197\) −0.412624 + 0.551201i −0.0293982 + 0.0392714i −0.815000 0.579462i \(-0.803263\pi\)
0.785601 + 0.618733i \(0.212354\pi\)
\(198\) 0 0
\(199\) 15.1332 4.44350i 1.07276 0.314991i 0.302782 0.953060i \(-0.402085\pi\)
0.769979 + 0.638069i \(0.220267\pi\)
\(200\) 0 0
\(201\) −24.7070 21.4088i −1.74270 1.51006i
\(202\) 0 0
\(203\) 0.266894 3.73167i 0.0187323 0.261912i
\(204\) 0 0
\(205\) 28.1757 2.04281i 1.96787 0.142676i
\(206\) 0 0
\(207\) −11.6182 + 9.19860i −0.807521 + 0.639347i
\(208\) 0 0
\(209\) 29.2361 + 13.3517i 2.02231 + 0.923557i
\(210\) 0 0
\(211\) −0.0816244 0.0941996i −0.00561926 0.00648497i 0.752933 0.658097i \(-0.228638\pi\)
−0.758552 + 0.651612i \(0.774093\pi\)
\(212\) 0 0
\(213\) −2.36150 33.0181i −0.161807 2.26236i
\(214\) 0 0
\(215\) 0.00590086 + 6.04438i 0.000402435 + 0.412223i
\(216\) 0 0
\(217\) −0.952916 0.713344i −0.0646882 0.0484250i
\(218\) 0 0
\(219\) 21.2934 9.72437i 1.43888 0.657112i
\(220\) 0 0
\(221\) 10.9540 17.0447i 0.736845 1.14655i
\(222\) 0 0
\(223\) 4.91957 + 6.57178i 0.329439 + 0.440079i 0.934427 0.356156i \(-0.115913\pi\)
−0.604988 + 0.796235i \(0.706822\pi\)
\(224\) 0 0
\(225\) 15.4496 0.0301656i 1.02998 0.00201104i
\(226\) 0 0
\(227\) 1.07898 0.589170i 0.0716147 0.0391046i −0.443043 0.896501i \(-0.646101\pi\)
0.514657 + 0.857396i \(0.327919\pi\)
\(228\) 0 0
\(229\) −8.65661 −0.572045 −0.286022 0.958223i \(-0.592333\pi\)
−0.286022 + 0.958223i \(0.592333\pi\)
\(230\) 0 0
\(231\) −8.81029 −0.579674
\(232\) 0 0
\(233\) −5.42465 + 2.96208i −0.355380 + 0.194052i −0.647015 0.762478i \(-0.723983\pi\)
0.291634 + 0.956530i \(0.405801\pi\)
\(234\) 0 0
\(235\) 1.17696 + 3.99392i 0.0767763 + 0.260535i
\(236\) 0 0
\(237\) −0.789633 1.05483i −0.0512922 0.0685183i
\(238\) 0 0
\(239\) −0.966001 + 1.50313i −0.0624854 + 0.0972292i −0.871090 0.491123i \(-0.836587\pi\)
0.808605 + 0.588352i \(0.200223\pi\)
\(240\) 0 0
\(241\) 6.62482 3.02545i 0.426742 0.194887i −0.190454 0.981696i \(-0.560996\pi\)
0.617196 + 0.786810i \(0.288269\pi\)
\(242\) 0 0
\(243\) −17.7641 13.2980i −1.13956 0.853067i
\(244\) 0 0
\(245\) −10.5162 + 10.5367i −0.671853 + 0.673166i
\(246\) 0 0
\(247\) −1.04460 14.6055i −0.0664665 0.929323i
\(248\) 0 0
\(249\) 0.929053 + 1.07218i 0.0588763 + 0.0679469i
\(250\) 0 0
\(251\) −24.1662 11.0363i −1.52536 0.696607i −0.536284 0.844038i \(-0.680172\pi\)
−0.989072 + 0.147431i \(0.952900\pi\)
\(252\) 0 0
\(253\) −29.1148 + 2.87670i −1.83043 + 0.180857i
\(254\) 0 0
\(255\) 2.90899 + 40.1225i 0.182168 + 2.51257i
\(256\) 0 0
\(257\) −0.324592 + 4.53838i −0.0202475 + 0.283097i 0.977234 + 0.212166i \(0.0680516\pi\)
−0.997481 + 0.0709311i \(0.977403\pi\)
\(258\) 0 0
\(259\) −2.44212 2.11611i −0.151746 0.131489i
\(260\) 0 0
\(261\) −18.9530 + 5.56510i −1.17316 + 0.344471i
\(262\) 0 0
\(263\) 16.1954 21.6345i 0.998652 1.33404i 0.0566648 0.998393i \(-0.481953\pi\)
0.941987 0.335649i \(-0.108956\pi\)
\(264\) 0 0
\(265\) −1.34934 + 0.195350i −0.0828893 + 0.0120003i
\(266\) 0 0
\(267\) −2.54581 + 0.553807i −0.155801 + 0.0338924i
\(268\) 0 0
\(269\) 8.67544 + 1.24734i 0.528951 + 0.0760516i 0.401616 0.915808i \(-0.368449\pi\)
0.127335 + 0.991860i \(0.459358\pi\)
\(270\) 0 0
\(271\) −4.14079 + 2.66112i −0.251535 + 0.161652i −0.660332 0.750973i \(-0.729585\pi\)
0.408798 + 0.912625i \(0.365948\pi\)
\(272\) 0 0
\(273\) 1.92362 + 3.52285i 0.116423 + 0.213213i
\(274\) 0 0
\(275\) 25.6922 + 16.4406i 1.54930 + 0.991403i
\(276\) 0 0
\(277\) −12.3692 12.3692i −0.743191 0.743191i 0.229999 0.973191i \(-0.426128\pi\)
−0.973191 + 0.229999i \(0.926128\pi\)
\(278\) 0 0
\(279\) −1.77065 + 6.03029i −0.106006 + 0.361024i
\(280\) 0 0
\(281\) −4.91460 7.64726i −0.293180 0.456197i 0.663150 0.748487i \(-0.269219\pi\)
−0.956330 + 0.292289i \(0.905583\pi\)
\(282\) 0 0
\(283\) 2.94705 2.20614i 0.175184 0.131141i −0.508088 0.861305i \(-0.669647\pi\)
0.683272 + 0.730164i \(0.260556\pi\)
\(284\) 0 0
\(285\) 19.0600 + 21.9531i 1.12902 + 1.30039i
\(286\) 0 0
\(287\) −6.92737 2.58377i −0.408909 0.152515i
\(288\) 0 0
\(289\) −35.7780 + 5.14409i −2.10459 + 0.302594i
\(290\) 0 0
\(291\) −10.0149 34.1076i −0.587084 1.99942i
\(292\) 0 0
\(293\) 12.8294 0.917579i 0.749503 0.0536055i 0.308639 0.951179i \(-0.400126\pi\)
0.440864 + 0.897574i \(0.354672\pi\)
\(294\) 0 0
\(295\) −5.56336 2.06884i −0.323912 0.120453i
\(296\) 0 0
\(297\) 0.473139 + 1.26854i 0.0274543 + 0.0736079i
\(298\) 0 0
\(299\) 7.50715 + 11.0137i 0.434149 + 0.636936i
\(300\) 0 0
\(301\) 0.657163 1.43899i 0.0378782 0.0829418i
\(302\) 0 0
\(303\) 33.7664 + 2.41502i 1.93983 + 0.138739i
\(304\) 0 0
\(305\) 4.78568 22.1033i 0.274027 1.26563i
\(306\) 0 0
\(307\) −7.24588 3.95655i −0.413544 0.225812i 0.258987 0.965881i \(-0.416611\pi\)
−0.672531 + 0.740069i \(0.734793\pi\)
\(308\) 0 0
\(309\) −4.93656 34.3345i −0.280831 1.95322i
\(310\) 0 0
\(311\) 8.97715 + 19.6572i 0.509047 + 1.11466i 0.973422 + 0.229019i \(0.0735519\pi\)
−0.464375 + 0.885639i \(0.653721\pi\)
\(312\) 0 0
\(313\) −0.545990 2.50988i −0.0308612 0.141867i 0.959138 0.282938i \(-0.0913090\pi\)
−0.989999 + 0.141071i \(0.954945\pi\)
\(314\) 0 0
\(315\) −3.67974 1.67614i −0.207330 0.0944399i
\(316\) 0 0
\(317\) −5.44435 1.18435i −0.305785 0.0665195i 0.0570545 0.998371i \(-0.481829\pi\)
−0.362840 + 0.931852i \(0.618193\pi\)
\(318\) 0 0
\(319\) −37.4187 10.9871i −2.09504 0.615160i
\(320\) 0 0
\(321\) 18.6756i 1.04237i
\(322\) 0 0
\(323\) −27.1590 + 27.1590i −1.51117 + 1.51117i
\(324\) 0 0
\(325\) 0.964284 13.8628i 0.0534888 0.768969i
\(326\) 0 0
\(327\) 8.56400 39.3681i 0.473590 2.17706i
\(328\) 0 0
\(329\) 0.155086 1.07864i 0.00855015 0.0594676i
\(330\) 0 0
\(331\) −1.09924 0.706441i −0.0604199 0.0388295i 0.510082 0.860126i \(-0.329615\pi\)
−0.570502 + 0.821296i \(0.693251\pi\)
\(332\) 0 0
\(333\) −5.96235 + 15.9857i −0.326735 + 0.876009i
\(334\) 0 0
\(335\) 4.18709 29.3251i 0.228765 1.60220i
\(336\) 0 0
\(337\) −0.720548 + 1.31959i −0.0392508 + 0.0718824i −0.896568 0.442906i \(-0.853948\pi\)
0.857317 + 0.514788i \(0.172129\pi\)
\(338\) 0 0
\(339\) 2.89458 3.34052i 0.157212 0.181432i
\(340\) 0 0
\(341\) −9.37745 + 8.12561i −0.507818 + 0.440026i
\(342\) 0 0
\(343\) 7.48879 2.79318i 0.404357 0.150817i
\(344\) 0 0
\(345\) −25.0451 8.54885i −1.34839 0.460255i
\(346\) 0 0
\(347\) −7.30823 + 2.72583i −0.392326 + 0.146330i −0.537882 0.843020i \(-0.680776\pi\)
0.145556 + 0.989350i \(0.453503\pi\)
\(348\) 0 0
\(349\) −15.4886 + 13.4210i −0.829087 + 0.718408i −0.962097 0.272706i \(-0.912081\pi\)
0.133010 + 0.991115i \(0.457536\pi\)
\(350\) 0 0
\(351\) 0.403928 0.466158i 0.0215601 0.0248817i
\(352\) 0 0
\(353\) 6.88369 12.6065i 0.366382 0.670978i −0.627838 0.778344i \(-0.716060\pi\)
0.994220 + 0.107366i \(0.0342417\pi\)
\(354\) 0 0
\(355\) 23.9941 17.9983i 1.27347 0.955252i
\(356\) 0 0
\(357\) 3.67932 9.86464i 0.194730 0.522092i
\(358\) 0 0
\(359\) −0.256860 0.165074i −0.0135566 0.00871227i 0.533845 0.845582i \(-0.320747\pi\)
−0.547402 + 0.836870i \(0.684383\pi\)
\(360\) 0 0
\(361\) −1.24640 + 8.66892i −0.0656001 + 0.456259i
\(362\) 0 0
\(363\) −13.7515 + 63.2147i −0.721768 + 3.31791i
\(364\) 0 0
\(365\) 17.8549 + 11.4500i 0.934568 + 0.599322i
\(366\) 0 0
\(367\) 4.77352 4.77352i 0.249176 0.249176i −0.571456 0.820632i \(-0.693621\pi\)
0.820632 + 0.571456i \(0.193621\pi\)
\(368\) 0 0
\(369\) 39.0370i 2.03219i
\(370\) 0 0
\(371\) 0.342378 + 0.100531i 0.0177754 + 0.00521933i
\(372\) 0 0
\(373\) −0.453037 0.0985521i −0.0234573 0.00510283i 0.200821 0.979628i \(-0.435639\pi\)
−0.224279 + 0.974525i \(0.572003\pi\)
\(374\) 0 0
\(375\) 14.9845 + 23.1669i 0.773797 + 1.19633i
\(376\) 0 0
\(377\) 3.77666 + 17.3610i 0.194508 + 0.894138i
\(378\) 0 0
\(379\) 9.31366 + 20.3941i 0.478410 + 1.04757i 0.982897 + 0.184153i \(0.0589543\pi\)
−0.504487 + 0.863419i \(0.668318\pi\)
\(380\) 0 0
\(381\) −2.74337 19.0806i −0.140547 0.977526i
\(382\) 0 0
\(383\) 8.76676 + 4.78701i 0.447960 + 0.244605i 0.687361 0.726316i \(-0.258769\pi\)
−0.239401 + 0.970921i \(0.576951\pi\)
\(384\) 0 0
\(385\) −4.32252 6.71155i −0.220296 0.342052i
\(386\) 0 0
\(387\) −8.33121 0.595860i −0.423499 0.0302893i
\(388\) 0 0
\(389\) −15.4015 + 33.7245i −0.780886 + 1.70990i −0.0798147 + 0.996810i \(0.525433\pi\)
−0.701071 + 0.713091i \(0.747294\pi\)
\(390\) 0 0
\(391\) 8.93786 33.8004i 0.452007 1.70936i
\(392\) 0 0
\(393\) 2.45299 + 6.57671i 0.123737 + 0.331751i
\(394\) 0 0
\(395\) 0.416141 1.11905i 0.0209383 0.0563056i
\(396\) 0 0
\(397\) 29.4796 2.10842i 1.47954 0.105819i 0.691917 0.721977i \(-0.256766\pi\)
0.787622 + 0.616158i \(0.211312\pi\)
\(398\) 0 0
\(399\) −2.14369 7.30074i −0.107319 0.365494i
\(400\) 0 0
\(401\) −23.3215 + 3.35312i −1.16462 + 0.167447i −0.697391 0.716691i \(-0.745656\pi\)
−0.467227 + 0.884137i \(0.654747\pi\)
\(402\) 0 0
\(403\) 5.29653 + 1.97551i 0.263839 + 0.0984069i
\(404\) 0 0
\(405\) 1.37235 19.4549i 0.0681928 0.966721i
\(406\) 0 0
\(407\) −26.9655 + 20.1861i −1.33663 + 1.00059i
\(408\) 0 0
\(409\) 19.3633 + 30.1299i 0.957454 + 1.48983i 0.869637 + 0.493691i \(0.164353\pi\)
0.0878166 + 0.996137i \(0.472011\pi\)
\(410\) 0 0
\(411\) −7.35626 + 25.0531i −0.362857 + 1.23578i
\(412\) 0 0
\(413\) 1.09847 + 1.09847i 0.0540521 + 0.0540521i
\(414\) 0 0
\(415\) −0.360961 + 1.23378i −0.0177189 + 0.0605637i
\(416\) 0 0
\(417\) −3.74062 6.85044i −0.183179 0.335467i
\(418\) 0 0
\(419\) −22.1894 + 14.2603i −1.08402 + 0.696660i −0.955484 0.295044i \(-0.904666\pi\)
−0.128541 + 0.991704i \(0.541029\pi\)
\(420\) 0 0
\(421\) 11.2502 + 1.61753i 0.548299 + 0.0788335i 0.410897 0.911682i \(-0.365216\pi\)
0.137402 + 0.990515i \(0.456125\pi\)
\(422\) 0 0
\(423\) −5.62220 + 1.22304i −0.273361 + 0.0594660i
\(424\) 0 0
\(425\) −29.1375 + 21.9010i −1.41338 + 1.06235i
\(426\) 0 0
\(427\) −3.54709 + 4.73835i −0.171655 + 0.229305i
\(428\) 0 0
\(429\) 40.1454 11.7878i 1.93824 0.569119i
\(430\) 0 0
\(431\) −6.91198 5.98926i −0.332938 0.288493i 0.472308 0.881434i \(-0.343421\pi\)
−0.805246 + 0.592941i \(0.797967\pi\)
\(432\) 0 0
\(433\) 1.48457 20.7570i 0.0713440 0.997520i −0.828127 0.560540i \(-0.810594\pi\)
0.899471 0.436980i \(-0.143952\pi\)
\(434\) 0 0
\(435\) −26.6823 23.0748i −1.27932 1.10635i
\(436\) 0 0
\(437\) −9.46793 23.4263i −0.452912 1.12063i
\(438\) 0 0
\(439\) 10.3001 + 4.70390i 0.491597 + 0.224505i 0.645760 0.763541i \(-0.276541\pi\)
−0.154163 + 0.988045i \(0.549268\pi\)
\(440\) 0 0
\(441\) −13.4713 15.5467i −0.641491 0.740320i
\(442\) 0 0
\(443\) −0.398726 5.57492i −0.0189440 0.264872i −0.998093 0.0617286i \(-0.980339\pi\)
0.979149 0.203144i \(-0.0651159\pi\)
\(444\) 0 0
\(445\) −1.67091 1.66765i −0.0792088 0.0790543i
\(446\) 0 0
\(447\) 9.21488 + 6.89817i 0.435849 + 0.326272i
\(448\) 0 0
\(449\) 2.43292 1.11108i 0.114817 0.0524350i −0.357179 0.934036i \(-0.616261\pi\)
0.471995 + 0.881601i \(0.343534\pi\)
\(450\) 0 0
\(451\) −41.6674 + 64.8358i −1.96204 + 3.05300i
\(452\) 0 0
\(453\) −17.9183 23.9361i −0.841876 1.12461i
\(454\) 0 0
\(455\) −1.73989 + 3.19378i −0.0815672 + 0.149726i
\(456\) 0 0
\(457\) 19.2181 10.4939i 0.898985 0.490883i 0.0378640 0.999283i \(-0.487945\pi\)
0.861121 + 0.508400i \(0.169763\pi\)
\(458\) 0 0
\(459\) −1.61794 −0.0755188
\(460\) 0 0
\(461\) 26.4648 1.23259 0.616295 0.787516i \(-0.288633\pi\)
0.616295 + 0.787516i \(0.288633\pi\)
\(462\) 0 0
\(463\) −11.3204 + 6.18140i −0.526103 + 0.287274i −0.720269 0.693695i \(-0.755982\pi\)
0.194166 + 0.980969i \(0.437800\pi\)
\(464\) 0 0
\(465\) −10.7660 + 3.17261i −0.499263 + 0.147126i
\(466\) 0 0
\(467\) 8.94270 + 11.9460i 0.413819 + 0.552797i 0.958222 0.286027i \(-0.0923347\pi\)
−0.544403 + 0.838824i \(0.683244\pi\)
\(468\) 0 0
\(469\) −4.19150 + 6.52210i −0.193545 + 0.301163i
\(470\) 0 0
\(471\) 33.3813 15.2447i 1.53813 0.702439i
\(472\) 0 0
\(473\) −13.2011 9.88223i −0.606988 0.454385i
\(474\) 0 0
\(475\) −7.37230 + 25.2903i −0.338265 + 1.16040i
\(476\) 0 0
\(477\) −0.134406 1.87924i −0.00615402 0.0860444i
\(478\) 0 0
\(479\) −11.7709 13.5844i −0.537827 0.620686i 0.420176 0.907443i \(-0.361968\pi\)
−0.958003 + 0.286757i \(0.907423\pi\)
\(480\) 0 0
\(481\) 13.9592 + 6.37494i 0.636483 + 0.290672i
\(482\) 0 0
\(483\) 5.02840 + 4.76312i 0.228800 + 0.216729i
\(484\) 0 0
\(485\) 21.0692 24.3631i 0.956701 1.10627i
\(486\) 0 0
\(487\) 1.53035 21.3971i 0.0693468 0.969595i −0.837039 0.547144i \(-0.815715\pi\)
0.906386 0.422452i \(-0.138830\pi\)
\(488\) 0 0
\(489\) −15.8021 13.6926i −0.714597 0.619202i
\(490\) 0 0
\(491\) 11.5074 3.37887i 0.519320 0.152486i −0.0115597 0.999933i \(-0.503680\pi\)
0.530880 + 0.847447i \(0.321861\pi\)
\(492\) 0 0
\(493\) 27.9286 37.3083i 1.25784 1.68028i
\(494\) 0 0
\(495\) −25.2264 + 33.7672i −1.13384 + 1.51772i
\(496\) 0 0
\(497\) −7.67074 + 1.66867i −0.344080 + 0.0748499i
\(498\) 0 0
\(499\) −11.3364 1.62993i −0.507487 0.0729656i −0.116184 0.993228i \(-0.537066\pi\)
−0.391303 + 0.920262i \(0.627975\pi\)
\(500\) 0 0
\(501\) −0.696652 + 0.447711i −0.0311241 + 0.0200023i
\(502\) 0 0
\(503\) 11.5725 + 21.1934i 0.515990 + 0.944966i 0.997644 + 0.0686041i \(0.0218545\pi\)
−0.481654 + 0.876362i \(0.659964\pi\)
\(504\) 0 0
\(505\) 14.7268 + 26.9076i 0.655334 + 1.19737i
\(506\) 0 0
\(507\) 9.20608 + 9.20608i 0.408856 + 0.408856i
\(508\) 0 0
\(509\) −8.31384 + 28.3143i −0.368504 + 1.25501i 0.541602 + 0.840635i \(0.317818\pi\)
−0.910106 + 0.414375i \(0.864000\pi\)
\(510\) 0 0
\(511\) −3.00128 4.67008i −0.132769 0.206592i
\(512\) 0 0
\(513\) −0.936063 + 0.700728i −0.0413282 + 0.0309379i
\(514\) 0 0
\(515\) 23.7336 20.6058i 1.04583 0.908002i
\(516\) 0 0
\(517\) −10.6432 3.96972i −0.468089 0.174588i
\(518\) 0 0
\(519\) −34.4138 + 4.94796i −1.51060 + 0.217191i
\(520\) 0 0
\(521\) 1.38239 + 4.70797i 0.0605634 + 0.206260i 0.984216 0.176970i \(-0.0566297\pi\)
−0.923653 + 0.383230i \(0.874812\pi\)
\(522\) 0 0
\(523\) −30.2071 + 2.16045i −1.32086 + 0.0944700i −0.713893 0.700255i \(-0.753070\pi\)
−0.606970 + 0.794725i \(0.707615\pi\)
\(524\) 0 0
\(525\) −1.04162 7.14553i −0.0454599 0.311856i
\(526\) 0 0
\(527\) −5.18185 13.8931i −0.225725 0.605192i
\(528\) 0 0
\(529\) 18.1723 + 14.0985i 0.790099 + 0.612980i
\(530\) 0 0
\(531\) 3.40729 7.46093i 0.147864 0.323777i
\(532\) 0 0
\(533\) 35.0226 + 2.50486i 1.51700 + 0.108498i
\(534\) 0 0
\(535\) −14.2268 + 9.16265i −0.615079 + 0.396136i
\(536\) 0 0
\(537\) 56.8069 + 31.0189i 2.45140 + 1.33856i
\(538\) 0 0
\(539\) −5.77992 40.2002i −0.248959 1.73155i
\(540\) 0 0
\(541\) 2.39503 + 5.24438i 0.102970 + 0.225473i 0.954104 0.299476i \(-0.0968117\pi\)
−0.851134 + 0.524949i \(0.824084\pi\)
\(542\) 0 0
\(543\) −1.94687 8.94963i −0.0835483 0.384065i
\(544\) 0 0
\(545\) 34.1917 12.7909i 1.46461 0.547901i
\(546\) 0 0
\(547\) 27.9207 + 6.07377i 1.19380 + 0.259696i 0.765197 0.643797i \(-0.222642\pi\)
0.428605 + 0.903492i \(0.359005\pi\)
\(548\) 0 0
\(549\) 29.9854 + 8.80452i 1.27975 + 0.375768i
\(550\) 0 0
\(551\) 33.6807i 1.43485i
\(552\) 0 0
\(553\) −0.220953 + 0.220953i −0.00939588 + 0.00939588i
\(554\) 0 0
\(555\) −29.7663 + 6.50569i −1.26351 + 0.276151i
\(556\) 0 0
\(557\) 6.24512 28.7084i 0.264614 1.21641i −0.632481 0.774576i \(-0.717963\pi\)
0.897095 0.441837i \(-0.145673\pi\)
\(558\) 0 0
\(559\) −1.06917 + 7.43622i −0.0452209 + 0.314519i
\(560\) 0 0
\(561\) −92.3268 59.3348i −3.89804 2.50512i
\(562\) 0 0
\(563\) −9.35111 + 25.0713i −0.394102 + 1.05663i 0.576744 + 0.816925i \(0.304323\pi\)
−0.970846 + 0.239704i \(0.922950\pi\)
\(564\) 0 0
\(565\) 3.96490 + 0.566117i 0.166805 + 0.0238167i
\(566\) 0 0
\(567\) −2.44628 + 4.48003i −0.102734 + 0.188144i
\(568\) 0 0
\(569\) 13.5648 15.6546i 0.568664 0.656274i −0.396464 0.918050i \(-0.629763\pi\)
0.965129 + 0.261776i \(0.0843083\pi\)
\(570\) 0 0
\(571\) −12.8616 + 11.1447i −0.538242 + 0.466390i −0.881055 0.473014i \(-0.843166\pi\)
0.342813 + 0.939404i \(0.388620\pi\)
\(572\) 0 0
\(573\) −39.1972 + 14.6198i −1.63749 + 0.610751i
\(574\) 0 0
\(575\) −5.77529 23.2733i −0.240846 0.970563i
\(576\) 0 0
\(577\) 25.1288 9.37255i 1.04612 0.390184i 0.233124 0.972447i \(-0.425105\pi\)
0.813001 + 0.582263i \(0.197832\pi\)
\(578\) 0 0
\(579\) 15.4207 13.3621i 0.640864 0.555312i
\(580\) 0 0
\(581\) 0.220322 0.254265i 0.00914050 0.0105487i
\(582\) 0 0
\(583\) 1.78263 3.26465i 0.0738291 0.135208i
\(584\) 0 0
\(585\) 19.0099 + 2.71427i 0.785963 + 0.112221i
\(586\) 0 0
\(587\) −4.78981 + 12.8420i −0.197697 + 0.530046i −0.997535 0.0701700i \(-0.977646\pi\)
0.799838 + 0.600216i \(0.204919\pi\)
\(588\) 0 0
\(589\) −9.01506 5.79363i −0.371459 0.238722i
\(590\) 0 0
\(591\) 0.241815 1.68186i 0.00994693 0.0691824i
\(592\) 0 0
\(593\) 0.926807 4.26046i 0.0380594 0.174956i −0.954194 0.299190i \(-0.903284\pi\)
0.992253 + 0.124234i \(0.0396472\pi\)
\(594\) 0 0
\(595\) 9.31990 2.03695i 0.382079 0.0835069i
\(596\) 0 0
\(597\) −27.5219 + 27.5219i −1.12640 + 1.12640i
\(598\) 0 0
\(599\) 36.3876i 1.48676i −0.668870 0.743379i \(-0.733222\pi\)
0.668870 0.743379i \(-0.266778\pi\)
\(600\) 0 0
\(601\) 6.96665 + 2.04559i 0.284176 + 0.0834415i 0.420714 0.907193i \(-0.361780\pi\)
−0.136538 + 0.990635i \(0.543598\pi\)
\(602\) 0 0
\(603\) 39.9987 + 8.70118i 1.62887 + 0.354339i
\(604\) 0 0
\(605\) −54.9029 + 20.5388i −2.23212 + 0.835021i
\(606\) 0 0
\(607\) 6.82420 + 31.3704i 0.276986 + 1.27328i 0.879778 + 0.475385i \(0.157691\pi\)
−0.602792 + 0.797899i \(0.705945\pi\)
\(608\) 0 0
\(609\) 3.83530 + 8.39814i 0.155414 + 0.340310i
\(610\) 0 0
\(611\) 0.736506 + 5.12251i 0.0297958 + 0.207235i
\(612\) 0 0
\(613\) 28.7172 + 15.6808i 1.15988 + 0.633341i 0.939660 0.342110i \(-0.111141\pi\)
0.220218 + 0.975451i \(0.429323\pi\)
\(614\) 0 0
\(615\) −58.6102 + 37.7474i −2.36339 + 1.52212i
\(616\) 0 0
\(617\) −11.7374 0.839479i −0.472532 0.0337961i −0.166957 0.985964i \(-0.553394\pi\)
−0.305575 + 0.952168i \(0.598849\pi\)
\(618\) 0 0
\(619\) −5.28776 + 11.5786i −0.212533 + 0.465382i −0.985633 0.168902i \(-0.945978\pi\)
0.773100 + 0.634284i \(0.218705\pi\)
\(620\) 0 0
\(621\) 0.415770 0.979800i 0.0166843 0.0393180i
\(622\) 0 0
\(623\) 0.215917 + 0.578895i 0.00865052 + 0.0231929i
\(624\) 0 0
\(625\) −10.2965 + 22.7812i −0.411860 + 0.911247i
\(626\) 0 0
\(627\) −79.1139 + 5.65834i −3.15950 + 0.225972i
\(628\) 0 0
\(629\) −11.3406 38.6226i −0.452181 1.53999i
\(630\) 0 0
\(631\) 5.98043 0.859856i 0.238077 0.0342303i −0.0222433 0.999753i \(-0.507081\pi\)
0.260321 + 0.965522i \(0.416172\pi\)
\(632\) 0 0
\(633\) 0.288200 + 0.107493i 0.0114549 + 0.00427246i
\(634\) 0 0
\(635\) 13.1893 11.4512i 0.523403 0.454427i
\(636\) 0 0
\(637\) −14.8123 + 11.0884i −0.586887 + 0.439338i
\(638\) 0 0
\(639\) 22.4084 + 34.8682i 0.886463 + 1.37936i
\(640\) 0 0
\(641\) −3.78356 + 12.8856i −0.149442 + 0.508952i −0.999853 0.0171674i \(-0.994535\pi\)
0.850411 + 0.526119i \(0.176353\pi\)
\(642\) 0 0
\(643\) −35.1625 35.1625i −1.38667 1.38667i −0.832206 0.554467i \(-0.812922\pi\)
−0.554467 0.832206i \(-0.687078\pi\)
\(644\) 0 0
\(645\) −7.16135 13.0846i −0.281978 0.515208i
\(646\) 0 0
\(647\) −13.8623 25.3870i −0.544985 0.998065i −0.994494 0.104789i \(-0.966583\pi\)
0.449510 0.893275i \(-0.351599\pi\)
\(648\) 0 0
\(649\) 13.6228 8.75481i 0.534740 0.343656i
\(650\) 0 0
\(651\) 2.90760 + 0.418049i 0.113958 + 0.0163846i
\(652\) 0 0
\(653\) −35.4879 + 7.71993i −1.38875 + 0.302104i −0.843932 0.536450i \(-0.819765\pi\)
−0.544819 + 0.838554i \(0.683401\pi\)
\(654\) 0 0
\(655\) −3.80656 + 5.09533i −0.148735 + 0.199091i
\(656\) 0 0
\(657\) −17.5651 + 23.4642i −0.685279 + 0.915426i
\(658\) 0 0
\(659\) 30.3891 8.92305i 1.18379 0.347593i 0.370158 0.928969i \(-0.379304\pi\)
0.813635 + 0.581376i \(0.197485\pi\)
\(660\) 0 0
\(661\) 14.1857 + 12.2920i 0.551759 + 0.478102i 0.885549 0.464546i \(-0.153782\pi\)
−0.333790 + 0.942647i \(0.608328\pi\)
\(662\) 0 0
\(663\) −3.56695 + 49.8725i −0.138529 + 1.93689i
\(664\) 0 0
\(665\) 4.50986 5.21493i 0.174885 0.202226i
\(666\) 0 0
\(667\) 15.4164 + 26.5005i 0.596926 + 1.02610i
\(668\) 0 0
\(669\) −18.4277 8.41565i −0.712456 0.325368i
\(670\) 0 0
\(671\) 40.4044 + 46.6291i 1.55979 + 1.80010i
\(672\) 0 0
\(673\) 0.856176 + 11.9709i 0.0330032 + 0.461445i 0.986902 + 0.161318i \(0.0515744\pi\)
−0.953899 + 0.300127i \(0.902971\pi\)
\(674\) 0 0
\(675\) −0.972900 + 0.533712i −0.0374469 + 0.0205426i
\(676\) 0 0
\(677\) −28.7133 21.4945i −1.10354 0.826101i −0.117579 0.993064i \(-0.537513\pi\)
−0.985963 + 0.166962i \(0.946604\pi\)
\(678\) 0 0
\(679\) −7.66819 + 3.50195i −0.294278 + 0.134392i
\(680\) 0 0
\(681\) −1.64019 + 2.55219i −0.0628523 + 0.0978000i
\(682\) 0 0
\(683\) −7.35313 9.82263i −0.281360 0.375853i 0.637491 0.770458i \(-0.279972\pi\)
−0.918851 + 0.394605i \(0.870881\pi\)
\(684\) 0 0
\(685\) −22.6942 + 6.68770i −0.867102 + 0.255524i
\(686\) 0 0
\(687\) 18.7495 10.2380i 0.715338 0.390604i
\(688\) 0 0
\(689\) −1.69461 −0.0645594
\(690\) 0 0
\(691\) −3.29595 −0.125384 −0.0626918 0.998033i \(-0.519969\pi\)
−0.0626918 + 0.998033i \(0.519969\pi\)
\(692\) 0 0
\(693\) 9.68208 5.28682i 0.367792 0.200830i
\(694\) 0 0
\(695\) 3.38334 6.21053i 0.128337 0.235579i
\(696\) 0 0
\(697\) −55.1938 73.7303i −2.09062 2.79274i
\(698\) 0 0
\(699\) 8.24614 12.8312i 0.311898 0.485322i
\(700\) 0 0
\(701\) 13.0017 5.93769i 0.491068 0.224263i −0.154461 0.987999i \(-0.549364\pi\)
0.645529 + 0.763736i \(0.276637\pi\)
\(702\) 0 0
\(703\) −23.2886 17.4336i −0.878347 0.657522i
\(704\) 0 0
\(705\) −7.27273 7.25854i −0.273907 0.273373i
\(706\) 0 0
\(707\) −0.572715 8.00761i −0.0215392 0.301157i
\(708\) 0 0
\(709\) −2.51448 2.90186i −0.0944333 0.108982i 0.706566 0.707647i \(-0.250243\pi\)
−0.800999 + 0.598665i \(0.795698\pi\)
\(710\) 0 0
\(711\) 1.50074 + 0.685366i 0.0562822 + 0.0257032i
\(712\) 0 0
\(713\) 9.74506 + 0.432125i 0.364955 + 0.0161832i
\(714\) 0 0
\(715\) 28.6760 + 24.7989i 1.07242 + 0.927426i
\(716\) 0 0
\(717\) 0.314560 4.39812i 0.0117475 0.164251i
\(718\) 0 0
\(719\) −0.997963 0.864740i −0.0372178 0.0322494i 0.636053 0.771645i \(-0.280566\pi\)
−0.673271 + 0.739396i \(0.735111\pi\)
\(720\) 0 0
\(721\) −7.89284 + 2.31755i −0.293945 + 0.0863100i
\(722\) 0 0
\(723\) −10.7707 + 14.3879i −0.400565 + 0.535093i
\(724\) 0 0
\(725\) 4.48712 31.6472i 0.166648 1.17535i
\(726\) 0 0
\(727\) −1.85403 + 0.403320i −0.0687623 + 0.0149583i −0.246815 0.969063i \(-0.579384\pi\)
0.178053 + 0.984021i \(0.443020\pi\)
\(728\) 0 0
\(729\) 28.3028 + 4.06932i 1.04825 + 0.150716i
\(730\) 0 0
\(731\) 16.5779 10.6539i 0.613154 0.394050i
\(732\) 0 0
\(733\) −21.5089 39.3905i −0.794448 1.45492i −0.888264 0.459333i \(-0.848088\pi\)
0.0938162 0.995590i \(-0.470093\pi\)
\(734\) 0 0
\(735\) 10.3156 35.2589i 0.380496 1.30055i
\(736\) 0 0
\(737\) 57.1454 + 57.1454i 2.10498 + 2.10498i
\(738\) 0 0
\(739\) 12.4822 42.5105i 0.459165 1.56377i −0.326547 0.945181i \(-0.605885\pi\)
0.785712 0.618592i \(-0.212297\pi\)
\(740\) 0 0
\(741\) 19.5361 + 30.3988i 0.717677 + 1.11673i
\(742\) 0 0
\(743\) 33.0788 24.7624i 1.21354 0.908446i 0.215855 0.976425i \(-0.430746\pi\)
0.997687 + 0.0679795i \(0.0216553\pi\)
\(744\) 0 0
\(745\) −0.733911 + 10.4042i −0.0268884 + 0.381179i
\(746\) 0 0
\(747\) −1.66437 0.620779i −0.0608962 0.0227131i
\(748\) 0 0
\(749\) 4.38379 0.630293i 0.160180 0.0230304i
\(750\) 0 0
\(751\) 11.3150 + 38.5353i 0.412890 + 1.40617i 0.859358 + 0.511375i \(0.170864\pi\)
−0.446468 + 0.894800i \(0.647318\pi\)
\(752\) 0 0
\(753\) 65.3944 4.67710i 2.38311 0.170443i
\(754\) 0 0
\(755\) 9.44304 25.3935i 0.343667 0.924162i
\(756\) 0 0
\(757\) 7.74217 + 20.7576i 0.281394 + 0.754447i 0.998355 + 0.0573335i \(0.0182598\pi\)
−0.716961 + 0.697113i \(0.754467\pi\)
\(758\) 0 0
\(759\) 59.6581 40.6642i 2.16545 1.47602i
\(760\) 0 0
\(761\) −11.9022 + 26.0622i −0.431455 + 0.944756i 0.561633 + 0.827387i \(0.310173\pi\)
−0.993088 + 0.117369i \(0.962554\pi\)
\(762\) 0 0
\(763\) −9.53002 0.681601i −0.345010 0.0246756i
\(764\) 0 0
\(765\) −27.2732 42.3470i −0.986066 1.53106i
\(766\) 0 0
\(767\) −6.47504 3.53564i −0.233800 0.127664i
\(768\) 0 0
\(769\) 4.94583 + 34.3990i 0.178351 + 1.24046i 0.860578 + 0.509318i \(0.170102\pi\)
−0.682227 + 0.731140i \(0.738988\pi\)
\(770\) 0 0
\(771\) −4.66442 10.2137i −0.167985 0.367836i
\(772\) 0 0
\(773\) 7.66220 + 35.2226i 0.275590 + 1.26687i 0.881823 + 0.471581i \(0.156316\pi\)
−0.606233 + 0.795287i \(0.707320\pi\)
\(774\) 0 0
\(775\) −7.69889 6.64486i −0.276552 0.238690i
\(776\) 0 0
\(777\) 7.79212 + 1.69507i 0.279541 + 0.0608104i
\(778\) 0 0
\(779\) −63.8652 18.7525i −2.28821 0.671878i
\(780\) 0 0
\(781\) 81.8301i 2.92811i
\(782\) 0 0
\(783\) 1.00323 1.00323i 0.0358523 0.0358523i
\(784\) 0 0
\(785\) 27.9908 + 17.9500i 0.999033 + 0.640663i
\(786\) 0 0
\(787\) 8.48652 39.0119i 0.302512 1.39062i −0.535299 0.844663i \(-0.679801\pi\)
0.837811 0.545961i \(-0.183835\pi\)
\(788\) 0 0
\(789\) −9.49118 + 66.0126i −0.337895 + 2.35011i
\(790\) 0 0
\(791\) −0.881822 0.566713i −0.0313540 0.0201500i
\(792\) 0 0
\(793\) 9.82315 26.3369i 0.348830 0.935250i
\(794\) 0 0
\(795\) 2.69152 2.01895i 0.0954584 0.0716048i
\(796\) 0 0
\(797\) 19.3139 35.3708i 0.684133 1.25290i −0.272655 0.962112i \(-0.587902\pi\)
0.956789 0.290785i \(-0.0939163\pi\)
\(798\) 0 0
\(799\) 8.88958 10.2591i 0.314491 0.362942i
\(800\) 0 0
\(801\) 2.46540 2.13628i 0.0871105 0.0754817i
\(802\) 0 0
\(803\) −54.2187 + 20.2225i −1.91334 + 0.713638i
\(804\) 0 0
\(805\) −1.16144 + 6.16745i −0.0409353 + 0.217374i
\(806\) 0 0
\(807\) −20.2655 + 7.55864i −0.713379 + 0.266077i
\(808\) 0 0
\(809\) −27.1854 + 23.5563i −0.955787 + 0.828195i −0.985206 0.171373i \(-0.945180\pi\)
0.0294188 + 0.999567i \(0.490634\pi\)
\(810\) 0 0
\(811\) 30.9089 35.6707i 1.08536 1.25257i 0.119683 0.992812i \(-0.461812\pi\)
0.965674 0.259757i \(-0.0836424\pi\)
\(812\) 0 0
\(813\) 5.82135 10.6610i 0.204164 0.373898i
\(814\) 0 0
\(815\) 2.67798 18.7557i 0.0938055 0.656984i
\(816\) 0 0
\(817\) 4.97696 13.3437i 0.174122 0.466839i
\(818\) 0 0
\(819\) −4.22794 2.71713i −0.147736 0.0949442i
\(820\) 0 0
\(821\) 1.87800 13.0618i 0.0655428 0.455860i −0.930449 0.366420i \(-0.880583\pi\)
0.995992 0.0894399i \(-0.0285077\pi\)
\(822\) 0 0
\(823\) −4.30536 + 19.7914i −0.150076 + 0.689886i 0.839200 + 0.543823i \(0.183024\pi\)
−0.989275 + 0.146063i \(0.953340\pi\)
\(824\) 0 0
\(825\) −75.0910 5.22327i −2.61433 0.181851i
\(826\) 0 0
\(827\) 12.4601 12.4601i 0.433279 0.433279i −0.456463 0.889742i \(-0.650884\pi\)
0.889742 + 0.456463i \(0.150884\pi\)
\(828\) 0 0
\(829\) 51.8642i 1.80132i −0.434526 0.900659i \(-0.643084\pi\)
0.434526 0.900659i \(-0.356916\pi\)
\(830\) 0 0
\(831\) 41.4194 + 12.1618i 1.43682 + 0.421889i
\(832\) 0 0
\(833\) 47.4249 + 10.3167i 1.64318 + 0.357451i
\(834\) 0 0
\(835\) −0.682853 0.311043i −0.0236311 0.0107641i
\(836\) 0 0
\(837\) −0.0959547 0.441096i −0.00331668 0.0152465i
\(838\) 0 0
\(839\) −18.0076 39.4311i −0.621691 1.36131i −0.914283 0.405077i \(-0.867245\pi\)
0.292591 0.956238i \(-0.405482\pi\)
\(840\) 0 0
\(841\) 1.68886 + 11.7463i 0.0582367 + 0.405045i
\(842\) 0 0
\(843\) 19.6889 + 10.7509i 0.678121 + 0.370282i
\(844\) 0 0
\(845\) −2.49636 + 11.5298i −0.0858774 + 0.396636i
\(846\) 0 0
\(847\) 15.3027 + 1.09447i 0.525807 + 0.0376065i
\(848\) 0 0
\(849\) −3.77392 + 8.26373i −0.129521 + 0.283610i
\(850\) 0 0
\(851\) 26.3036 + 3.05735i 0.901676 + 0.104805i
\(852\) 0 0
\(853\) −14.9475 40.0757i −0.511791 1.37217i −0.893991 0.448085i \(-0.852106\pi\)
0.382200 0.924080i \(-0.375167\pi\)
\(854\) 0 0
\(855\) −34.1195 12.6880i −1.16686 0.433920i
\(856\) 0 0
\(857\) −19.3347 + 1.38284i −0.660460 + 0.0472370i −0.397546 0.917582i \(-0.630138\pi\)
−0.262914 + 0.964819i \(0.584684\pi\)
\(858\) 0 0
\(859\) 3.29477 + 11.2210i 0.112416 + 0.382854i 0.996411 0.0846416i \(-0.0269745\pi\)
−0.883995 + 0.467496i \(0.845156\pi\)
\(860\) 0 0
\(861\) 18.0599 2.59662i 0.615479 0.0884925i
\(862\) 0 0
\(863\) −12.7025 4.73780i −0.432399 0.161276i 0.123834 0.992303i \(-0.460481\pi\)
−0.556233 + 0.831026i \(0.687754\pi\)
\(864\) 0 0
\(865\) −20.6535 23.7884i −0.702238 0.808829i
\(866\) 0 0
\(867\) 71.4083 53.4556i 2.42515 1.81545i
\(868\) 0 0
\(869\) 1.76100 + 2.74017i 0.0597379 + 0.0929539i
\(870\) 0 0
\(871\) 10.3729 35.3270i 0.351474 1.19701i
\(872\) 0 0
\(873\) 31.4729 + 31.4729i 1.06520 + 1.06520i
\(874\) 0 0
\(875\) 4.93232 4.29924i 0.166743 0.145341i
\(876\) 0 0
\(877\) 14.5416 + 26.6309i 0.491034 + 0.899262i 0.999276 + 0.0380474i \(0.0121138\pi\)
−0.508242 + 0.861214i \(0.669704\pi\)
\(878\) 0 0
\(879\) −26.7023 + 17.1605i −0.900646 + 0.578810i
\(880\) 0 0
\(881\) 25.2859 + 3.63557i 0.851904 + 0.122485i 0.554415 0.832240i \(-0.312942\pi\)
0.297489 + 0.954725i \(0.403851\pi\)
\(882\) 0 0
\(883\) 0.952292 0.207158i 0.0320472 0.00697143i −0.196513 0.980501i \(-0.562962\pi\)
0.228560 + 0.973530i \(0.426598\pi\)
\(884\) 0 0
\(885\) 14.4966 2.09874i 0.487297 0.0705483i
\(886\) 0 0
\(887\) 10.8533 14.4984i 0.364420 0.486808i −0.580431 0.814310i \(-0.697116\pi\)
0.944851 + 0.327502i \(0.106207\pi\)
\(888\) 0 0
\(889\) −4.38625 + 1.28792i −0.147110 + 0.0431954i
\(890\) 0 0
\(891\) 40.2123 + 34.8442i 1.34716 + 1.16732i
\(892\) 0 0
\(893\) 0.699875 9.78553i 0.0234204 0.327460i
\(894\) 0 0
\(895\) 4.24092 + 58.4932i 0.141758 + 1.95521i
\(896\) 0 0
\(897\) −29.2855 14.9761i −0.977814 0.500038i
\(898\) 0 0
\(899\) 11.8277 + 5.40152i 0.394475 + 0.180151i
\(900\) 0 0
\(901\) 2.91088 + 3.35933i 0.0969755 + 0.111916i
\(902\) 0 0
\(903\) 0.278500 + 3.89394i 0.00926790 + 0.129582i
\(904\) 0 0
\(905\) 5.86252 5.87398i 0.194877 0.195258i
\(906\) 0 0
\(907\) 20.9547 + 15.6865i 0.695789 + 0.520861i 0.887625 0.460566i \(-0.152354\pi\)
−0.191837 + 0.981427i \(0.561444\pi\)
\(908\) 0 0
\(909\) −38.5569 + 17.6083i −1.27885 + 0.584031i
\(910\) 0 0
\(911\) 9.95502 15.4903i 0.329825 0.513217i −0.636249 0.771484i \(-0.719515\pi\)
0.966074 + 0.258267i \(0.0831513\pi\)
\(912\) 0 0
\(913\) −2.10171 2.80756i −0.0695565 0.0929166i
\(914\) 0 0
\(915\) 15.7757 + 53.5338i 0.521529 + 1.76977i
\(916\) 0 0
\(917\) 1.46099 0.797759i 0.0482460 0.0263443i
\(918\) 0 0
\(919\) 31.6830 1.04513 0.522563 0.852601i \(-0.324976\pi\)
0.522563 + 0.852601i \(0.324976\pi\)
\(920\) 0 0
\(921\) 20.3733 0.671323
\(922\) 0 0
\(923\) 32.7203 17.8666i 1.07700 0.588087i
\(924\) 0 0
\(925\) −19.5599 19.4837i −0.643126 0.640619i
\(926\) 0 0
\(927\) 26.0282 + 34.7697i 0.854880 + 1.14199i
\(928\) 0 0
\(929\) −6.35665 + 9.89114i −0.208555 + 0.324518i −0.929735 0.368230i \(-0.879964\pi\)
0.721180 + 0.692748i \(0.243600\pi\)
\(930\) 0 0
\(931\) 31.9060 14.5710i 1.04568 0.477544i
\(932\) 0 0
\(933\) −42.6920 31.9588i −1.39767 1.04628i
\(934\) 0 0
\(935\) −0.0970829 99.4442i −0.00317495 3.25217i
\(936\) 0 0
\(937\) −0.264036 3.69170i −0.00862567 0.120603i 0.991315 0.131510i \(-0.0419826\pi\)
−0.999941 + 0.0109074i \(0.996528\pi\)
\(938\) 0 0
\(939\) 4.15095 + 4.79045i 0.135461 + 0.156331i
\(940\) 0 0
\(941\) 24.1096 + 11.0105i 0.785950 + 0.358931i 0.767624 0.640901i \(-0.221439\pi\)
0.0183261 + 0.999832i \(0.494166\pi\)
\(942\) 0 0
\(943\) 58.8336 14.4777i 1.91588 0.471460i
\(944\) 0 0
\(945\) 0.289666 0.0210016i 0.00942283 0.000683181i
\(946\) 0 0
\(947\) 2.04168 28.5464i 0.0663456 0.927632i −0.849882 0.526973i \(-0.823327\pi\)
0.916227 0.400659i \(-0.131219\pi\)
\(948\) 0 0
\(949\) 19.9241 + 17.2644i 0.646765 + 0.560425i
\(950\) 0 0
\(951\) 13.1927 3.87373i 0.427803 0.125614i
\(952\) 0 0
\(953\) −5.52325 + 7.37820i −0.178916 + 0.239003i −0.881029 0.473061i \(-0.843149\pi\)
0.702114 + 0.712065i \(0.252240\pi\)
\(954\) 0 0
\(955\) −30.3682 22.6871i −0.982691 0.734137i
\(956\) 0 0
\(957\) 94.0400 20.4572i 3.03988 0.661286i
\(958\) 0 0
\(959\) 6.12907 + 0.881227i 0.197918 + 0.0284563i
\(960\) 0 0
\(961\) −22.5985 + 14.5232i −0.728985 + 0.468490i
\(962\) 0 0
\(963\) −11.2067 20.5236i −0.361132 0.661363i
\(964\) 0 0
\(965\) 17.7448 + 5.19154i 0.571227 + 0.167122i
\(966\) 0 0
\(967\) −4.62611 4.62611i −0.148766 0.148766i 0.628801 0.777566i \(-0.283546\pi\)
−0.777566 + 0.628801i \(0.783546\pi\)
\(968\) 0 0
\(969\) 26.7038 90.9447i 0.857849 2.92156i
\(970\) 0 0
\(971\) 18.8871 + 29.3889i 0.606116 + 0.943134i 0.999715 + 0.0238525i \(0.00759320\pi\)
−0.393600 + 0.919282i \(0.628770\pi\)
\(972\) 0 0
\(973\) −1.48178 + 1.10925i −0.0475037 + 0.0355609i
\(974\) 0 0
\(975\) 14.3067 + 31.1661i 0.458180 + 0.998113i
\(976\) 0 0
\(977\) −19.5043 7.27475i −0.623999 0.232740i 0.0175200 0.999847i \(-0.494423\pi\)
−0.641519 + 0.767107i \(0.721696\pi\)
\(978\) 0 0
\(979\) 6.37494 0.916579i 0.203744 0.0292940i
\(980\) 0 0
\(981\) 14.2123 + 48.4026i 0.453763 + 1.54538i
\(982\) 0 0
\(983\) 55.0315 3.93593i 1.75523 0.125537i 0.843713 0.536795i \(-0.180365\pi\)
0.911519 + 0.411259i \(0.134911\pi\)
\(984\) 0 0
\(985\) 1.39985 0.640945i 0.0446031 0.0204222i
\(986\) 0 0
\(987\) 0.939789 + 2.51967i 0.0299138 + 0.0802021i
\(988\) 0 0
\(989\) 2.19178 + 12.7771i 0.0696944 + 0.406289i
\(990\) 0 0
\(991\) 13.2315 28.9730i 0.420313 0.920357i −0.574487 0.818513i \(-0.694799\pi\)
0.994800 0.101844i \(-0.0324742\pi\)
\(992\) 0 0
\(993\) 3.21636 + 0.230039i 0.102068 + 0.00730006i
\(994\) 0 0
\(995\) −34.4687 7.46297i −1.09273 0.236592i
\(996\) 0 0
\(997\) 4.82934 + 2.63702i 0.152947 + 0.0835153i 0.553900 0.832583i \(-0.313139\pi\)
−0.400953 + 0.916099i \(0.631321\pi\)
\(998\) 0 0
\(999\) −0.174398 1.21297i −0.00551772 0.0383766i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.17.5 720
5.3 odd 4 inner 920.2.bv.a.753.5 yes 720
23.19 odd 22 inner 920.2.bv.a.617.5 yes 720
115.88 even 44 inner 920.2.bv.a.433.5 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.5 720 1.1 even 1 trivial
920.2.bv.a.433.5 yes 720 115.88 even 44 inner
920.2.bv.a.617.5 yes 720 23.19 odd 22 inner
920.2.bv.a.753.5 yes 720 5.3 odd 4 inner