Properties

Label 920.2.bv.a.17.3
Level $920$
Weight $2$
Character 920.17
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 17.3
Character \(\chi\) \(=\) 920.17
Dual form 920.2.bv.a.433.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.63218 + 1.43728i) q^{3} +(2.23215 - 0.132363i) q^{5} +(-0.0903793 - 0.120733i) q^{7} +(3.24067 - 5.04257i) q^{9} +(1.04216 - 0.475937i) q^{11} +(0.0996752 + 0.0746159i) q^{13} +(-5.68516 + 3.55662i) q^{15} +(-0.0921070 - 1.28782i) q^{17} +(-4.39077 - 5.06722i) q^{19} +(0.411420 + 0.187889i) q^{21} +(-3.02203 - 3.72389i) q^{23} +(4.96496 - 0.590908i) q^{25} +(-0.640585 + 8.95655i) q^{27} +(-3.89319 - 3.37347i) q^{29} +(3.39801 - 0.997747i) q^{31} +(-2.05909 + 2.75062i) q^{33} +(-0.217720 - 0.257530i) q^{35} +(-0.238669 + 0.0519194i) q^{37} +(-0.369607 - 0.0531414i) q^{39} +(7.98233 - 5.12993i) q^{41} +(1.35763 + 2.48631i) q^{43} +(6.56619 - 11.6847i) q^{45} +(5.94734 + 5.94734i) q^{47} +(1.96572 - 6.69463i) q^{49} +(2.09340 + 3.25740i) q^{51} +(-2.10456 + 1.57545i) q^{53} +(2.26325 - 1.20030i) q^{55} +(18.8403 + 7.02706i) q^{57} +(11.5159 - 1.65574i) q^{59} +(0.709519 + 2.41640i) q^{61} +(-0.901692 + 0.0644903i) q^{63} +(0.232366 + 0.153360i) q^{65} +(2.27000 + 6.08610i) q^{67} +(13.3068 + 5.45845i) q^{69} +(6.08654 - 13.3277i) q^{71} +(-1.57351 - 0.112540i) q^{73} +(-12.2194 + 8.69140i) q^{75} +(-0.151650 - 0.0828074i) q^{77} +(0.347237 + 2.41508i) q^{79} +(-3.71677 - 8.13858i) q^{81} +(-1.54768 - 7.11459i) q^{83} +(-0.376057 - 2.86242i) q^{85} +(15.0962 + 3.28397i) q^{87} +(-14.0710 - 4.13161i) q^{89} -0.0187778i q^{91} +(-7.51013 + 7.51013i) q^{93} +(-10.4716 - 10.7296i) q^{95} +(-0.905608 + 4.16301i) q^{97} +(0.977334 - 6.79751i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.63218 + 1.43728i −1.51969 + 0.829812i −0.999703 0.0243631i \(-0.992244\pi\)
−0.519985 + 0.854176i \(0.674062\pi\)
\(4\) 0 0
\(5\) 2.23215 0.132363i 0.998246 0.0591946i
\(6\) 0 0
\(7\) −0.0903793 0.120733i −0.0341602 0.0456326i 0.783136 0.621851i \(-0.213619\pi\)
−0.817296 + 0.576218i \(0.804528\pi\)
\(8\) 0 0
\(9\) 3.24067 5.04257i 1.08022 1.68086i
\(10\) 0 0
\(11\) 1.04216 0.475937i 0.314222 0.143500i −0.252061 0.967711i \(-0.581108\pi\)
0.566283 + 0.824211i \(0.308381\pi\)
\(12\) 0 0
\(13\) 0.0996752 + 0.0746159i 0.0276449 + 0.0206947i 0.613011 0.790075i \(-0.289958\pi\)
−0.585366 + 0.810769i \(0.699049\pi\)
\(14\) 0 0
\(15\) −5.68516 + 3.55662i −1.46790 + 0.918315i
\(16\) 0 0
\(17\) −0.0921070 1.28782i −0.0223392 0.312343i −0.996320 0.0857122i \(-0.972683\pi\)
0.973981 0.226631i \(-0.0727711\pi\)
\(18\) 0 0
\(19\) −4.39077 5.06722i −1.00731 1.16250i −0.986674 0.162713i \(-0.947976\pi\)
−0.0206381 0.999787i \(-0.506570\pi\)
\(20\) 0 0
\(21\) 0.411420 + 0.187889i 0.0897793 + 0.0410008i
\(22\) 0 0
\(23\) −3.02203 3.72389i −0.630136 0.776485i
\(24\) 0 0
\(25\) 4.96496 0.590908i 0.992992 0.118182i
\(26\) 0 0
\(27\) −0.640585 + 8.95655i −0.123281 + 1.72369i
\(28\) 0 0
\(29\) −3.89319 3.37347i −0.722947 0.626437i 0.213624 0.976916i \(-0.431473\pi\)
−0.936571 + 0.350479i \(0.886019\pi\)
\(30\) 0 0
\(31\) 3.39801 0.997747i 0.610301 0.179201i 0.0380457 0.999276i \(-0.487887\pi\)
0.572255 + 0.820075i \(0.306069\pi\)
\(32\) 0 0
\(33\) −2.05909 + 2.75062i −0.358441 + 0.478821i
\(34\) 0 0
\(35\) −0.217720 0.257530i −0.0368015 0.0435305i
\(36\) 0 0
\(37\) −0.238669 + 0.0519194i −0.0392370 + 0.00853549i −0.232141 0.972682i \(-0.574573\pi\)
0.192904 + 0.981218i \(0.438209\pi\)
\(38\) 0 0
\(39\) −0.369607 0.0531414i −0.0591844 0.00850944i
\(40\) 0 0
\(41\) 7.98233 5.12993i 1.24663 0.801161i 0.260234 0.965545i \(-0.416200\pi\)
0.986396 + 0.164385i \(0.0525638\pi\)
\(42\) 0 0
\(43\) 1.35763 + 2.48631i 0.207036 + 0.379158i 0.960478 0.278356i \(-0.0897896\pi\)
−0.753442 + 0.657515i \(0.771608\pi\)
\(44\) 0 0
\(45\) 6.56619 11.6847i 0.978830 1.74185i
\(46\) 0 0
\(47\) 5.94734 + 5.94734i 0.867509 + 0.867509i 0.992196 0.124688i \(-0.0397928\pi\)
−0.124688 + 0.992196i \(0.539793\pi\)
\(48\) 0 0
\(49\) 1.96572 6.69463i 0.280817 0.956375i
\(50\) 0 0
\(51\) 2.09340 + 3.25740i 0.293135 + 0.456127i
\(52\) 0 0
\(53\) −2.10456 + 1.57545i −0.289084 + 0.216405i −0.733970 0.679182i \(-0.762335\pi\)
0.444887 + 0.895587i \(0.353244\pi\)
\(54\) 0 0
\(55\) 2.26325 1.20030i 0.305177 0.161849i
\(56\) 0 0
\(57\) 18.8403 + 7.02706i 2.49546 + 0.930757i
\(58\) 0 0
\(59\) 11.5159 1.65574i 1.49925 0.215559i 0.656687 0.754163i \(-0.271957\pi\)
0.842559 + 0.538604i \(0.181048\pi\)
\(60\) 0 0
\(61\) 0.709519 + 2.41640i 0.0908446 + 0.309388i 0.992363 0.123353i \(-0.0393647\pi\)
−0.901518 + 0.432741i \(0.857546\pi\)
\(62\) 0 0
\(63\) −0.901692 + 0.0644903i −0.113603 + 0.00812501i
\(64\) 0 0
\(65\) 0.232366 + 0.153360i 0.0288215 + 0.0190220i
\(66\) 0 0
\(67\) 2.27000 + 6.08610i 0.277324 + 0.743536i 0.998699 + 0.0509906i \(0.0162379\pi\)
−0.721375 + 0.692545i \(0.756489\pi\)
\(68\) 0 0
\(69\) 13.3068 + 5.45845i 1.60195 + 0.657120i
\(70\) 0 0
\(71\) 6.08654 13.3277i 0.722339 1.58170i −0.0882572 0.996098i \(-0.528130\pi\)
0.810597 0.585605i \(-0.199143\pi\)
\(72\) 0 0
\(73\) −1.57351 0.112540i −0.184165 0.0131718i −0.0210481 0.999778i \(-0.506700\pi\)
−0.163117 + 0.986607i \(0.552155\pi\)
\(74\) 0 0
\(75\) −12.2194 + 8.69140i −1.41097 + 1.00360i
\(76\) 0 0
\(77\) −0.151650 0.0828074i −0.0172822 0.00943678i
\(78\) 0 0
\(79\) 0.347237 + 2.41508i 0.0390672 + 0.271718i 0.999987 0.00510879i \(-0.00162619\pi\)
−0.960920 + 0.276827i \(0.910717\pi\)
\(80\) 0 0
\(81\) −3.71677 8.13858i −0.412974 0.904287i
\(82\) 0 0
\(83\) −1.54768 7.11459i −0.169880 0.780927i −0.980682 0.195607i \(-0.937332\pi\)
0.810802 0.585321i \(-0.199031\pi\)
\(84\) 0 0
\(85\) −0.376057 2.86242i −0.0407891 0.310473i
\(86\) 0 0
\(87\) 15.0962 + 3.28397i 1.61848 + 0.352079i
\(88\) 0 0
\(89\) −14.0710 4.13161i −1.49152 0.437950i −0.568494 0.822687i \(-0.692474\pi\)
−0.923026 + 0.384737i \(0.874292\pi\)
\(90\) 0 0
\(91\) 0.0187778i 0.00196845i
\(92\) 0 0
\(93\) −7.51013 + 7.51013i −0.778764 + 0.778764i
\(94\) 0 0
\(95\) −10.4716 10.7296i −1.07436 1.10083i
\(96\) 0 0
\(97\) −0.905608 + 4.16301i −0.0919505 + 0.422690i 0.908042 + 0.418879i \(0.137577\pi\)
−0.999993 + 0.00381112i \(0.998787\pi\)
\(98\) 0 0
\(99\) 0.977334 6.79751i 0.0982258 0.683175i
\(100\) 0 0
\(101\) 2.02414 + 1.30084i 0.201409 + 0.129438i 0.637458 0.770485i \(-0.279986\pi\)
−0.436048 + 0.899923i \(0.643622\pi\)
\(102\) 0 0
\(103\) 6.57163 17.6192i 0.647522 1.73607i −0.0289233 0.999582i \(-0.509208\pi\)
0.676446 0.736493i \(-0.263519\pi\)
\(104\) 0 0
\(105\) 0.943220 + 0.364940i 0.0920489 + 0.0356145i
\(106\) 0 0
\(107\) −5.54782 + 10.1601i −0.536328 + 0.982211i 0.459253 + 0.888305i \(0.348117\pi\)
−0.995581 + 0.0939056i \(0.970065\pi\)
\(108\) 0 0
\(109\) 4.67274 5.39263i 0.447567 0.516520i −0.486469 0.873698i \(-0.661716\pi\)
0.934036 + 0.357178i \(0.116261\pi\)
\(110\) 0 0
\(111\) 0.553598 0.479695i 0.0525452 0.0455306i
\(112\) 0 0
\(113\) 6.88605 2.56837i 0.647785 0.241611i −0.00402677 0.999992i \(-0.501282\pi\)
0.651812 + 0.758380i \(0.274009\pi\)
\(114\) 0 0
\(115\) −7.23851 7.91227i −0.674995 0.737823i
\(116\) 0 0
\(117\) 0.699271 0.260814i 0.0646476 0.0241123i
\(118\) 0 0
\(119\) −0.147158 + 0.127513i −0.0134899 + 0.0116891i
\(120\) 0 0
\(121\) −6.34389 + 7.32124i −0.576718 + 0.665568i
\(122\) 0 0
\(123\) −13.6378 + 24.9757i −1.22968 + 2.25198i
\(124\) 0 0
\(125\) 11.0043 1.97617i 0.984255 0.176754i
\(126\) 0 0
\(127\) 7.29314 19.5537i 0.647162 1.73511i −0.0302911 0.999541i \(-0.509643\pi\)
0.677453 0.735566i \(-0.263084\pi\)
\(128\) 0 0
\(129\) −7.14702 4.59311i −0.629260 0.404401i
\(130\) 0 0
\(131\) −2.50084 + 17.3938i −0.218500 + 1.51970i 0.525080 + 0.851053i \(0.324035\pi\)
−0.743580 + 0.668647i \(0.766874\pi\)
\(132\) 0 0
\(133\) −0.214944 + 0.988080i −0.0186380 + 0.0856774i
\(134\) 0 0
\(135\) −0.244363 + 20.0771i −0.0210314 + 1.72796i
\(136\) 0 0
\(137\) −4.90279 + 4.90279i −0.418874 + 0.418874i −0.884815 0.465942i \(-0.845716\pi\)
0.465942 + 0.884815i \(0.345716\pi\)
\(138\) 0 0
\(139\) 6.15254i 0.521852i −0.965359 0.260926i \(-0.915972\pi\)
0.965359 0.260926i \(-0.0840278\pi\)
\(140\) 0 0
\(141\) −24.2024 7.10647i −2.03821 0.598473i
\(142\) 0 0
\(143\) 0.139390 + 0.0303224i 0.0116564 + 0.00253568i
\(144\) 0 0
\(145\) −9.13669 7.01476i −0.758761 0.582544i
\(146\) 0 0
\(147\) 4.44791 + 20.4467i 0.366858 + 1.68642i
\(148\) 0 0
\(149\) 8.86059 + 19.4020i 0.725888 + 1.58947i 0.805465 + 0.592644i \(0.201916\pi\)
−0.0795768 + 0.996829i \(0.525357\pi\)
\(150\) 0 0
\(151\) 1.80557 + 12.5580i 0.146935 + 1.02196i 0.921199 + 0.389092i \(0.127211\pi\)
−0.774264 + 0.632863i \(0.781880\pi\)
\(152\) 0 0
\(153\) −6.79243 3.70895i −0.549136 0.299851i
\(154\) 0 0
\(155\) 7.45280 2.67689i 0.598623 0.215013i
\(156\) 0 0
\(157\) −13.6466 0.976023i −1.08912 0.0778951i −0.484789 0.874631i \(-0.661104\pi\)
−0.604328 + 0.796736i \(0.706558\pi\)
\(158\) 0 0
\(159\) 3.27521 7.17171i 0.259741 0.568754i
\(160\) 0 0
\(161\) −0.176466 + 0.701419i −0.0139075 + 0.0552796i
\(162\) 0 0
\(163\) −1.75426 4.70336i −0.137405 0.368396i 0.849963 0.526842i \(-0.176624\pi\)
−0.987368 + 0.158446i \(0.949351\pi\)
\(164\) 0 0
\(165\) −4.23211 + 6.41233i −0.329469 + 0.499199i
\(166\) 0 0
\(167\) 3.05478 0.218482i 0.236386 0.0169067i 0.0473564 0.998878i \(-0.484920\pi\)
0.189030 + 0.981971i \(0.439466\pi\)
\(168\) 0 0
\(169\) −3.65816 12.4585i −0.281397 0.958349i
\(170\) 0 0
\(171\) −39.7808 + 5.71962i −3.04212 + 0.437390i
\(172\) 0 0
\(173\) −4.12885 1.53998i −0.313911 0.117083i 0.187571 0.982251i \(-0.439939\pi\)
−0.501481 + 0.865169i \(0.667211\pi\)
\(174\) 0 0
\(175\) −0.520071 0.546027i −0.0393137 0.0412757i
\(176\) 0 0
\(177\) −27.9322 + 20.9098i −2.09951 + 1.57168i
\(178\) 0 0
\(179\) −5.21659 8.11717i −0.389906 0.606706i 0.589703 0.807620i \(-0.299245\pi\)
−0.979609 + 0.200915i \(0.935609\pi\)
\(180\) 0 0
\(181\) 0.538147 1.83276i 0.0400002 0.136228i −0.937072 0.349136i \(-0.886475\pi\)
0.977072 + 0.212908i \(0.0682934\pi\)
\(182\) 0 0
\(183\) −5.34061 5.34061i −0.394790 0.394790i
\(184\) 0 0
\(185\) −0.525873 + 0.147483i −0.0386630 + 0.0108431i
\(186\) 0 0
\(187\) −0.708913 1.29828i −0.0518408 0.0949394i
\(188\) 0 0
\(189\) 1.13924 0.732147i 0.0828677 0.0532558i
\(190\) 0 0
\(191\) −7.11046 1.02233i −0.514495 0.0739732i −0.119823 0.992795i \(-0.538233\pi\)
−0.394672 + 0.918822i \(0.629142\pi\)
\(192\) 0 0
\(193\) 8.49373 1.84770i 0.611392 0.133000i 0.103801 0.994598i \(-0.466900\pi\)
0.507591 + 0.861598i \(0.330536\pi\)
\(194\) 0 0
\(195\) −0.832050 0.0696971i −0.0595844 0.00499112i
\(196\) 0 0
\(197\) −11.3274 + 15.1316i −0.807042 + 1.07808i 0.188341 + 0.982104i \(0.439689\pi\)
−0.995383 + 0.0959785i \(0.969402\pi\)
\(198\) 0 0
\(199\) −10.1615 + 2.98369i −0.720331 + 0.211508i −0.621296 0.783576i \(-0.713394\pi\)
−0.0990347 + 0.995084i \(0.531575\pi\)
\(200\) 0 0
\(201\) −14.7225 12.7571i −1.03844 0.899815i
\(202\) 0 0
\(203\) −0.0554238 + 0.774926i −0.00388999 + 0.0543892i
\(204\) 0 0
\(205\) 17.1387 12.5073i 1.19702 0.873550i
\(206\) 0 0
\(207\) −28.5714 + 3.17090i −1.98585 + 0.220393i
\(208\) 0 0
\(209\) −6.98755 3.19111i −0.483339 0.220733i
\(210\) 0 0
\(211\) 0.326050 + 0.376282i 0.0224462 + 0.0259043i 0.766862 0.641812i \(-0.221817\pi\)
−0.744415 + 0.667717i \(0.767272\pi\)
\(212\) 0 0
\(213\) 3.13470 + 43.8288i 0.214786 + 3.00310i
\(214\) 0 0
\(215\) 3.35952 + 5.37010i 0.229117 + 0.366238i
\(216\) 0 0
\(217\) −0.427570 0.320075i −0.0290254 0.0217281i
\(218\) 0 0
\(219\) 4.30350 1.96534i 0.290804 0.132806i
\(220\) 0 0
\(221\) 0.0869114 0.135237i 0.00584629 0.00909701i
\(222\) 0 0
\(223\) −4.67524 6.24539i −0.313077 0.418222i 0.616209 0.787583i \(-0.288668\pi\)
−0.929286 + 0.369360i \(0.879577\pi\)
\(224\) 0 0
\(225\) 13.1101 26.9511i 0.874005 1.79674i
\(226\) 0 0
\(227\) 19.0221 10.3868i 1.26254 0.689399i 0.298310 0.954469i \(-0.403577\pi\)
0.964229 + 0.265070i \(0.0853951\pi\)
\(228\) 0 0
\(229\) 0.198868 0.0131415 0.00657077 0.999978i \(-0.497908\pi\)
0.00657077 + 0.999978i \(0.497908\pi\)
\(230\) 0 0
\(231\) 0.518188 0.0340943
\(232\) 0 0
\(233\) −17.9119 + 9.78065i −1.17345 + 0.640752i −0.943150 0.332368i \(-0.892152\pi\)
−0.230300 + 0.973120i \(0.573971\pi\)
\(234\) 0 0
\(235\) 14.0625 + 12.4881i 0.917339 + 0.814635i
\(236\) 0 0
\(237\) −4.38513 5.85785i −0.284845 0.380508i
\(238\) 0 0
\(239\) −10.6023 + 16.4975i −0.685807 + 1.06714i 0.307490 + 0.951551i \(0.400511\pi\)
−0.993297 + 0.115586i \(0.963125\pi\)
\(240\) 0 0
\(241\) 22.0112 10.0522i 1.41786 0.647517i 0.448644 0.893711i \(-0.351907\pi\)
0.969221 + 0.246194i \(0.0791800\pi\)
\(242\) 0 0
\(243\) −0.0846179 0.0633441i −0.00542824 0.00406353i
\(244\) 0 0
\(245\) 3.50165 15.2036i 0.223712 0.971321i
\(246\) 0 0
\(247\) −0.0595557 0.832698i −0.00378944 0.0529833i
\(248\) 0 0
\(249\) 14.2994 + 16.5024i 0.906188 + 1.04580i
\(250\) 0 0
\(251\) 5.08238 + 2.32105i 0.320797 + 0.146503i 0.569304 0.822127i \(-0.307213\pi\)
−0.248507 + 0.968630i \(0.579940\pi\)
\(252\) 0 0
\(253\) −4.92176 2.44258i −0.309429 0.153564i
\(254\) 0 0
\(255\) 5.10394 + 6.99390i 0.319621 + 0.437975i
\(256\) 0 0
\(257\) 1.40987 19.7126i 0.0879454 1.22964i −0.741463 0.670994i \(-0.765868\pi\)
0.829408 0.558643i \(-0.188678\pi\)
\(258\) 0 0
\(259\) 0.0278391 + 0.0241227i 0.00172984 + 0.00149891i
\(260\) 0 0
\(261\) −29.6275 + 8.69942i −1.83390 + 0.538480i
\(262\) 0 0
\(263\) −13.5870 + 18.1501i −0.837808 + 1.11918i 0.153569 + 0.988138i \(0.450923\pi\)
−0.991377 + 0.131043i \(0.958168\pi\)
\(264\) 0 0
\(265\) −4.48916 + 3.79521i −0.275767 + 0.233138i
\(266\) 0 0
\(267\) 42.9756 9.34876i 2.63006 0.572135i
\(268\) 0 0
\(269\) 10.1570 + 1.46036i 0.619284 + 0.0890395i 0.444814 0.895623i \(-0.353270\pi\)
0.174470 + 0.984663i \(0.444179\pi\)
\(270\) 0 0
\(271\) 14.7762 9.49610i 0.897592 0.576847i −0.00848347 0.999964i \(-0.502700\pi\)
0.906075 + 0.423117i \(0.139064\pi\)
\(272\) 0 0
\(273\) 0.0269889 + 0.0494264i 0.00163344 + 0.00299142i
\(274\) 0 0
\(275\) 4.89303 2.97883i 0.295061 0.179630i
\(276\) 0 0
\(277\) −13.0317 13.0317i −0.782997 0.782997i 0.197338 0.980335i \(-0.436770\pi\)
−0.980335 + 0.197338i \(0.936770\pi\)
\(278\) 0 0
\(279\) 5.98061 20.3681i 0.358050 1.21941i
\(280\) 0 0
\(281\) 7.37132 + 11.4700i 0.439736 + 0.684242i 0.988412 0.151792i \(-0.0485045\pi\)
−0.548677 + 0.836035i \(0.684868\pi\)
\(282\) 0 0
\(283\) −3.01745 + 2.25884i −0.179369 + 0.134274i −0.685190 0.728365i \(-0.740281\pi\)
0.505821 + 0.862639i \(0.331190\pi\)
\(284\) 0 0
\(285\) 42.9844 + 13.1917i 2.54618 + 0.781407i
\(286\) 0 0
\(287\) −1.34079 0.500088i −0.0791442 0.0295192i
\(288\) 0 0
\(289\) 15.1770 2.18212i 0.892762 0.128360i
\(290\) 0 0
\(291\) −3.59968 12.2594i −0.211017 0.718658i
\(292\) 0 0
\(293\) 27.4273 1.96164i 1.60232 0.114600i 0.758663 0.651484i \(-0.225853\pi\)
0.843656 + 0.536884i \(0.180399\pi\)
\(294\) 0 0
\(295\) 25.4861 5.22014i 1.48386 0.303928i
\(296\) 0 0
\(297\) 3.59516 + 9.63900i 0.208613 + 0.559312i
\(298\) 0 0
\(299\) −0.0233595 0.596671i −0.00135091 0.0345064i
\(300\) 0 0
\(301\) 0.177477 0.388620i 0.0102296 0.0223997i
\(302\) 0 0
\(303\) −7.19755 0.514779i −0.413489 0.0295733i
\(304\) 0 0
\(305\) 1.90359 + 5.29984i 0.108999 + 0.303468i
\(306\) 0 0
\(307\) −4.05021 2.21158i −0.231157 0.126222i 0.359497 0.933146i \(-0.382948\pi\)
−0.590654 + 0.806925i \(0.701130\pi\)
\(308\) 0 0
\(309\) 8.02602 + 55.8222i 0.456584 + 3.17561i
\(310\) 0 0
\(311\) −9.83161 21.5282i −0.557500 1.22075i −0.953191 0.302370i \(-0.902222\pi\)
0.395691 0.918384i \(-0.370505\pi\)
\(312\) 0 0
\(313\) 2.38342 + 10.9564i 0.134719 + 0.619294i 0.994147 + 0.108037i \(0.0344564\pi\)
−0.859428 + 0.511257i \(0.829180\pi\)
\(314\) 0 0
\(315\) −2.00417 + 0.263303i −0.112922 + 0.0148354i
\(316\) 0 0
\(317\) −1.44321 0.313951i −0.0810588 0.0176333i 0.171853 0.985123i \(-0.445025\pi\)
−0.252912 + 0.967489i \(0.581388\pi\)
\(318\) 0 0
\(319\) −5.66287 1.66277i −0.317060 0.0930972i
\(320\) 0 0
\(321\) 34.7168i 1.93771i
\(322\) 0 0
\(323\) −6.12126 + 6.12126i −0.340596 + 0.340596i
\(324\) 0 0
\(325\) 0.538975 + 0.311566i 0.0298969 + 0.0172826i
\(326\) 0 0
\(327\) −4.54877 + 20.9104i −0.251548 + 1.15635i
\(328\) 0 0
\(329\) 0.180521 1.25555i 0.00995246 0.0692209i
\(330\) 0 0
\(331\) −27.6022 17.7389i −1.51715 0.975016i −0.992305 0.123821i \(-0.960485\pi\)
−0.524850 0.851195i \(-0.675879\pi\)
\(332\) 0 0
\(333\) −0.511641 + 1.37176i −0.0280377 + 0.0751721i
\(334\) 0 0
\(335\) 5.87255 + 13.2846i 0.320851 + 0.725816i
\(336\) 0 0
\(337\) 8.67959 15.8955i 0.472807 0.865882i −0.527064 0.849826i \(-0.676707\pi\)
0.999871 0.0160564i \(-0.00511113\pi\)
\(338\) 0 0
\(339\) −14.4339 + 16.6576i −0.783939 + 0.904714i
\(340\) 0 0
\(341\) 3.06640 2.65705i 0.166055 0.143887i
\(342\) 0 0
\(343\) −1.97505 + 0.736657i −0.106643 + 0.0397757i
\(344\) 0 0
\(345\) 30.4252 + 10.4227i 1.63804 + 0.561141i
\(346\) 0 0
\(347\) 3.12330 1.16493i 0.167667 0.0625367i −0.264229 0.964460i \(-0.585117\pi\)
0.431896 + 0.901923i \(0.357845\pi\)
\(348\) 0 0
\(349\) −9.05759 + 7.84845i −0.484842 + 0.420118i −0.862677 0.505755i \(-0.831214\pi\)
0.377835 + 0.925873i \(0.376669\pi\)
\(350\) 0 0
\(351\) −0.732152 + 0.844948i −0.0390794 + 0.0451000i
\(352\) 0 0
\(353\) 8.82715 16.1657i 0.469822 0.860414i −0.530101 0.847935i \(-0.677846\pi\)
0.999922 0.0124792i \(-0.00397237\pi\)
\(354\) 0 0
\(355\) 11.8220 30.5549i 0.627445 1.62169i
\(356\) 0 0
\(357\) 0.204074 0.547143i 0.0108007 0.0289579i
\(358\) 0 0
\(359\) 22.4757 + 14.4443i 1.18622 + 0.762339i 0.976520 0.215426i \(-0.0691141\pi\)
0.209702 + 0.977765i \(0.432750\pi\)
\(360\) 0 0
\(361\) −3.69386 + 25.6914i −0.194414 + 1.35218i
\(362\) 0 0
\(363\) 6.17559 28.3887i 0.324135 1.49002i
\(364\) 0 0
\(365\) −3.52720 0.0429303i −0.184622 0.00224707i
\(366\) 0 0
\(367\) 2.24678 2.24678i 0.117281 0.117281i −0.646031 0.763311i \(-0.723572\pi\)
0.763311 + 0.646031i \(0.223572\pi\)
\(368\) 0 0
\(369\) 56.8759i 2.96084i
\(370\) 0 0
\(371\) 0.380417 + 0.111701i 0.0197503 + 0.00579921i
\(372\) 0 0
\(373\) −1.60817 0.349835i −0.0832677 0.0181138i 0.170738 0.985316i \(-0.445385\pi\)
−0.254006 + 0.967203i \(0.581748\pi\)
\(374\) 0 0
\(375\) −26.1250 + 21.0179i −1.34909 + 1.08536i
\(376\) 0 0
\(377\) −0.136340 0.626745i −0.00702187 0.0322790i
\(378\) 0 0
\(379\) −14.6635 32.1086i −0.753213 1.64931i −0.760505 0.649333i \(-0.775048\pi\)
0.00729175 0.999973i \(-0.497679\pi\)
\(380\) 0 0
\(381\) 8.90721 + 61.9510i 0.456330 + 3.17384i
\(382\) 0 0
\(383\) 1.97245 + 1.07704i 0.100788 + 0.0550342i 0.528852 0.848714i \(-0.322623\pi\)
−0.428065 + 0.903748i \(0.640804\pi\)
\(384\) 0 0
\(385\) −0.349467 0.164765i −0.0178105 0.00839722i
\(386\) 0 0
\(387\) 16.9370 + 1.21136i 0.860956 + 0.0615768i
\(388\) 0 0
\(389\) −12.7487 + 27.9157i −0.646384 + 1.41538i 0.248300 + 0.968683i \(0.420128\pi\)
−0.894684 + 0.446700i \(0.852599\pi\)
\(390\) 0 0
\(391\) −4.51736 + 4.23483i −0.228453 + 0.214165i
\(392\) 0 0
\(393\) −18.4170 49.3778i −0.929014 2.49078i
\(394\) 0 0
\(395\) 1.09475 + 5.34486i 0.0550829 + 0.268929i
\(396\) 0 0
\(397\) −26.5137 + 1.89629i −1.33068 + 0.0951723i −0.718490 0.695537i \(-0.755167\pi\)
−0.612192 + 0.790709i \(0.709712\pi\)
\(398\) 0 0
\(399\) −0.854375 2.90974i −0.0427723 0.145669i
\(400\) 0 0
\(401\) −33.0700 + 4.75474i −1.65144 + 0.237441i −0.904197 0.427116i \(-0.859530\pi\)
−0.747238 + 0.664556i \(0.768621\pi\)
\(402\) 0 0
\(403\) 0.413146 + 0.154095i 0.0205802 + 0.00767603i
\(404\) 0 0
\(405\) −9.37362 17.6745i −0.465779 0.878255i
\(406\) 0 0
\(407\) −0.224021 + 0.167700i −0.0111043 + 0.00831257i
\(408\) 0 0
\(409\) 9.22053 + 14.3474i 0.455926 + 0.709434i 0.990776 0.135513i \(-0.0432682\pi\)
−0.534850 + 0.844947i \(0.679632\pi\)
\(410\) 0 0
\(411\) 5.85834 19.9517i 0.288971 0.984144i
\(412\) 0 0
\(413\) −1.24070 1.24070i −0.0610510 0.0610510i
\(414\) 0 0
\(415\) −4.39637 15.6759i −0.215809 0.769502i
\(416\) 0 0
\(417\) 8.84290 + 16.1946i 0.433039 + 0.793051i
\(418\) 0 0
\(419\) −30.7936 + 19.7898i −1.50437 + 0.966797i −0.510070 + 0.860133i \(0.670381\pi\)
−0.994295 + 0.106664i \(0.965983\pi\)
\(420\) 0 0
\(421\) 9.01171 + 1.29569i 0.439204 + 0.0631480i 0.358370 0.933580i \(-0.383333\pi\)
0.0808339 + 0.996728i \(0.474242\pi\)
\(422\) 0 0
\(423\) 49.2632 10.7166i 2.39526 0.521057i
\(424\) 0 0
\(425\) −1.21829 6.33957i −0.0590959 0.307514i
\(426\) 0 0
\(427\) 0.227612 0.304054i 0.0110149 0.0147142i
\(428\) 0 0
\(429\) −0.410480 + 0.120528i −0.0198182 + 0.00581914i
\(430\) 0 0
\(431\) 28.3168 + 24.5367i 1.36397 + 1.18189i 0.964169 + 0.265288i \(0.0854672\pi\)
0.399804 + 0.916601i \(0.369078\pi\)
\(432\) 0 0
\(433\) 1.21819 17.0325i 0.0585424 0.818530i −0.880351 0.474323i \(-0.842693\pi\)
0.938894 0.344208i \(-0.111852\pi\)
\(434\) 0 0
\(435\) 34.1316 + 5.33213i 1.63648 + 0.255656i
\(436\) 0 0
\(437\) −5.60075 + 31.6640i −0.267920 + 1.51469i
\(438\) 0 0
\(439\) −5.56836 2.54298i −0.265763 0.121370i 0.278077 0.960559i \(-0.410303\pi\)
−0.543840 + 0.839189i \(0.683030\pi\)
\(440\) 0 0
\(441\) −27.3879 31.6073i −1.30419 1.50511i
\(442\) 0 0
\(443\) 1.17055 + 16.3664i 0.0556145 + 0.777593i 0.946365 + 0.323100i \(0.104725\pi\)
−0.890750 + 0.454493i \(0.849820\pi\)
\(444\) 0 0
\(445\) −31.9554 7.35988i −1.51483 0.348892i
\(446\) 0 0
\(447\) −51.2087 38.3343i −2.42209 1.81315i
\(448\) 0 0
\(449\) −29.5236 + 13.4830i −1.39330 + 0.636301i −0.963766 0.266748i \(-0.914051\pi\)
−0.429538 + 0.903049i \(0.641323\pi\)
\(450\) 0 0
\(451\) 5.87732 9.14528i 0.276752 0.430634i
\(452\) 0 0
\(453\) −22.8019 30.4598i −1.07133 1.43112i
\(454\) 0 0
\(455\) −0.00248549 0.0419148i −0.000116521 0.00196499i
\(456\) 0 0
\(457\) 17.7574 9.69626i 0.830655 0.453572i −0.00686655 0.999976i \(-0.502186\pi\)
0.837521 + 0.546405i \(0.184004\pi\)
\(458\) 0 0
\(459\) 11.5935 0.541136
\(460\) 0 0
\(461\) −20.7321 −0.965591 −0.482796 0.875733i \(-0.660379\pi\)
−0.482796 + 0.875733i \(0.660379\pi\)
\(462\) 0 0
\(463\) −3.29721 + 1.80041i −0.153234 + 0.0836723i −0.554037 0.832492i \(-0.686913\pi\)
0.400802 + 0.916165i \(0.368731\pi\)
\(464\) 0 0
\(465\) −15.7697 + 17.7578i −0.731300 + 0.823497i
\(466\) 0 0
\(467\) 4.06017 + 5.42375i 0.187882 + 0.250981i 0.884585 0.466378i \(-0.154441\pi\)
−0.696703 + 0.717359i \(0.745351\pi\)
\(468\) 0 0
\(469\) 0.529630 0.824120i 0.0244560 0.0380543i
\(470\) 0 0
\(471\) 37.3231 17.0449i 1.71976 0.785386i
\(472\) 0 0
\(473\) 2.59818 + 1.94498i 0.119465 + 0.0894301i
\(474\) 0 0
\(475\) −24.7943 22.5640i −1.13764 1.03531i
\(476\) 0 0
\(477\) 1.12417 + 15.7179i 0.0514721 + 0.719674i
\(478\) 0 0
\(479\) 11.4720 + 13.2394i 0.524169 + 0.604924i 0.954670 0.297667i \(-0.0962084\pi\)
−0.430500 + 0.902590i \(0.641663\pi\)
\(480\) 0 0
\(481\) −0.0276634 0.0126335i −0.00126134 0.000576037i
\(482\) 0 0
\(483\) −0.543643 2.09989i −0.0247366 0.0955483i
\(484\) 0 0
\(485\) −1.47042 + 9.41232i −0.0667684 + 0.427392i
\(486\) 0 0
\(487\) 1.32648 18.5466i 0.0601086 0.840429i −0.874562 0.484914i \(-0.838851\pi\)
0.934671 0.355515i \(-0.115694\pi\)
\(488\) 0 0
\(489\) 11.3776 + 9.85872i 0.514512 + 0.445827i
\(490\) 0 0
\(491\) −16.4427 + 4.82800i −0.742047 + 0.217885i −0.630840 0.775913i \(-0.717290\pi\)
−0.111206 + 0.993797i \(0.535471\pi\)
\(492\) 0 0
\(493\) −3.98584 + 5.32446i −0.179513 + 0.239802i
\(494\) 0 0
\(495\) 1.28181 15.3024i 0.0576132 0.687792i
\(496\) 0 0
\(497\) −2.15918 + 0.469701i −0.0968525 + 0.0210690i
\(498\) 0 0
\(499\) 31.5006 + 4.52911i 1.41016 + 0.202751i 0.804964 0.593324i \(-0.202185\pi\)
0.605199 + 0.796074i \(0.293094\pi\)
\(500\) 0 0
\(501\) −7.72670 + 4.96565i −0.345203 + 0.221849i
\(502\) 0 0
\(503\) 17.0520 + 31.2284i 0.760310 + 1.39240i 0.914592 + 0.404377i \(0.132512\pi\)
−0.154282 + 0.988027i \(0.549307\pi\)
\(504\) 0 0
\(505\) 4.69036 + 2.63573i 0.208718 + 0.117289i
\(506\) 0 0
\(507\) 27.5353 + 27.5353i 1.22288 + 1.22288i
\(508\) 0 0
\(509\) 4.59053 15.6339i 0.203471 0.692960i −0.793015 0.609203i \(-0.791490\pi\)
0.996486 0.0837577i \(-0.0266922\pi\)
\(510\) 0 0
\(511\) 0.128625 + 0.200145i 0.00569005 + 0.00885389i
\(512\) 0 0
\(513\) 48.1974 36.0802i 2.12797 1.59298i
\(514\) 0 0
\(515\) 12.3367 40.1986i 0.543621 1.77136i
\(516\) 0 0
\(517\) 9.02862 + 3.36750i 0.397078 + 0.148103i
\(518\) 0 0
\(519\) 13.0812 1.88080i 0.574203 0.0825579i
\(520\) 0 0
\(521\) 2.03226 + 6.92125i 0.0890350 + 0.303225i 0.991956 0.126580i \(-0.0404002\pi\)
−0.902921 + 0.429806i \(0.858582\pi\)
\(522\) 0 0
\(523\) −1.66013 + 0.118735i −0.0725923 + 0.00519191i −0.107588 0.994196i \(-0.534313\pi\)
0.0349958 + 0.999387i \(0.488858\pi\)
\(524\) 0 0
\(525\) 2.15371 + 0.689752i 0.0939957 + 0.0301032i
\(526\) 0 0
\(527\) −1.59790 4.28414i −0.0696057 0.186620i
\(528\) 0 0
\(529\) −4.73473 + 22.5074i −0.205858 + 0.978582i
\(530\) 0 0
\(531\) 28.9701 63.4356i 1.25719 2.75287i
\(532\) 0 0
\(533\) 1.17842 + 0.0842819i 0.0510428 + 0.00365066i
\(534\) 0 0
\(535\) −11.0387 + 23.4131i −0.477246 + 1.01224i
\(536\) 0 0
\(537\) 25.3976 + 13.8681i 1.09599 + 0.598454i
\(538\) 0 0
\(539\) −1.13763 7.91241i −0.0490013 0.340812i
\(540\) 0 0
\(541\) 13.3108 + 29.1466i 0.572277 + 1.25311i 0.945576 + 0.325401i \(0.105499\pi\)
−0.373299 + 0.927711i \(0.621773\pi\)
\(542\) 0 0
\(543\) 1.21769 + 5.59762i 0.0522560 + 0.240217i
\(544\) 0 0
\(545\) 9.71645 12.6556i 0.416207 0.542108i
\(546\) 0 0
\(547\) 12.1091 + 2.63418i 0.517749 + 0.112629i 0.463844 0.885917i \(-0.346470\pi\)
0.0539046 + 0.998546i \(0.482833\pi\)
\(548\) 0 0
\(549\) 14.4842 + 4.25294i 0.618170 + 0.181511i
\(550\) 0 0
\(551\) 34.5398i 1.47144i
\(552\) 0 0
\(553\) 0.260196 0.260196i 0.0110647 0.0110647i
\(554\) 0 0
\(555\) 1.17222 1.14403i 0.0497579 0.0485612i
\(556\) 0 0
\(557\) 5.27120 24.2313i 0.223348 1.02671i −0.719759 0.694224i \(-0.755748\pi\)
0.943107 0.332490i \(-0.107889\pi\)
\(558\) 0 0
\(559\) −0.0501964 + 0.349124i −0.00212308 + 0.0147664i
\(560\) 0 0
\(561\) 3.73197 + 2.39839i 0.157564 + 0.101260i
\(562\) 0 0
\(563\) −15.9173 + 42.6761i −0.670836 + 1.79858i −0.0724527 + 0.997372i \(0.523083\pi\)
−0.598384 + 0.801210i \(0.704190\pi\)
\(564\) 0 0
\(565\) 15.0307 6.64443i 0.632347 0.279533i
\(566\) 0 0
\(567\) −0.646673 + 1.18429i −0.0271577 + 0.0497357i
\(568\) 0 0
\(569\) −14.9960 + 17.3063i −0.628664 + 0.725517i −0.977328 0.211731i \(-0.932090\pi\)
0.348664 + 0.937248i \(0.386635\pi\)
\(570\) 0 0
\(571\) 10.7569 9.32090i 0.450162 0.390068i −0.400062 0.916488i \(-0.631012\pi\)
0.850225 + 0.526420i \(0.176466\pi\)
\(572\) 0 0
\(573\) 20.1854 7.52875i 0.843255 0.314518i
\(574\) 0 0
\(575\) −17.2047 16.7032i −0.717486 0.696573i
\(576\) 0 0
\(577\) −44.1127 + 16.4532i −1.83644 + 0.684955i −0.848688 + 0.528893i \(0.822607\pi\)
−0.987747 + 0.156062i \(0.950120\pi\)
\(578\) 0 0
\(579\) −19.7013 + 17.0713i −0.818760 + 0.709460i
\(580\) 0 0
\(581\) −0.719084 + 0.829867i −0.0298326 + 0.0344287i
\(582\) 0 0
\(583\) −1.44347 + 2.64351i −0.0597822 + 0.109483i
\(584\) 0 0
\(585\) 1.52635 0.674734i 0.0631069 0.0278968i
\(586\) 0 0
\(587\) 10.3161 27.6585i 0.425790 1.14159i −0.530118 0.847924i \(-0.677853\pi\)
0.955909 0.293664i \(-0.0948748\pi\)
\(588\) 0 0
\(589\) −19.9757 12.8376i −0.823084 0.528964i
\(590\) 0 0
\(591\) 8.06735 56.1096i 0.331846 2.30804i
\(592\) 0 0
\(593\) 9.67906 44.4939i 0.397471 1.82715i −0.147963 0.988993i \(-0.547272\pi\)
0.545434 0.838154i \(-0.316365\pi\)
\(594\) 0 0
\(595\) −0.311600 + 0.304106i −0.0127743 + 0.0124671i
\(596\) 0 0
\(597\) 22.4585 22.4585i 0.919166 0.919166i
\(598\) 0 0
\(599\) 10.1749i 0.415736i 0.978157 + 0.207868i \(0.0666525\pi\)
−0.978157 + 0.207868i \(0.933347\pi\)
\(600\) 0 0
\(601\) 15.0790 + 4.42758i 0.615084 + 0.180605i 0.574410 0.818568i \(-0.305231\pi\)
0.0406735 + 0.999172i \(0.487050\pi\)
\(602\) 0 0
\(603\) 38.0459 + 8.27638i 1.54935 + 0.337040i
\(604\) 0 0
\(605\) −13.1914 + 17.1818i −0.536308 + 0.698539i
\(606\) 0 0
\(607\) 1.16567 + 5.35851i 0.0473132 + 0.217495i 0.994733 0.102497i \(-0.0326833\pi\)
−0.947420 + 0.319992i \(0.896320\pi\)
\(608\) 0 0
\(609\) −0.967899 2.11940i −0.0392212 0.0858825i
\(610\) 0 0
\(611\) 0.149036 + 1.03657i 0.00602935 + 0.0419351i
\(612\) 0 0
\(613\) −33.4241 18.2510i −1.34999 0.737149i −0.368674 0.929559i \(-0.620188\pi\)
−0.981315 + 0.192410i \(0.938370\pi\)
\(614\) 0 0
\(615\) −27.1356 + 57.5546i −1.09421 + 2.32083i
\(616\) 0 0
\(617\) 0.736836 + 0.0526995i 0.0296639 + 0.00212160i 0.0861632 0.996281i \(-0.472539\pi\)
−0.0564994 + 0.998403i \(0.517994\pi\)
\(618\) 0 0
\(619\) 12.4387 27.2371i 0.499955 1.09475i −0.476528 0.879159i \(-0.658105\pi\)
0.976484 0.215591i \(-0.0691676\pi\)
\(620\) 0 0
\(621\) 35.2891 24.6814i 1.41610 0.990432i
\(622\) 0 0
\(623\) 0.772904 + 2.07224i 0.0309658 + 0.0830224i
\(624\) 0 0
\(625\) 24.3017 5.86767i 0.972066 0.234707i
\(626\) 0 0
\(627\) 22.9790 1.64349i 0.917691 0.0656346i
\(628\) 0 0
\(629\) 0.0888461 + 0.302582i 0.00354253 + 0.0120647i
\(630\) 0 0
\(631\) −32.4100 + 4.65985i −1.29022 + 0.185506i −0.753048 0.657966i \(-0.771417\pi\)
−0.537174 + 0.843472i \(0.680508\pi\)
\(632\) 0 0
\(633\) −1.39904 0.521816i −0.0556069 0.0207403i
\(634\) 0 0
\(635\) 13.6912 44.6120i 0.543318 1.77037i
\(636\) 0 0
\(637\) 0.695460 0.520614i 0.0275551 0.0206275i
\(638\) 0 0
\(639\) −47.4813 73.8823i −1.87833 2.92274i
\(640\) 0 0
\(641\) 0.456414 1.55440i 0.0180273 0.0613952i −0.949988 0.312286i \(-0.898905\pi\)
0.968015 + 0.250891i \(0.0807235\pi\)
\(642\) 0 0
\(643\) −24.8038 24.8038i −0.978164 0.978164i 0.0216022 0.999767i \(-0.493123\pi\)
−0.999767 + 0.0216022i \(0.993123\pi\)
\(644\) 0 0
\(645\) −16.5612 9.30650i −0.652095 0.366443i
\(646\) 0 0
\(647\) 10.7153 + 19.6235i 0.421260 + 0.771480i 0.998999 0.0447416i \(-0.0142464\pi\)
−0.577738 + 0.816222i \(0.696065\pi\)
\(648\) 0 0
\(649\) 11.2134 7.20640i 0.440164 0.282876i
\(650\) 0 0
\(651\) 1.58548 + 0.227957i 0.0621398 + 0.00893435i
\(652\) 0 0
\(653\) −42.5884 + 9.26453i −1.66661 + 0.362549i −0.944317 0.329037i \(-0.893276\pi\)
−0.722294 + 0.691586i \(0.756912\pi\)
\(654\) 0 0
\(655\) −3.27996 + 39.1564i −0.128159 + 1.52997i
\(656\) 0 0
\(657\) −5.66671 + 7.56983i −0.221079 + 0.295327i
\(658\) 0 0
\(659\) −12.0003 + 3.52361i −0.467466 + 0.137260i −0.506978 0.861959i \(-0.669238\pi\)
0.0395127 + 0.999219i \(0.487419\pi\)
\(660\) 0 0
\(661\) 28.8180 + 24.9709i 1.12089 + 0.971256i 0.999771 0.0213823i \(-0.00680672\pi\)
0.121118 + 0.992638i \(0.461352\pi\)
\(662\) 0 0
\(663\) −0.0343934 + 0.480883i −0.00133573 + 0.0186759i
\(664\) 0 0
\(665\) −0.349001 + 2.23399i −0.0135337 + 0.0866305i
\(666\) 0 0
\(667\) −0.797109 + 24.6925i −0.0308642 + 0.956098i
\(668\) 0 0
\(669\) 21.2824 + 9.71936i 0.822826 + 0.375772i
\(670\) 0 0
\(671\) 1.88948 + 2.18058i 0.0729427 + 0.0841804i
\(672\) 0 0
\(673\) 2.50882 + 35.0779i 0.0967080 + 1.35215i 0.781723 + 0.623626i \(0.214341\pi\)
−0.685015 + 0.728529i \(0.740204\pi\)
\(674\) 0 0
\(675\) 2.11202 + 44.8474i 0.0812916 + 1.72618i
\(676\) 0 0
\(677\) 32.3700 + 24.2319i 1.24408 + 0.931306i 0.999268 0.0382644i \(-0.0121829\pi\)
0.244812 + 0.969571i \(0.421274\pi\)
\(678\) 0 0
\(679\) 0.584459 0.266914i 0.0224295 0.0102432i
\(680\) 0 0
\(681\) −35.1407 + 54.6800i −1.34659 + 2.09534i
\(682\) 0 0
\(683\) 18.3908 + 24.5672i 0.703704 + 0.940039i 0.999886 0.0150926i \(-0.00480429\pi\)
−0.296182 + 0.955132i \(0.595713\pi\)
\(684\) 0 0
\(685\) −10.2948 + 11.5927i −0.393344 + 0.442934i
\(686\) 0 0
\(687\) −0.523455 + 0.285828i −0.0199710 + 0.0109050i
\(688\) 0 0
\(689\) −0.327327 −0.0124702
\(690\) 0 0
\(691\) 35.6433 1.35594 0.677968 0.735091i \(-0.262861\pi\)
0.677968 + 0.735091i \(0.262861\pi\)
\(692\) 0 0
\(693\) −0.909011 + 0.496358i −0.0345305 + 0.0188551i
\(694\) 0 0
\(695\) −0.814369 13.7334i −0.0308908 0.520936i
\(696\) 0 0
\(697\) −7.34168 9.80733i −0.278086 0.371479i
\(698\) 0 0
\(699\) 33.0899 51.4888i 1.25157 1.94749i
\(700\) 0 0
\(701\) 35.9865 16.4345i 1.35919 0.620723i 0.403471 0.914993i \(-0.367804\pi\)
0.955722 + 0.294270i \(0.0950765\pi\)
\(702\) 0 0
\(703\) 1.31103 + 0.981424i 0.0494464 + 0.0370151i
\(704\) 0 0
\(705\) −54.9640 12.6592i −2.07006 0.476772i
\(706\) 0 0
\(707\) −0.0258870 0.361948i −0.000973582 0.0136125i
\(708\) 0 0
\(709\) 24.5088 + 28.2846i 0.920446 + 1.06225i 0.997869 + 0.0652530i \(0.0207854\pi\)
−0.0774227 + 0.996998i \(0.524669\pi\)
\(710\) 0 0
\(711\) 13.3035 + 6.07552i 0.498921 + 0.227850i
\(712\) 0 0
\(713\) −13.9844 9.63861i −0.523719 0.360969i
\(714\) 0 0
\(715\) 0.315152 + 0.0492339i 0.0117860 + 0.00184124i
\(716\) 0 0
\(717\) 4.19565 58.6629i 0.156690 2.19081i
\(718\) 0 0
\(719\) 5.50407 + 4.76930i 0.205267 + 0.177865i 0.751428 0.659816i \(-0.229366\pi\)
−0.546160 + 0.837681i \(0.683911\pi\)
\(720\) 0 0
\(721\) −2.72115 + 0.799003i −0.101341 + 0.0297564i
\(722\) 0 0
\(723\) −43.4895 + 58.0952i −1.61739 + 2.16058i
\(724\) 0 0
\(725\) −21.3229 14.4486i −0.791914 0.536608i
\(726\) 0 0
\(727\) −19.0635 + 4.14700i −0.707025 + 0.153804i −0.551679 0.834056i \(-0.686013\pi\)
−0.155345 + 0.987860i \(0.549649\pi\)
\(728\) 0 0
\(729\) 26.8819 + 3.86504i 0.995626 + 0.143149i
\(730\) 0 0
\(731\) 3.07688 1.97739i 0.113802 0.0731364i
\(732\) 0 0
\(733\) −6.60616 12.0983i −0.244004 0.446860i 0.726761 0.686890i \(-0.241025\pi\)
−0.970765 + 0.240030i \(0.922843\pi\)
\(734\) 0 0
\(735\) 12.6348 + 45.0514i 0.466041 + 1.66174i
\(736\) 0 0
\(737\) 5.26230 + 5.26230i 0.193839 + 0.193839i
\(738\) 0 0
\(739\) 5.65340 19.2537i 0.207964 0.708259i −0.787769 0.615971i \(-0.788764\pi\)
0.995732 0.0922879i \(-0.0294180\pi\)
\(740\) 0 0
\(741\) 1.35358 + 2.10621i 0.0497249 + 0.0773735i
\(742\) 0 0
\(743\) 0.135904 0.101736i 0.00498584 0.00373235i −0.596782 0.802404i \(-0.703554\pi\)
0.601768 + 0.798671i \(0.294463\pi\)
\(744\) 0 0
\(745\) 22.3462 + 42.1353i 0.818703 + 1.54372i
\(746\) 0 0
\(747\) −40.8914 15.2517i −1.49614 0.558030i
\(748\) 0 0
\(749\) 1.72806 0.248457i 0.0631419 0.00907843i
\(750\) 0 0
\(751\) 6.09157 + 20.7460i 0.222285 + 0.757032i 0.992818 + 0.119633i \(0.0381716\pi\)
−0.770534 + 0.637399i \(0.780010\pi\)
\(752\) 0 0
\(753\) −16.7137 + 1.19539i −0.609082 + 0.0435624i
\(754\) 0 0
\(755\) 5.69251 + 27.7923i 0.207172 + 1.01147i
\(756\) 0 0
\(757\) −9.83911 26.3797i −0.357608 0.958785i −0.983824 0.179136i \(-0.942670\pi\)
0.626216 0.779650i \(-0.284603\pi\)
\(758\) 0 0
\(759\) 16.4656 0.644623i 0.597664 0.0233983i
\(760\) 0 0
\(761\) 11.3379 24.8265i 0.410998 0.899960i −0.585038 0.811006i \(-0.698920\pi\)
0.996036 0.0889539i \(-0.0283524\pi\)
\(762\) 0 0
\(763\) −1.07338 0.0767699i −0.0388591 0.00277926i
\(764\) 0 0
\(765\) −15.6526 7.37985i −0.565922 0.266819i
\(766\) 0 0
\(767\) 1.27140 + 0.694236i 0.0459075 + 0.0250674i
\(768\) 0 0
\(769\) 3.36066 + 23.3739i 0.121189 + 0.842885i 0.956213 + 0.292672i \(0.0945445\pi\)
−0.835024 + 0.550213i \(0.814546\pi\)
\(770\) 0 0
\(771\) 24.6214 + 53.9134i 0.886718 + 1.94164i
\(772\) 0 0
\(773\) 9.30821 + 42.7892i 0.334793 + 1.53902i 0.769618 + 0.638504i \(0.220447\pi\)
−0.434825 + 0.900515i \(0.643190\pi\)
\(774\) 0 0
\(775\) 16.2814 6.96169i 0.584846 0.250071i
\(776\) 0 0
\(777\) −0.107949 0.0234828i −0.00387263 0.000842440i
\(778\) 0 0
\(779\) −61.0431 17.9239i −2.18709 0.642189i
\(780\) 0 0
\(781\) 16.7863i 0.600662i
\(782\) 0 0
\(783\) 32.7085 32.7085i 1.16891 1.16891i
\(784\) 0 0
\(785\) −30.5904 0.372322i −1.09182 0.0132887i
\(786\) 0 0
\(787\) 8.66089 39.8135i 0.308728 1.41920i −0.517414 0.855735i \(-0.673105\pi\)
0.826142 0.563462i \(-0.190531\pi\)
\(788\) 0 0
\(789\) 9.67662 67.3024i 0.344497 2.39603i
\(790\) 0 0
\(791\) −0.932442 0.599244i −0.0331538 0.0213067i
\(792\) 0 0
\(793\) −0.109580 + 0.293797i −0.00389132 + 0.0104330i
\(794\) 0 0
\(795\) 6.36148 16.4418i 0.225619 0.583132i
\(796\) 0 0
\(797\) 13.7661 25.2107i 0.487619 0.893008i −0.511806 0.859101i \(-0.671023\pi\)
0.999425 0.0339070i \(-0.0107950\pi\)
\(798\) 0 0
\(799\) 7.11133 8.20691i 0.251581 0.290340i
\(800\) 0 0
\(801\) −66.4333 + 57.5648i −2.34730 + 2.03395i
\(802\) 0 0
\(803\) −1.69340 + 0.631607i −0.0597590 + 0.0222889i
\(804\) 0 0
\(805\) −0.301057 + 1.58903i −0.0106109 + 0.0560059i
\(806\) 0 0
\(807\) −28.8340 + 10.7545i −1.01500 + 0.378577i
\(808\) 0 0
\(809\) 8.98726 7.78750i 0.315975 0.273794i −0.482404 0.875949i \(-0.660236\pi\)
0.798379 + 0.602155i \(0.205691\pi\)
\(810\) 0 0
\(811\) −11.2694 + 13.0056i −0.395722 + 0.456687i −0.918289 0.395911i \(-0.870429\pi\)
0.522567 + 0.852598i \(0.324974\pi\)
\(812\) 0 0
\(813\) −25.2451 + 46.2329i −0.885384 + 1.62146i
\(814\) 0 0
\(815\) −4.53833 10.2664i −0.158971 0.359616i
\(816\) 0 0
\(817\) 6.63763 17.7962i 0.232221 0.622610i
\(818\) 0 0
\(819\) −0.0946884 0.0608525i −0.00330868 0.00212636i
\(820\) 0 0
\(821\) 5.99131 41.6705i 0.209098 1.45431i −0.567011 0.823710i \(-0.691900\pi\)
0.776109 0.630599i \(-0.217191\pi\)
\(822\) 0 0
\(823\) −5.06328 + 23.2755i −0.176495 + 0.811334i 0.800713 + 0.599048i \(0.204454\pi\)
−0.977208 + 0.212285i \(0.931909\pi\)
\(824\) 0 0
\(825\) −8.59792 + 14.8734i −0.299341 + 0.517827i
\(826\) 0 0
\(827\) −32.9666 + 32.9666i −1.14636 + 1.14636i −0.159099 + 0.987263i \(0.550859\pi\)
−0.987263 + 0.159099i \(0.949141\pi\)
\(828\) 0 0
\(829\) 1.95861i 0.0680254i 0.999421 + 0.0340127i \(0.0108287\pi\)
−0.999421 + 0.0340127i \(0.989171\pi\)
\(830\) 0 0
\(831\) 53.0318 + 15.5715i 1.83965 + 0.540171i
\(832\) 0 0
\(833\) −8.80255 1.91488i −0.304990 0.0663466i
\(834\) 0 0
\(835\) 6.78980 0.892024i 0.234971 0.0308698i
\(836\) 0 0
\(837\) 6.75965 + 31.0736i 0.233648 + 1.07406i
\(838\) 0 0
\(839\) 11.4718 + 25.1198i 0.396052 + 0.867233i 0.997655 + 0.0684378i \(0.0218015\pi\)
−0.601604 + 0.798795i \(0.705471\pi\)
\(840\) 0 0
\(841\) −0.350491 2.43772i −0.0120859 0.0840593i
\(842\) 0 0
\(843\) −35.8882 19.5964i −1.23605 0.674936i
\(844\) 0 0
\(845\) −9.81459 27.3251i −0.337632 0.940011i
\(846\) 0 0
\(847\) 1.45727 + 0.104226i 0.0500724 + 0.00358125i
\(848\) 0 0
\(849\) 4.69590 10.2826i 0.161163 0.352897i
\(850\) 0 0
\(851\) 0.914607 + 0.731877i 0.0313523 + 0.0250884i
\(852\) 0 0
\(853\) 2.71350 + 7.27519i 0.0929086 + 0.249098i 0.975089 0.221814i \(-0.0711978\pi\)
−0.882180 + 0.470912i \(0.843925\pi\)
\(854\) 0 0
\(855\) −88.0396 + 18.0326i −3.01089 + 0.616700i
\(856\) 0 0
\(857\) −54.2841 + 3.88248i −1.85431 + 0.132623i −0.953462 0.301513i \(-0.902508\pi\)
−0.900848 + 0.434136i \(0.857054\pi\)
\(858\) 0 0
\(859\) −11.7107 39.8829i −0.399563 1.36079i −0.876311 0.481746i \(-0.840003\pi\)
0.476748 0.879040i \(-0.341815\pi\)
\(860\) 0 0
\(861\) 4.24795 0.610763i 0.144770 0.0208148i
\(862\) 0 0
\(863\) 33.5744 + 12.5226i 1.14289 + 0.426275i 0.848387 0.529377i \(-0.177574\pi\)
0.294500 + 0.955651i \(0.404847\pi\)
\(864\) 0 0
\(865\) −9.42003 2.89096i −0.320291 0.0982955i
\(866\) 0 0
\(867\) −36.8121 + 27.5572i −1.25021 + 0.935892i
\(868\) 0 0
\(869\) 1.51130 + 2.35163i 0.0512675 + 0.0797737i
\(870\) 0 0
\(871\) −0.227858 + 0.776012i −0.00772066 + 0.0262941i
\(872\) 0 0
\(873\) 18.0575 + 18.0575i 0.611155 + 0.611155i
\(874\) 0 0
\(875\) −1.23315 1.14997i −0.0416881 0.0388762i
\(876\) 0 0
\(877\) −7.60948 13.9357i −0.256954 0.470576i 0.717076 0.696995i \(-0.245480\pi\)
−0.974030 + 0.226419i \(0.927298\pi\)
\(878\) 0 0
\(879\) −69.3740 + 44.5840i −2.33993 + 1.50378i
\(880\) 0 0
\(881\) 38.9474 + 5.59980i 1.31217 + 0.188662i 0.762647 0.646815i \(-0.223899\pi\)
0.549526 + 0.835477i \(0.314808\pi\)
\(882\) 0 0
\(883\) −14.7260 + 3.20344i −0.495569 + 0.107804i −0.453402 0.891306i \(-0.649790\pi\)
−0.0421671 + 0.999111i \(0.513426\pi\)
\(884\) 0 0
\(885\) −59.5811 + 50.3709i −2.00280 + 1.69320i
\(886\) 0 0
\(887\) −6.92191 + 9.24659i −0.232415 + 0.310470i −0.901554 0.432668i \(-0.857572\pi\)
0.669138 + 0.743138i \(0.266663\pi\)
\(888\) 0 0
\(889\) −3.01991 + 0.886727i −0.101285 + 0.0297399i
\(890\) 0 0
\(891\) −7.74691 6.71273i −0.259531 0.224885i
\(892\) 0 0
\(893\) 4.02307 56.2499i 0.134627 1.88233i
\(894\) 0 0
\(895\) −12.7186 17.4282i −0.425136 0.582562i
\(896\) 0 0
\(897\) 0.919068 + 1.53697i 0.0306868 + 0.0513179i
\(898\) 0 0
\(899\) −16.5950 7.57867i −0.553473 0.252763i
\(900\) 0 0
\(901\) 2.22275 + 2.56519i 0.0740506 + 0.0854590i
\(902\) 0 0
\(903\) 0.0914044 + 1.27800i 0.00304175 + 0.0425292i
\(904\) 0 0
\(905\) 0.958634 4.16222i 0.0318661 0.138357i
\(906\) 0 0
\(907\) 2.15455 + 1.61287i 0.0715406 + 0.0535546i 0.634449 0.772964i \(-0.281227\pi\)
−0.562909 + 0.826519i \(0.690318\pi\)
\(908\) 0 0
\(909\) 13.1191 5.99130i 0.435134 0.198719i
\(910\) 0 0
\(911\) −22.6715 + 35.2776i −0.751141 + 1.16880i 0.229562 + 0.973294i \(0.426270\pi\)
−0.980703 + 0.195504i \(0.937366\pi\)
\(912\) 0 0
\(913\) −4.99903 6.67792i −0.165444 0.221007i
\(914\) 0 0
\(915\) −12.6279 11.2141i −0.417467 0.370728i
\(916\) 0 0
\(917\) 2.32602 1.27010i 0.0768118 0.0419424i
\(918\) 0 0
\(919\) −38.2781 −1.26268 −0.631339 0.775507i \(-0.717494\pi\)
−0.631339 + 0.775507i \(0.717494\pi\)
\(920\) 0 0
\(921\) 13.8395 0.456027
\(922\) 0 0
\(923\) 1.60113 0.874285i 0.0527020 0.0287774i
\(924\) 0 0
\(925\) −1.15430 + 0.398809i −0.0379533 + 0.0131128i
\(926\) 0 0
\(927\) −67.5498 90.2360i −2.21863 2.96374i
\(928\) 0 0
\(929\) 12.3302 19.1862i 0.404541 0.629478i −0.577888 0.816116i \(-0.696123\pi\)
0.982429 + 0.186638i \(0.0597593\pi\)
\(930\) 0 0
\(931\) −42.5542 + 19.4338i −1.39466 + 0.636918i
\(932\) 0 0
\(933\) 56.8206 + 42.5353i 1.86022 + 1.39254i
\(934\) 0 0
\(935\) −1.75424 2.80411i −0.0573698 0.0917042i
\(936\) 0 0
\(937\) −3.35152 46.8604i −0.109489 1.53086i −0.694296 0.719690i \(-0.744284\pi\)
0.584806 0.811173i \(-0.301170\pi\)
\(938\) 0 0
\(939\) −22.0210 25.4136i −0.718629 0.829342i
\(940\) 0 0
\(941\) 5.73984 + 2.62130i 0.187113 + 0.0854518i 0.506769 0.862082i \(-0.330840\pi\)
−0.319655 + 0.947534i \(0.603567\pi\)
\(942\) 0 0
\(943\) −43.2261 14.2225i −1.40764 0.463150i
\(944\) 0 0
\(945\) 2.44605 1.78505i 0.0795699 0.0580678i
\(946\) 0 0
\(947\) −1.23966 + 17.3327i −0.0402836 + 0.563238i 0.936729 + 0.350056i \(0.113837\pi\)
−0.977012 + 0.213182i \(0.931617\pi\)
\(948\) 0 0
\(949\) −0.148443 0.128626i −0.00481865 0.00417539i
\(950\) 0 0
\(951\) 4.25002 1.24792i 0.137816 0.0404665i
\(952\) 0 0
\(953\) 19.4995 26.0483i 0.631651 0.843787i −0.364522 0.931195i \(-0.618768\pi\)
0.996173 + 0.0874082i \(0.0278584\pi\)
\(954\) 0 0
\(955\) −16.0069 1.34083i −0.517971 0.0433881i
\(956\) 0 0
\(957\) 17.2955 3.76242i 0.559085 0.121622i
\(958\) 0 0
\(959\) 1.03504 + 0.148816i 0.0334231 + 0.00480551i
\(960\) 0 0
\(961\) −15.5279 + 9.97915i −0.500899 + 0.321908i
\(962\) 0 0
\(963\) 33.2543 + 60.9007i 1.07160 + 1.96250i
\(964\) 0 0
\(965\) 18.7147 5.24859i 0.602447 0.168958i
\(966\) 0 0
\(967\) 36.6412 + 36.6412i 1.17830 + 1.17830i 0.980177 + 0.198124i \(0.0634849\pi\)
0.198124 + 0.980177i \(0.436515\pi\)
\(968\) 0 0
\(969\) 7.31429 24.9102i 0.234969 0.800231i
\(970\) 0 0
\(971\) −11.0137 17.1377i −0.353447 0.549974i 0.618317 0.785928i \(-0.287815\pi\)
−0.971764 + 0.235955i \(0.924178\pi\)
\(972\) 0 0
\(973\) −0.742812 + 0.556062i −0.0238135 + 0.0178265i
\(974\) 0 0
\(975\) −1.86648 0.0454415i −0.0597753 0.00145529i
\(976\) 0 0
\(977\) −25.2326 9.41129i −0.807264 0.301094i −0.0882577 0.996098i \(-0.528130\pi\)
−0.719006 + 0.695004i \(0.755403\pi\)
\(978\) 0 0
\(979\) −16.6306 + 2.39111i −0.531515 + 0.0764203i
\(980\) 0 0
\(981\) −12.0499 41.0383i −0.384725 1.31025i
\(982\) 0 0
\(983\) 38.0665 2.72257i 1.21413 0.0868365i 0.550461 0.834861i \(-0.314452\pi\)
0.663671 + 0.748024i \(0.268997\pi\)
\(984\) 0 0
\(985\) −23.2815 + 35.2753i −0.741810 + 1.12396i
\(986\) 0 0
\(987\) 1.32941 + 3.56430i 0.0423157 + 0.113453i
\(988\) 0 0
\(989\) 5.15595 12.5693i 0.163950 0.399681i
\(990\) 0 0
\(991\) 5.32760 11.6658i 0.169237 0.370577i −0.805942 0.591994i \(-0.798341\pi\)
0.975179 + 0.221417i \(0.0710682\pi\)
\(992\) 0 0
\(993\) 98.1496 + 7.01979i 3.11468 + 0.222766i
\(994\) 0 0
\(995\) −22.2871 + 8.00505i −0.706548 + 0.253777i
\(996\) 0 0
\(997\) 27.7744 + 15.1660i 0.879624 + 0.480311i 0.854547 0.519374i \(-0.173835\pi\)
0.0250775 + 0.999686i \(0.492017\pi\)
\(998\) 0 0
\(999\) −0.312130 2.17091i −0.00987536 0.0686846i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.17.3 720
5.3 odd 4 inner 920.2.bv.a.753.3 yes 720
23.19 odd 22 inner 920.2.bv.a.617.3 yes 720
115.88 even 44 inner 920.2.bv.a.433.3 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.3 720 1.1 even 1 trivial
920.2.bv.a.433.3 yes 720 115.88 even 44 inner
920.2.bv.a.617.3 yes 720 23.19 odd 22 inner
920.2.bv.a.753.3 yes 720 5.3 odd 4 inner