Properties

Label 920.2.bv.a.17.19
Level $920$
Weight $2$
Character 920.17
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 17.19
Character \(\chi\) \(=\) 920.17
Dual form 920.2.bv.a.433.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.00457693 + 0.00249919i) q^{3} +(2.23374 - 0.101999i) q^{5} +(-1.95297 - 2.60886i) q^{7} +(-1.62191 + 2.52374i) q^{9} +(-3.17383 + 1.44944i) q^{11} +(-3.97765 - 2.97763i) q^{13} +(-0.00996875 + 0.00604939i) q^{15} +(-0.510554 - 7.13848i) q^{17} +(-3.33403 - 3.84767i) q^{19} +(0.0154587 + 0.00705973i) q^{21} +(-4.53722 + 1.55359i) q^{23} +(4.97919 - 0.455680i) q^{25} +(0.00223211 - 0.0312090i) q^{27} +(3.11015 + 2.69496i) q^{29} +(-1.88961 + 0.554841i) q^{31} +(0.0109039 - 0.0145660i) q^{33} +(-4.62853 - 5.62832i) q^{35} +(8.36550 - 1.81980i) q^{37} +(0.0256471 + 0.00368749i) q^{39} +(-4.08835 + 2.62742i) q^{41} +(-1.96262 - 3.59428i) q^{43} +(-3.36550 + 5.80281i) q^{45} +(3.58642 + 3.58642i) q^{47} +(-1.01995 + 3.47362i) q^{49} +(0.0201772 + 0.0313963i) q^{51} +(-8.90212 + 6.66404i) q^{53} +(-6.94166 + 3.56140i) q^{55} +(0.0248757 + 0.00927815i) q^{57} +(5.46562 - 0.785838i) q^{59} +(-0.654342 - 2.22848i) q^{61} +(9.75163 - 0.697450i) q^{63} +(-9.18875 - 6.24553i) q^{65} +(-5.28978 - 14.1825i) q^{67} +(0.0168838 - 0.0184500i) q^{69} +(0.281573 - 0.616558i) q^{71} +(13.0564 + 0.933811i) q^{73} +(-0.0216506 + 0.0145296i) q^{75} +(9.97978 + 5.44937i) q^{77} +(-2.15063 - 14.9580i) q^{79} +(-3.73863 - 8.18647i) q^{81} +(0.700230 + 3.21891i) q^{83} +(-1.86856 - 15.8934i) q^{85} +(-0.0209701 - 0.00456177i) q^{87} +(-7.31005 - 2.14642i) q^{89} +16.1924i q^{91} +(0.00726197 - 0.00726197i) q^{93} +(-7.83981 - 8.25463i) q^{95} +(-1.63190 + 7.50171i) q^{97} +(1.48965 - 10.3608i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.00457693 + 0.00249919i −0.00264249 + 0.00144291i −0.480570 0.876957i \(-0.659570\pi\)
0.477927 + 0.878399i \(0.341388\pi\)
\(4\) 0 0
\(5\) 2.23374 0.101999i 0.998959 0.0456155i
\(6\) 0 0
\(7\) −1.95297 2.60886i −0.738154 0.986058i −0.999782 0.0208893i \(-0.993350\pi\)
0.261628 0.965169i \(-0.415741\pi\)
\(8\) 0 0
\(9\) −1.62191 + 2.52374i −0.540636 + 0.841246i
\(10\) 0 0
\(11\) −3.17383 + 1.44944i −0.956945 + 0.437022i −0.831775 0.555113i \(-0.812675\pi\)
−0.125170 + 0.992135i \(0.539948\pi\)
\(12\) 0 0
\(13\) −3.97765 2.97763i −1.10320 0.825846i −0.117287 0.993098i \(-0.537420\pi\)
−0.985914 + 0.167252i \(0.946511\pi\)
\(14\) 0 0
\(15\) −0.00996875 + 0.00604939i −0.00257392 + 0.00156195i
\(16\) 0 0
\(17\) −0.510554 7.13848i −0.123828 1.73133i −0.557424 0.830228i \(-0.688210\pi\)
0.433597 0.901107i \(-0.357244\pi\)
\(18\) 0 0
\(19\) −3.33403 3.84767i −0.764878 0.882717i 0.231043 0.972944i \(-0.425786\pi\)
−0.995921 + 0.0902268i \(0.971241\pi\)
\(20\) 0 0
\(21\) 0.0154587 + 0.00705973i 0.00337336 + 0.00154056i
\(22\) 0 0
\(23\) −4.53722 + 1.55359i −0.946076 + 0.323946i
\(24\) 0 0
\(25\) 4.97919 0.455680i 0.995838 0.0911360i
\(26\) 0 0
\(27\) 0.00223211 0.0312090i 0.000429570 0.00600617i
\(28\) 0 0
\(29\) 3.11015 + 2.69496i 0.577540 + 0.500441i 0.893941 0.448184i \(-0.147929\pi\)
−0.316401 + 0.948625i \(0.602475\pi\)
\(30\) 0 0
\(31\) −1.88961 + 0.554841i −0.339385 + 0.0996524i −0.446984 0.894542i \(-0.647502\pi\)
0.107599 + 0.994194i \(0.465684\pi\)
\(32\) 0 0
\(33\) 0.0109039 0.0145660i 0.00189813 0.00253561i
\(34\) 0 0
\(35\) −4.62853 5.62832i −0.782365 0.951360i
\(36\) 0 0
\(37\) 8.36550 1.81980i 1.37528 0.299174i 0.536618 0.843825i \(-0.319702\pi\)
0.838662 + 0.544651i \(0.183338\pi\)
\(38\) 0 0
\(39\) 0.0256471 + 0.00368749i 0.00410682 + 0.000590471i
\(40\) 0 0
\(41\) −4.08835 + 2.62742i −0.638493 + 0.410335i −0.819445 0.573157i \(-0.805718\pi\)
0.180952 + 0.983492i \(0.442082\pi\)
\(42\) 0 0
\(43\) −1.96262 3.59428i −0.299297 0.548122i 0.684144 0.729347i \(-0.260176\pi\)
−0.983442 + 0.181224i \(0.941994\pi\)
\(44\) 0 0
\(45\) −3.36550 + 5.80281i −0.501699 + 0.865032i
\(46\) 0 0
\(47\) 3.58642 + 3.58642i 0.523133 + 0.523133i 0.918516 0.395384i \(-0.129388\pi\)
−0.395384 + 0.918516i \(0.629388\pi\)
\(48\) 0 0
\(49\) −1.01995 + 3.47362i −0.145707 + 0.496232i
\(50\) 0 0
\(51\) 0.0201772 + 0.0313963i 0.00282537 + 0.00439636i
\(52\) 0 0
\(53\) −8.90212 + 6.66404i −1.22280 + 0.915376i −0.998253 0.0590869i \(-0.981181\pi\)
−0.224547 + 0.974463i \(0.572090\pi\)
\(54\) 0 0
\(55\) −6.94166 + 3.56140i −0.936014 + 0.480219i
\(56\) 0 0
\(57\) 0.0248757 + 0.00927815i 0.00329486 + 0.00122892i
\(58\) 0 0
\(59\) 5.46562 0.785838i 0.711564 0.102307i 0.222978 0.974823i \(-0.428422\pi\)
0.488585 + 0.872516i \(0.337513\pi\)
\(60\) 0 0
\(61\) −0.654342 2.22848i −0.0837799 0.285328i 0.906938 0.421265i \(-0.138414\pi\)
−0.990717 + 0.135937i \(0.956596\pi\)
\(62\) 0 0
\(63\) 9.75163 0.697450i 1.22859 0.0878705i
\(64\) 0 0
\(65\) −9.18875 6.24553i −1.13972 0.774663i
\(66\) 0 0
\(67\) −5.28978 14.1825i −0.646250 1.73266i −0.679978 0.733232i \(-0.738011\pi\)
0.0337285 0.999431i \(-0.489262\pi\)
\(68\) 0 0
\(69\) 0.0168838 0.0184500i 0.00203257 0.00222112i
\(70\) 0 0
\(71\) 0.281573 0.616558i 0.0334165 0.0731720i −0.892188 0.451665i \(-0.850830\pi\)
0.925604 + 0.378493i \(0.123558\pi\)
\(72\) 0 0
\(73\) 13.0564 + 0.933811i 1.52813 + 0.109294i 0.809925 0.586534i \(-0.199508\pi\)
0.718209 + 0.695828i \(0.244962\pi\)
\(74\) 0 0
\(75\) −0.0216506 + 0.0145296i −0.00249999 + 0.00167773i
\(76\) 0 0
\(77\) 9.97978 + 5.44937i 1.13730 + 0.621014i
\(78\) 0 0
\(79\) −2.15063 14.9580i −0.241965 1.68290i −0.642237 0.766506i \(-0.721993\pi\)
0.400272 0.916396i \(-0.368916\pi\)
\(80\) 0 0
\(81\) −3.73863 8.18647i −0.415404 0.909607i
\(82\) 0 0
\(83\) 0.700230 + 3.21891i 0.0768603 + 0.353321i 0.999475 0.0324021i \(-0.0103157\pi\)
−0.922615 + 0.385723i \(0.873952\pi\)
\(84\) 0 0
\(85\) −1.86856 15.8934i −0.202674 1.72388i
\(86\) 0 0
\(87\) −0.0209701 0.00456177i −0.00224823 0.000489073i
\(88\) 0 0
\(89\) −7.31005 2.14642i −0.774863 0.227520i −0.129688 0.991555i \(-0.541398\pi\)
−0.645175 + 0.764034i \(0.723216\pi\)
\(90\) 0 0
\(91\) 16.1924i 1.69742i
\(92\) 0 0
\(93\) 0.00726197 0.00726197i 0.000753032 0.000753032i
\(94\) 0 0
\(95\) −7.83981 8.25463i −0.804348 0.846908i
\(96\) 0 0
\(97\) −1.63190 + 7.50171i −0.165694 + 0.761683i 0.817028 + 0.576597i \(0.195620\pi\)
−0.982722 + 0.185086i \(0.940744\pi\)
\(98\) 0 0
\(99\) 1.48965 10.3608i 0.149716 1.04130i
\(100\) 0 0
\(101\) 0.463739 + 0.298027i 0.0461437 + 0.0296548i 0.563509 0.826110i \(-0.309451\pi\)
−0.517366 + 0.855764i \(0.673087\pi\)
\(102\) 0 0
\(103\) −4.65725 + 12.4866i −0.458893 + 1.23034i 0.477265 + 0.878759i \(0.341628\pi\)
−0.936158 + 0.351580i \(0.885645\pi\)
\(104\) 0 0
\(105\) 0.0352507 + 0.0141928i 0.00344012 + 0.00138508i
\(106\) 0 0
\(107\) 4.45975 8.16742i 0.431140 0.789574i −0.568307 0.822817i \(-0.692401\pi\)
0.999447 + 0.0332421i \(0.0105833\pi\)
\(108\) 0 0
\(109\) −4.52259 + 5.21934i −0.433185 + 0.499922i −0.929808 0.368044i \(-0.880028\pi\)
0.496623 + 0.867966i \(0.334573\pi\)
\(110\) 0 0
\(111\) −0.0337403 + 0.0292361i −0.00320248 + 0.00277497i
\(112\) 0 0
\(113\) 7.10932 2.65164i 0.668789 0.249445i 0.00794455 0.999968i \(-0.497471\pi\)
0.660844 + 0.750523i \(0.270198\pi\)
\(114\) 0 0
\(115\) −9.97650 + 3.93311i −0.930314 + 0.366764i
\(116\) 0 0
\(117\) 13.9661 5.20910i 1.29117 0.481581i
\(118\) 0 0
\(119\) −17.6262 + 15.2732i −1.61579 + 1.40009i
\(120\) 0 0
\(121\) 0.768835 0.887283i 0.0698941 0.0806621i
\(122\) 0 0
\(123\) 0.0121457 0.0222431i 0.00109514 0.00200559i
\(124\) 0 0
\(125\) 11.0757 1.52575i 0.990645 0.136467i
\(126\) 0 0
\(127\) −2.14639 + 5.75469i −0.190461 + 0.510646i −0.996721 0.0809154i \(-0.974216\pi\)
0.806260 + 0.591562i \(0.201488\pi\)
\(128\) 0 0
\(129\) 0.0179656 + 0.0115458i 0.00158178 + 0.00101655i
\(130\) 0 0
\(131\) −1.78785 + 12.4348i −0.156205 + 1.08643i 0.749341 + 0.662184i \(0.230370\pi\)
−0.905547 + 0.424247i \(0.860539\pi\)
\(132\) 0 0
\(133\) −3.52680 + 16.2124i −0.305812 + 1.40580i
\(134\) 0 0
\(135\) 0.00180266 0.0699404i 0.000155148 0.00601951i
\(136\) 0 0
\(137\) 4.30968 4.30968i 0.368201 0.368201i −0.498620 0.866821i \(-0.666160\pi\)
0.866821 + 0.498620i \(0.166160\pi\)
\(138\) 0 0
\(139\) 6.36126i 0.539555i 0.962923 + 0.269777i \(0.0869501\pi\)
−0.962923 + 0.269777i \(0.913050\pi\)
\(140\) 0 0
\(141\) −0.0253779 0.00745162i −0.00213721 0.000627540i
\(142\) 0 0
\(143\) 16.9403 + 3.68513i 1.41662 + 0.308166i
\(144\) 0 0
\(145\) 7.22214 + 5.70260i 0.599766 + 0.473575i
\(146\) 0 0
\(147\) −0.00401302 0.0184476i −0.000330989 0.00152153i
\(148\) 0 0
\(149\) −3.08848 6.76282i −0.253018 0.554032i 0.739916 0.672699i \(-0.234865\pi\)
−0.992934 + 0.118667i \(0.962138\pi\)
\(150\) 0 0
\(151\) −1.55858 10.8401i −0.126835 0.882158i −0.949530 0.313675i \(-0.898440\pi\)
0.822695 0.568483i \(-0.192469\pi\)
\(152\) 0 0
\(153\) 18.8437 + 10.2894i 1.52342 + 0.831852i
\(154\) 0 0
\(155\) −4.16431 + 1.43211i −0.334486 + 0.115030i
\(156\) 0 0
\(157\) −14.7331 1.05373i −1.17583 0.0840971i −0.530285 0.847819i \(-0.677915\pi\)
−0.645545 + 0.763722i \(0.723370\pi\)
\(158\) 0 0
\(159\) 0.0240896 0.0527489i 0.00191043 0.00418326i
\(160\) 0 0
\(161\) 12.9142 + 8.80287i 1.01778 + 0.693764i
\(162\) 0 0
\(163\) −2.62119 7.02768i −0.205307 0.550450i 0.792961 0.609272i \(-0.208538\pi\)
−0.998268 + 0.0588219i \(0.981266\pi\)
\(164\) 0 0
\(165\) 0.0228709 0.0336488i 0.00178049 0.00261955i
\(166\) 0 0
\(167\) −3.49967 + 0.250301i −0.270812 + 0.0193689i −0.206085 0.978534i \(-0.566072\pi\)
−0.0647274 + 0.997903i \(0.520618\pi\)
\(168\) 0 0
\(169\) 3.29288 + 11.2145i 0.253298 + 0.862655i
\(170\) 0 0
\(171\) 15.1180 2.17364i 1.15610 0.166222i
\(172\) 0 0
\(173\) −6.49042 2.42080i −0.493458 0.184050i 0.0904011 0.995905i \(-0.471185\pi\)
−0.583859 + 0.811855i \(0.698458\pi\)
\(174\) 0 0
\(175\) −10.9130 12.1001i −0.824947 0.914682i
\(176\) 0 0
\(177\) −0.0230518 + 0.0172564i −0.00173268 + 0.00129707i
\(178\) 0 0
\(179\) 5.76400 + 8.96896i 0.430821 + 0.670371i 0.987005 0.160688i \(-0.0513713\pi\)
−0.556184 + 0.831059i \(0.687735\pi\)
\(180\) 0 0
\(181\) −0.570659 + 1.94349i −0.0424168 + 0.144458i −0.977979 0.208704i \(-0.933075\pi\)
0.935562 + 0.353162i \(0.114894\pi\)
\(182\) 0 0
\(183\) 0.00856428 + 0.00856428i 0.000633090 + 0.000633090i
\(184\) 0 0
\(185\) 18.5007 4.91825i 1.36020 0.361597i
\(186\) 0 0
\(187\) 11.9672 + 21.9163i 0.875127 + 1.60268i
\(188\) 0 0
\(189\) −0.0857792 + 0.0551270i −0.00623952 + 0.00400990i
\(190\) 0 0
\(191\) 7.76679 + 1.11670i 0.561985 + 0.0808013i 0.417453 0.908699i \(-0.362923\pi\)
0.144533 + 0.989500i \(0.453832\pi\)
\(192\) 0 0
\(193\) 2.54207 0.552994i 0.182982 0.0398054i −0.120140 0.992757i \(-0.538334\pi\)
0.303123 + 0.952952i \(0.401971\pi\)
\(194\) 0 0
\(195\) 0.0576650 + 0.00562092i 0.00412948 + 0.000402522i
\(196\) 0 0
\(197\) 3.61834 4.83354i 0.257796 0.344375i −0.652906 0.757439i \(-0.726450\pi\)
0.910702 + 0.413064i \(0.135541\pi\)
\(198\) 0 0
\(199\) 13.9382 4.09262i 0.988052 0.290118i 0.252508 0.967595i \(-0.418745\pi\)
0.735544 + 0.677477i \(0.236926\pi\)
\(200\) 0 0
\(201\) 0.0596556 + 0.0516919i 0.00420778 + 0.00364607i
\(202\) 0 0
\(203\) 0.956751 13.3771i 0.0671508 0.938890i
\(204\) 0 0
\(205\) −8.86432 + 6.28599i −0.619111 + 0.439033i
\(206\) 0 0
\(207\) 3.43810 13.9705i 0.238964 0.971019i
\(208\) 0 0
\(209\) 16.1586 + 7.37938i 1.11771 + 0.510442i
\(210\) 0 0
\(211\) 13.9755 + 16.1286i 0.962116 + 1.11034i 0.993838 + 0.110844i \(0.0353554\pi\)
−0.0317222 + 0.999497i \(0.510099\pi\)
\(212\) 0 0
\(213\) 0.000252159 0.00352565i 1.72777e−5 0.000241573i
\(214\) 0 0
\(215\) −4.75061 7.82850i −0.323989 0.533899i
\(216\) 0 0
\(217\) 5.13787 + 3.84616i 0.348781 + 0.261094i
\(218\) 0 0
\(219\) −0.0620919 + 0.0283564i −0.00419578 + 0.00191615i
\(220\) 0 0
\(221\) −19.2249 + 29.9146i −1.29321 + 2.01227i
\(222\) 0 0
\(223\) 5.41562 + 7.23441i 0.362656 + 0.484452i 0.944344 0.328960i \(-0.106698\pi\)
−0.581687 + 0.813412i \(0.697607\pi\)
\(224\) 0 0
\(225\) −6.92577 + 13.3052i −0.461718 + 0.887016i
\(226\) 0 0
\(227\) 7.18827 3.92509i 0.477102 0.260517i −0.222656 0.974897i \(-0.571473\pi\)
0.699758 + 0.714380i \(0.253291\pi\)
\(228\) 0 0
\(229\) −19.3373 −1.27784 −0.638921 0.769272i \(-0.720619\pi\)
−0.638921 + 0.769272i \(0.720619\pi\)
\(230\) 0 0
\(231\) −0.0592957 −0.00390137
\(232\) 0 0
\(233\) 24.5022 13.3792i 1.60519 0.876501i 0.608646 0.793442i \(-0.291713\pi\)
0.996545 0.0830589i \(-0.0264690\pi\)
\(234\) 0 0
\(235\) 8.37693 + 7.64531i 0.546451 + 0.498725i
\(236\) 0 0
\(237\) 0.0472261 + 0.0630867i 0.00306766 + 0.00409792i
\(238\) 0 0
\(239\) 8.95374 13.9323i 0.579169 0.901205i −0.420813 0.907147i \(-0.638255\pi\)
0.999982 + 0.00594241i \(0.00189154\pi\)
\(240\) 0 0
\(241\) 18.5388 8.46640i 1.19419 0.545369i 0.283706 0.958911i \(-0.408436\pi\)
0.910485 + 0.413543i \(0.135709\pi\)
\(242\) 0 0
\(243\) 0.112715 + 0.0843772i 0.00723065 + 0.00541280i
\(244\) 0 0
\(245\) −1.92399 + 7.86321i −0.122919 + 0.502362i
\(246\) 0 0
\(247\) 1.80464 + 25.2322i 0.114827 + 1.60549i
\(248\) 0 0
\(249\) −0.0112496 0.0129827i −0.000712912 0.000822745i
\(250\) 0 0
\(251\) −23.3404 10.6592i −1.47323 0.672804i −0.492889 0.870092i \(-0.664059\pi\)
−0.980346 + 0.197288i \(0.936787\pi\)
\(252\) 0 0
\(253\) 12.1485 11.5072i 0.763771 0.723454i
\(254\) 0 0
\(255\) 0.0482730 + 0.0680731i 0.00302297 + 0.00426291i
\(256\) 0 0
\(257\) 2.16802 30.3129i 0.135237 1.89087i −0.250291 0.968171i \(-0.580526\pi\)
0.385528 0.922696i \(-0.374019\pi\)
\(258\) 0 0
\(259\) −21.0852 18.2704i −1.31017 1.13527i
\(260\) 0 0
\(261\) −11.8457 + 3.47822i −0.733233 + 0.215297i
\(262\) 0 0
\(263\) 3.08575 4.12208i 0.190275 0.254178i −0.695251 0.718767i \(-0.744707\pi\)
0.885527 + 0.464589i \(0.153798\pi\)
\(264\) 0 0
\(265\) −19.2053 + 15.7937i −1.17977 + 0.970202i
\(266\) 0 0
\(267\) 0.0388219 0.00844518i 0.00237586 0.000516837i
\(268\) 0 0
\(269\) 8.87365 + 1.27584i 0.541036 + 0.0777892i 0.407415 0.913243i \(-0.366430\pi\)
0.133621 + 0.991032i \(0.457339\pi\)
\(270\) 0 0
\(271\) 3.30260 2.12245i 0.200618 0.128930i −0.436475 0.899717i \(-0.643773\pi\)
0.637093 + 0.770787i \(0.280137\pi\)
\(272\) 0 0
\(273\) −0.0404678 0.0741113i −0.00244922 0.00448542i
\(274\) 0 0
\(275\) −15.1426 + 8.66328i −0.913134 + 0.522415i
\(276\) 0 0
\(277\) −16.9381 16.9381i −1.01771 1.01771i −0.999840 0.0178706i \(-0.994311\pi\)
−0.0178706 0.999840i \(-0.505689\pi\)
\(278\) 0 0
\(279\) 1.66451 5.66879i 0.0996515 0.339382i
\(280\) 0 0
\(281\) 0.318673 + 0.495865i 0.0190104 + 0.0295808i 0.850629 0.525767i \(-0.176222\pi\)
−0.831618 + 0.555348i \(0.812585\pi\)
\(282\) 0 0
\(283\) −23.3392 + 17.4715i −1.38737 + 1.03857i −0.394562 + 0.918869i \(0.629104\pi\)
−0.992810 + 0.119704i \(0.961805\pi\)
\(284\) 0 0
\(285\) 0.0565122 + 0.0181877i 0.00334749 + 0.00107734i
\(286\) 0 0
\(287\) 14.8390 + 5.53467i 0.875920 + 0.326701i
\(288\) 0 0
\(289\) −33.8702 + 4.86980i −1.99237 + 0.286459i
\(290\) 0 0
\(291\) −0.0112791 0.0384132i −0.000661194 0.00225182i
\(292\) 0 0
\(293\) −11.3188 + 0.809535i −0.661250 + 0.0472935i −0.397931 0.917415i \(-0.630272\pi\)
−0.263319 + 0.964709i \(0.584817\pi\)
\(294\) 0 0
\(295\) 12.1286 2.31285i 0.706156 0.134659i
\(296\) 0 0
\(297\) 0.0381512 + 0.102287i 0.00221375 + 0.00593531i
\(298\) 0 0
\(299\) 22.6735 + 7.33053i 1.31124 + 0.423935i
\(300\) 0 0
\(301\) −5.54403 + 12.1397i −0.319553 + 0.699723i
\(302\) 0 0
\(303\) −0.00286732 0.000205075i −0.000164723 1.17813e-5i
\(304\) 0 0
\(305\) −1.68893 4.91111i −0.0967080 0.281209i
\(306\) 0 0
\(307\) 21.7808 + 11.8932i 1.24310 + 0.678783i 0.959917 0.280284i \(-0.0904287\pi\)
0.283180 + 0.959067i \(0.408610\pi\)
\(308\) 0 0
\(309\) −0.00989044 0.0687895i −0.000562648 0.00391330i
\(310\) 0 0
\(311\) 12.1758 + 26.6613i 0.690428 + 1.51183i 0.851204 + 0.524835i \(0.175873\pi\)
−0.160776 + 0.986991i \(0.551400\pi\)
\(312\) 0 0
\(313\) −1.64340 7.55459i −0.0928905 0.427011i −0.999982 0.00607632i \(-0.998066\pi\)
0.907091 0.420935i \(-0.138298\pi\)
\(314\) 0 0
\(315\) 21.7115 2.55258i 1.22330 0.143822i
\(316\) 0 0
\(317\) −10.8671 2.36399i −0.610356 0.132775i −0.103246 0.994656i \(-0.532923\pi\)
−0.507111 + 0.861881i \(0.669286\pi\)
\(318\) 0 0
\(319\) −13.7772 4.04536i −0.771377 0.226497i
\(320\) 0 0
\(321\) 0.0485275i 0.00270854i
\(322\) 0 0
\(323\) −25.7643 + 25.7643i −1.43357 + 1.43357i
\(324\) 0 0
\(325\) −21.1623 13.0137i −1.17387 0.721868i
\(326\) 0 0
\(327\) 0.00765541 0.0351914i 0.000423345 0.00194609i
\(328\) 0 0
\(329\) 2.35231 16.3606i 0.129687 0.901991i
\(330\) 0 0
\(331\) −12.1731 7.82319i −0.669095 0.430001i 0.161504 0.986872i \(-0.448365\pi\)
−0.830599 + 0.556871i \(0.812002\pi\)
\(332\) 0 0
\(333\) −8.97537 + 24.0639i −0.491847 + 1.31869i
\(334\) 0 0
\(335\) −13.2626 31.1404i −0.724614 1.70138i
\(336\) 0 0
\(337\) 6.52657 11.9525i 0.355525 0.651095i −0.637308 0.770610i \(-0.719952\pi\)
0.992832 + 0.119514i \(0.0381337\pi\)
\(338\) 0 0
\(339\) −0.0259119 + 0.0299039i −0.00140734 + 0.00162416i
\(340\) 0 0
\(341\) 5.19310 4.49985i 0.281222 0.243680i
\(342\) 0 0
\(343\) −10.3197 + 3.84904i −0.557210 + 0.207829i
\(344\) 0 0
\(345\) 0.0358321 0.0429347i 0.00192914 0.00231153i
\(346\) 0 0
\(347\) 7.91860 2.95349i 0.425093 0.158551i −0.127807 0.991799i \(-0.540794\pi\)
0.552900 + 0.833248i \(0.313521\pi\)
\(348\) 0 0
\(349\) −15.9406 + 13.8126i −0.853281 + 0.739372i −0.967172 0.254121i \(-0.918214\pi\)
0.113891 + 0.993493i \(0.463668\pi\)
\(350\) 0 0
\(351\) −0.101807 + 0.117492i −0.00543407 + 0.00627126i
\(352\) 0 0
\(353\) 16.6700 30.5289i 0.887256 1.62489i 0.111581 0.993755i \(-0.464409\pi\)
0.775675 0.631133i \(-0.217410\pi\)
\(354\) 0 0
\(355\) 0.566072 1.40595i 0.0300440 0.0746201i
\(356\) 0 0
\(357\) 0.0425033 0.113956i 0.00224951 0.00603117i
\(358\) 0 0
\(359\) 18.4493 + 11.8567i 0.973718 + 0.625771i 0.927762 0.373173i \(-0.121730\pi\)
0.0459562 + 0.998943i \(0.485367\pi\)
\(360\) 0 0
\(361\) −0.984865 + 6.84989i −0.0518350 + 0.360520i
\(362\) 0 0
\(363\) −0.00130141 + 0.00598250i −6.83065e−5 + 0.000314000i
\(364\) 0 0
\(365\) 29.2598 + 0.754148i 1.53153 + 0.0394739i
\(366\) 0 0
\(367\) 24.0326 24.0326i 1.25449 1.25449i 0.300809 0.953684i \(-0.402743\pi\)
0.953684 0.300809i \(-0.0972567\pi\)
\(368\) 0 0
\(369\) 14.5794i 0.758972i
\(370\) 0 0
\(371\) 34.7712 + 10.2097i 1.80523 + 0.530063i
\(372\) 0 0
\(373\) −11.5647 2.51574i −0.598797 0.130260i −0.0970571 0.995279i \(-0.530943\pi\)
−0.501740 + 0.865018i \(0.667307\pi\)
\(374\) 0 0
\(375\) −0.0468797 + 0.0346636i −0.00242086 + 0.00179002i
\(376\) 0 0
\(377\) −4.34648 19.9805i −0.223855 1.02905i
\(378\) 0 0
\(379\) −12.7291 27.8728i −0.653850 1.43173i −0.888144 0.459566i \(-0.848005\pi\)
0.234294 0.972166i \(-0.424722\pi\)
\(380\) 0 0
\(381\) −0.00455821 0.0317030i −0.000233524 0.00162420i
\(382\) 0 0
\(383\) 28.2703 + 15.4367i 1.44454 + 0.788780i 0.994551 0.104253i \(-0.0332450\pi\)
0.449992 + 0.893033i \(0.351427\pi\)
\(384\) 0 0
\(385\) 22.8481 + 11.1546i 1.16445 + 0.568489i
\(386\) 0 0
\(387\) 12.2542 + 0.876438i 0.622917 + 0.0445519i
\(388\) 0 0
\(389\) −11.2025 + 24.5299i −0.567987 + 1.24372i 0.379875 + 0.925038i \(0.375967\pi\)
−0.947862 + 0.318680i \(0.896760\pi\)
\(390\) 0 0
\(391\) 13.4068 + 31.5956i 0.678009 + 1.59786i
\(392\) 0 0
\(393\) −0.0228940 0.0613812i −0.00115485 0.00309627i
\(394\) 0 0
\(395\) −6.32965 33.1929i −0.318479 1.67011i
\(396\) 0 0
\(397\) −0.732675 + 0.0524020i −0.0367719 + 0.00262998i −0.0897130 0.995968i \(-0.528595\pi\)
0.0529411 + 0.998598i \(0.483140\pi\)
\(398\) 0 0
\(399\) −0.0243761 0.0830172i −0.00122033 0.00415606i
\(400\) 0 0
\(401\) −5.14335 + 0.739503i −0.256847 + 0.0369290i −0.269535 0.962990i \(-0.586870\pi\)
0.0126885 + 0.999919i \(0.495961\pi\)
\(402\) 0 0
\(403\) 9.16833 + 3.41961i 0.456707 + 0.170343i
\(404\) 0 0
\(405\) −9.18615 17.9051i −0.456463 0.889712i
\(406\) 0 0
\(407\) −23.9130 + 17.9010i −1.18532 + 0.887321i
\(408\) 0 0
\(409\) −5.64916 8.79026i −0.279333 0.434651i 0.673031 0.739614i \(-0.264992\pi\)
−0.952364 + 0.304964i \(0.901356\pi\)
\(410\) 0 0
\(411\) −0.00895438 + 0.0304958i −0.000441687 + 0.00150425i
\(412\) 0 0
\(413\) −12.7244 12.7244i −0.626124 0.626124i
\(414\) 0 0
\(415\) 1.89246 + 7.11878i 0.0928972 + 0.349447i
\(416\) 0 0
\(417\) −0.0158980 0.0291150i −0.000778528 0.00142577i
\(418\) 0 0
\(419\) 6.65350 4.27595i 0.325045 0.208894i −0.367933 0.929852i \(-0.619935\pi\)
0.692978 + 0.720959i \(0.256298\pi\)
\(420\) 0 0
\(421\) −18.4219 2.64867i −0.897830 0.129088i −0.322078 0.946713i \(-0.604381\pi\)
−0.575752 + 0.817625i \(0.695291\pi\)
\(422\) 0 0
\(423\) −14.8680 + 3.23434i −0.722907 + 0.157259i
\(424\) 0 0
\(425\) −5.79501 35.3112i −0.281099 1.71284i
\(426\) 0 0
\(427\) −4.53590 + 6.05925i −0.219508 + 0.293228i
\(428\) 0 0
\(429\) −0.0867441 + 0.0254704i −0.00418805 + 0.00122972i
\(430\) 0 0
\(431\) −9.13587 7.91628i −0.440060 0.381314i 0.406462 0.913667i \(-0.366762\pi\)
−0.846522 + 0.532354i \(0.821308\pi\)
\(432\) 0 0
\(433\) −2.38981 + 33.4140i −0.114847 + 1.60577i 0.534424 + 0.845216i \(0.320528\pi\)
−0.649271 + 0.760557i \(0.724926\pi\)
\(434\) 0 0
\(435\) −0.0473071 0.00805088i −0.00226820 0.000386010i
\(436\) 0 0
\(437\) 21.1049 + 12.2780i 1.00959 + 0.587338i
\(438\) 0 0
\(439\) −23.7974 10.8679i −1.13579 0.518696i −0.243380 0.969931i \(-0.578256\pi\)
−0.892405 + 0.451235i \(0.850984\pi\)
\(440\) 0 0
\(441\) −7.11226 8.20798i −0.338679 0.390856i
\(442\) 0 0
\(443\) −1.18754 16.6040i −0.0564217 0.788879i −0.944359 0.328915i \(-0.893317\pi\)
0.887938 0.459964i \(-0.152138\pi\)
\(444\) 0 0
\(445\) −16.5477 4.04893i −0.784435 0.191938i
\(446\) 0 0
\(447\) 0.0310373 + 0.0232342i 0.00146801 + 0.00109894i
\(448\) 0 0
\(449\) 11.8957 5.43259i 0.561394 0.256380i −0.114445 0.993430i \(-0.536509\pi\)
0.675838 + 0.737050i \(0.263782\pi\)
\(450\) 0 0
\(451\) 9.16743 14.2648i 0.431677 0.671703i
\(452\) 0 0
\(453\) 0.0342251 + 0.0457193i 0.00160803 + 0.00214808i
\(454\) 0 0
\(455\) 1.65161 + 36.1696i 0.0774287 + 1.69565i
\(456\) 0 0
\(457\) 4.27974 2.33692i 0.200198 0.109316i −0.376023 0.926610i \(-0.622709\pi\)
0.576221 + 0.817294i \(0.304527\pi\)
\(458\) 0 0
\(459\) −0.223924 −0.0104519
\(460\) 0 0
\(461\) −14.0026 −0.652167 −0.326084 0.945341i \(-0.605729\pi\)
−0.326084 + 0.945341i \(0.605729\pi\)
\(462\) 0 0
\(463\) −18.2619 + 9.97177i −0.848704 + 0.463427i −0.843862 0.536561i \(-0.819723\pi\)
−0.00484216 + 0.999988i \(0.501541\pi\)
\(464\) 0 0
\(465\) 0.0154806 0.0169621i 0.000717898 0.000786598i
\(466\) 0 0
\(467\) −1.82724 2.44090i −0.0845544 0.112952i 0.756269 0.654260i \(-0.227020\pi\)
−0.840824 + 0.541309i \(0.817929\pi\)
\(468\) 0 0
\(469\) −26.6693 + 41.4983i −1.23147 + 1.91621i
\(470\) 0 0
\(471\) 0.0700659 0.0319980i 0.00322846 0.00147439i
\(472\) 0 0
\(473\) 11.4387 + 8.56291i 0.525953 + 0.393723i
\(474\) 0 0
\(475\) −18.3541 17.6391i −0.842143 0.809335i
\(476\) 0 0
\(477\) −2.37988 33.2751i −0.108967 1.52356i
\(478\) 0 0
\(479\) 16.6392 + 19.2027i 0.760266 + 0.877394i 0.995521 0.0945399i \(-0.0301380\pi\)
−0.235255 + 0.971934i \(0.575593\pi\)
\(480\) 0 0
\(481\) −38.6937 17.6708i −1.76428 0.805721i
\(482\) 0 0
\(483\) −0.0811072 0.00801514i −0.00369051 0.000364702i
\(484\) 0 0
\(485\) −2.88006 + 16.9233i −0.130777 + 0.768448i
\(486\) 0 0
\(487\) 1.23170 17.2215i 0.0558138 0.780379i −0.890060 0.455844i \(-0.849338\pi\)
0.945874 0.324535i \(-0.105208\pi\)
\(488\) 0 0
\(489\) 0.0295605 + 0.0256143i 0.00133677 + 0.00115832i
\(490\) 0 0
\(491\) −24.7694 + 7.27295i −1.11783 + 0.328224i −0.787912 0.615787i \(-0.788838\pi\)
−0.329914 + 0.944011i \(0.607020\pi\)
\(492\) 0 0
\(493\) 17.6500 23.5776i 0.794916 1.06188i
\(494\) 0 0
\(495\) 2.27071 23.2952i 0.102061 1.04704i
\(496\) 0 0
\(497\) −2.15842 + 0.469536i −0.0968184 + 0.0210616i
\(498\) 0 0
\(499\) 28.1857 + 4.05249i 1.26177 + 0.181414i 0.740544 0.672008i \(-0.234568\pi\)
0.521221 + 0.853422i \(0.325477\pi\)
\(500\) 0 0
\(501\) 0.0153922 0.00989195i 0.000687671 0.000441940i
\(502\) 0 0
\(503\) −19.7610 36.1896i −0.881101 1.61362i −0.786066 0.618142i \(-0.787886\pi\)
−0.0950350 0.995474i \(-0.530296\pi\)
\(504\) 0 0
\(505\) 1.06627 + 0.618413i 0.0474484 + 0.0275190i
\(506\) 0 0
\(507\) −0.0430985 0.0430985i −0.00191407 0.00191407i
\(508\) 0 0
\(509\) −8.16519 + 27.8081i −0.361916 + 1.23257i 0.554446 + 0.832220i \(0.312930\pi\)
−0.916362 + 0.400352i \(0.868888\pi\)
\(510\) 0 0
\(511\) −23.0625 35.8860i −1.02023 1.58750i
\(512\) 0 0
\(513\) −0.127524 + 0.0954632i −0.00563032 + 0.00421480i
\(514\) 0 0
\(515\) −9.12947 + 28.3668i −0.402293 + 1.24999i
\(516\) 0 0
\(517\) −16.5810 6.18437i −0.729229 0.271988i
\(518\) 0 0
\(519\) 0.0357562 0.00514097i 0.00156952 0.000225664i
\(520\) 0 0
\(521\) 3.71877 + 12.6650i 0.162922 + 0.554863i 0.999970 + 0.00773290i \(0.00246148\pi\)
−0.837048 + 0.547130i \(0.815720\pi\)
\(522\) 0 0
\(523\) −20.0558 + 1.43442i −0.876979 + 0.0627228i −0.502566 0.864539i \(-0.667610\pi\)
−0.374413 + 0.927262i \(0.622156\pi\)
\(524\) 0 0
\(525\) 0.0801886 + 0.0281076i 0.00349972 + 0.00122671i
\(526\) 0 0
\(527\) 4.92547 + 13.2057i 0.214557 + 0.575249i
\(528\) 0 0
\(529\) 18.1727 14.0980i 0.790118 0.612955i
\(530\) 0 0
\(531\) −6.88149 + 15.0684i −0.298631 + 0.653911i
\(532\) 0 0
\(533\) 24.0855 + 1.72263i 1.04326 + 0.0746154i
\(534\) 0 0
\(535\) 9.12885 18.6988i 0.394675 0.808419i
\(536\) 0 0
\(537\) −0.0487965 0.0266449i −0.00210573 0.00114981i
\(538\) 0 0
\(539\) −1.79766 12.5030i −0.0774309 0.538544i
\(540\) 0 0
\(541\) −16.9944 37.2126i −0.730647 1.59989i −0.798355 0.602188i \(-0.794296\pi\)
0.0677080 0.997705i \(-0.478431\pi\)
\(542\) 0 0
\(543\) −0.00224528 0.0103214i −9.63542e−5 0.000442933i
\(544\) 0 0
\(545\) −9.56991 + 12.1200i −0.409930 + 0.519162i
\(546\) 0 0
\(547\) −22.0155 4.78918i −0.941314 0.204770i −0.284374 0.958713i \(-0.591786\pi\)
−0.656940 + 0.753943i \(0.728149\pi\)
\(548\) 0 0
\(549\) 6.68539 + 1.96301i 0.285325 + 0.0837791i
\(550\) 0 0
\(551\) 20.9519i 0.892581i
\(552\) 0 0
\(553\) −34.8232 + 34.8232i −1.48083 + 1.48083i
\(554\) 0 0
\(555\) −0.0723849 + 0.0687473i −0.00307257 + 0.00291816i
\(556\) 0 0
\(557\) 1.57739 7.25113i 0.0668360 0.307240i −0.931578 0.363542i \(-0.881567\pi\)
0.998414 + 0.0563018i \(0.0179309\pi\)
\(558\) 0 0
\(559\) −2.89580 + 20.1407i −0.122479 + 0.851863i
\(560\) 0 0
\(561\) −0.109546 0.0704009i −0.00462503 0.00297233i
\(562\) 0 0
\(563\) 14.4590 38.7661i 0.609375 1.63380i −0.154171 0.988044i \(-0.549271\pi\)
0.763546 0.645753i \(-0.223457\pi\)
\(564\) 0 0
\(565\) 15.6099 6.64822i 0.656714 0.279693i
\(566\) 0 0
\(567\) −14.0559 + 25.7415i −0.590294 + 1.08104i
\(568\) 0 0
\(569\) 7.49448 8.64909i 0.314185 0.362589i −0.576590 0.817034i \(-0.695617\pi\)
0.890775 + 0.454445i \(0.150162\pi\)
\(570\) 0 0
\(571\) 35.6147 30.8603i 1.49043 1.29146i 0.636248 0.771485i \(-0.280486\pi\)
0.854180 0.519978i \(-0.174060\pi\)
\(572\) 0 0
\(573\) −0.0383389 + 0.0142997i −0.00160163 + 0.000597377i
\(574\) 0 0
\(575\) −21.8837 + 9.80314i −0.912615 + 0.408819i
\(576\) 0 0
\(577\) −40.4945 + 15.1037i −1.68581 + 0.628774i −0.995502 0.0947424i \(-0.969797\pi\)
−0.690307 + 0.723517i \(0.742525\pi\)
\(578\) 0 0
\(579\) −0.0102528 + 0.00888414i −0.000426094 + 0.000369212i
\(580\) 0 0
\(581\) 7.03016 8.11324i 0.291660 0.336594i
\(582\) 0 0
\(583\) 18.5947 34.0536i 0.770112 1.41035i
\(584\) 0 0
\(585\) 30.6654 13.0603i 1.26786 0.539977i
\(586\) 0 0
\(587\) 1.95543 5.24270i 0.0807090 0.216389i −0.890327 0.455321i \(-0.849524\pi\)
0.971036 + 0.238932i \(0.0767972\pi\)
\(588\) 0 0
\(589\) 8.43487 + 5.42076i 0.347553 + 0.223359i
\(590\) 0 0
\(591\) −0.00448095 + 0.0311657i −0.000184322 + 0.00128198i
\(592\) 0 0
\(593\) −3.93769 + 18.1013i −0.161701 + 0.743330i 0.822853 + 0.568254i \(0.192381\pi\)
−0.984555 + 0.175076i \(0.943983\pi\)
\(594\) 0 0
\(595\) −37.8145 + 35.9142i −1.55025 + 1.47234i
\(596\) 0 0
\(597\) −0.0535658 + 0.0535658i −0.00219230 + 0.00219230i
\(598\) 0 0
\(599\) 6.01335i 0.245699i −0.992425 0.122849i \(-0.960797\pi\)
0.992425 0.122849i \(-0.0392032\pi\)
\(600\) 0 0
\(601\) −26.4913 7.77856i −1.08060 0.317294i −0.307484 0.951553i \(-0.599487\pi\)
−0.773120 + 0.634259i \(0.781305\pi\)
\(602\) 0 0
\(603\) 44.3723 + 9.65261i 1.80698 + 0.393085i
\(604\) 0 0
\(605\) 1.62688 2.06038i 0.0661419 0.0837664i
\(606\) 0 0
\(607\) 1.54187 + 7.08787i 0.0625827 + 0.287688i 0.997793 0.0664056i \(-0.0211531\pi\)
−0.935210 + 0.354093i \(0.884789\pi\)
\(608\) 0 0
\(609\) 0.0290530 + 0.0636172i 0.00117729 + 0.00257790i
\(610\) 0 0
\(611\) −3.58648 24.9445i −0.145093 1.00915i
\(612\) 0 0
\(613\) 21.8946 + 11.9554i 0.884314 + 0.482872i 0.856148 0.516731i \(-0.172851\pi\)
0.0281666 + 0.999603i \(0.491033\pi\)
\(614\) 0 0
\(615\) 0.0248615 0.0509242i 0.00100251 0.00205346i
\(616\) 0 0
\(617\) −28.9640 2.07155i −1.16605 0.0833973i −0.525140 0.851016i \(-0.675987\pi\)
−0.640907 + 0.767619i \(0.721442\pi\)
\(618\) 0 0
\(619\) −3.14260 + 6.88134i −0.126312 + 0.276584i −0.962214 0.272294i \(-0.912218\pi\)
0.835902 + 0.548878i \(0.184945\pi\)
\(620\) 0 0
\(621\) 0.0383584 + 0.145070i 0.00153927 + 0.00582145i
\(622\) 0 0
\(623\) 8.67658 + 23.2628i 0.347620 + 0.932005i
\(624\) 0 0
\(625\) 24.5847 4.53784i 0.983388 0.181514i
\(626\) 0 0
\(627\) −0.0923992 + 0.00660852i −0.00369007 + 0.000263919i
\(628\) 0 0
\(629\) −17.2617 58.7878i −0.688268 2.34402i
\(630\) 0 0
\(631\) −11.5627 + 1.66247i −0.460304 + 0.0661817i −0.368566 0.929602i \(-0.620151\pi\)
−0.0917376 + 0.995783i \(0.529242\pi\)
\(632\) 0 0
\(633\) −0.104274 0.0388920i −0.00414450 0.00154582i
\(634\) 0 0
\(635\) −4.20750 + 13.0734i −0.166970 + 0.518803i
\(636\) 0 0
\(637\) 14.4002 10.7798i 0.570555 0.427112i
\(638\) 0 0
\(639\) 1.09935 + 1.71062i 0.0434895 + 0.0676709i
\(640\) 0 0
\(641\) 13.1885 44.9159i 0.520914 1.77407i −0.105323 0.994438i \(-0.533588\pi\)
0.626237 0.779633i \(-0.284594\pi\)
\(642\) 0 0
\(643\) 25.3125 + 25.3125i 0.998227 + 0.998227i 0.999998 0.00177129i \(-0.000563818\pi\)
−0.00177129 + 0.999998i \(0.500564\pi\)
\(644\) 0 0
\(645\) 0.0413081 + 0.0239578i 0.00162650 + 0.000943337i
\(646\) 0 0
\(647\) 3.74819 + 6.86430i 0.147357 + 0.269864i 0.940923 0.338620i \(-0.109960\pi\)
−0.793567 + 0.608483i \(0.791778\pi\)
\(648\) 0 0
\(649\) −16.2079 + 10.4162i −0.636216 + 0.408871i
\(650\) 0 0
\(651\) −0.0331279 0.00476308i −0.00129839 0.000186680i
\(652\) 0 0
\(653\) −19.3770 + 4.21521i −0.758282 + 0.164954i −0.575053 0.818116i \(-0.695019\pi\)
−0.183229 + 0.983070i \(0.558655\pi\)
\(654\) 0 0
\(655\) −2.72525 + 27.9584i −0.106484 + 1.09243i
\(656\) 0 0
\(657\) −23.5329 + 31.4363i −0.918107 + 1.22645i
\(658\) 0 0
\(659\) 25.1027 7.37081i 0.977861 0.287126i 0.246520 0.969138i \(-0.420713\pi\)
0.731341 + 0.682012i \(0.238895\pi\)
\(660\) 0 0
\(661\) 19.5849 + 16.9704i 0.761763 + 0.660072i 0.946495 0.322717i \(-0.104596\pi\)
−0.184732 + 0.982789i \(0.559142\pi\)
\(662\) 0 0
\(663\) 0.0132289 0.184964i 0.000513766 0.00718339i
\(664\) 0 0
\(665\) −6.22429 + 36.5741i −0.241368 + 1.41828i
\(666\) 0 0
\(667\) −18.2983 7.39572i −0.708512 0.286363i
\(668\) 0 0
\(669\) −0.0428671 0.0195767i −0.00165734 0.000756880i
\(670\) 0 0
\(671\) 5.30681 + 6.12439i 0.204867 + 0.236429i
\(672\) 0 0
\(673\) −1.47308 20.5963i −0.0567830 0.793930i −0.943449 0.331519i \(-0.892439\pi\)
0.886666 0.462411i \(-0.153016\pi\)
\(674\) 0 0
\(675\) −0.00310721 0.156413i −0.000119596 0.00602033i
\(676\) 0 0
\(677\) −13.0015 9.73279i −0.499688 0.374061i 0.319501 0.947586i \(-0.396485\pi\)
−0.819188 + 0.573525i \(0.805576\pi\)
\(678\) 0 0
\(679\) 22.7580 10.3932i 0.873371 0.398855i
\(680\) 0 0
\(681\) −0.0230906 + 0.0359297i −0.000884835 + 0.00137683i
\(682\) 0 0
\(683\) −7.86503 10.5065i −0.300947 0.402018i 0.624421 0.781088i \(-0.285335\pi\)
−0.925368 + 0.379070i \(0.876244\pi\)
\(684\) 0 0
\(685\) 9.18713 10.0663i 0.351022 0.384613i
\(686\) 0 0
\(687\) 0.0885052 0.0483275i 0.00337669 0.00184381i
\(688\) 0 0
\(689\) 55.2525 2.10495
\(690\) 0 0
\(691\) 11.7226 0.445948 0.222974 0.974824i \(-0.428424\pi\)
0.222974 + 0.974824i \(0.428424\pi\)
\(692\) 0 0
\(693\) −29.9391 + 16.3480i −1.13729 + 0.621008i
\(694\) 0 0
\(695\) 0.648844 + 14.2094i 0.0246121 + 0.538993i
\(696\) 0 0
\(697\) 20.8431 + 27.8432i 0.789490 + 1.05463i
\(698\) 0 0
\(699\) −0.0787075 + 0.122471i −0.00297699 + 0.00463229i
\(700\) 0 0
\(701\) 27.1940 12.4191i 1.02710 0.469063i 0.170675 0.985327i \(-0.445405\pi\)
0.856429 + 0.516264i \(0.172678\pi\)
\(702\) 0 0
\(703\) −34.8928 26.1204i −1.31601 0.985151i
\(704\) 0 0
\(705\) −0.0574477 0.0140565i −0.00216361 0.000529397i
\(706\) 0 0
\(707\) −0.128157 1.79187i −0.00481984 0.0673902i
\(708\) 0 0
\(709\) 6.31151 + 7.28387i 0.237034 + 0.273552i 0.861787 0.507271i \(-0.169346\pi\)
−0.624753 + 0.780823i \(0.714800\pi\)
\(710\) 0 0
\(711\) 41.2381 + 18.8328i 1.54655 + 0.706286i
\(712\) 0 0
\(713\) 7.71160 5.45312i 0.288802 0.204221i
\(714\) 0 0
\(715\) 38.2160 + 6.50372i 1.42920 + 0.243225i
\(716\) 0 0
\(717\) −0.00616115 + 0.0861442i −0.000230092 + 0.00321711i
\(718\) 0 0
\(719\) −5.18066 4.48906i −0.193206 0.167414i 0.552886 0.833257i \(-0.313527\pi\)
−0.746092 + 0.665843i \(0.768072\pi\)
\(720\) 0 0
\(721\) 41.6713 12.2358i 1.55192 0.455685i
\(722\) 0 0
\(723\) −0.0636917 + 0.0850821i −0.00236872 + 0.00316424i
\(724\) 0 0
\(725\) 16.7141 + 12.0015i 0.620745 + 0.445724i
\(726\) 0 0
\(727\) 32.2537 7.01636i 1.19622 0.260222i 0.430019 0.902820i \(-0.358507\pi\)
0.766204 + 0.642597i \(0.222143\pi\)
\(728\) 0 0
\(729\) 26.7237 + 3.84229i 0.989768 + 0.142307i
\(730\) 0 0
\(731\) −24.6556 + 15.8452i −0.911922 + 0.586057i
\(732\) 0 0
\(733\) −17.6296 32.2863i −0.651166 1.19252i −0.969628 0.244585i \(-0.921348\pi\)
0.318462 0.947936i \(-0.396834\pi\)
\(734\) 0 0
\(735\) −0.0108457 0.0407978i −0.000400049 0.00150485i
\(736\) 0 0
\(737\) 37.3454 + 37.3454i 1.37564 + 1.37564i
\(738\) 0 0
\(739\) −6.21519 + 21.1670i −0.228629 + 0.778640i 0.762644 + 0.646818i \(0.223901\pi\)
−0.991273 + 0.131822i \(0.957917\pi\)
\(740\) 0 0
\(741\) −0.0713198 0.110976i −0.00262000 0.00407680i
\(742\) 0 0
\(743\) −38.2949 + 28.6672i −1.40490 + 1.05170i −0.415022 + 0.909811i \(0.636226\pi\)
−0.989883 + 0.141887i \(0.954683\pi\)
\(744\) 0 0
\(745\) −7.58865 14.7914i −0.278027 0.541913i
\(746\) 0 0
\(747\) −9.25938 3.45357i −0.338783 0.126360i
\(748\) 0 0
\(749\) −30.0175 + 4.31586i −1.09681 + 0.157698i
\(750\) 0 0
\(751\) 9.74816 + 33.1992i 0.355715 + 1.21146i 0.921982 + 0.387233i \(0.126569\pi\)
−0.566267 + 0.824222i \(0.691613\pi\)
\(752\) 0 0
\(753\) 0.133467 0.00954574i 0.00486380 0.000347866i
\(754\) 0 0
\(755\) −4.58714 24.0551i −0.166943 0.875454i
\(756\) 0 0
\(757\) 5.57466 + 14.9462i 0.202614 + 0.543230i 0.998023 0.0628427i \(-0.0200166\pi\)
−0.795409 + 0.606073i \(0.792744\pi\)
\(758\) 0 0
\(759\) −0.0268441 + 0.0830293i −0.000974378 + 0.00301377i
\(760\) 0 0
\(761\) −13.4569 + 29.4665i −0.487813 + 1.06816i 0.492428 + 0.870353i \(0.336109\pi\)
−0.980241 + 0.197808i \(0.936618\pi\)
\(762\) 0 0
\(763\) 22.4490 + 1.60559i 0.812710 + 0.0581262i
\(764\) 0 0
\(765\) 43.1415 + 21.0619i 1.55978 + 0.761495i
\(766\) 0 0
\(767\) −24.0803 13.1488i −0.869488 0.474776i
\(768\) 0 0
\(769\) 0.573884 + 3.99145i 0.0206948 + 0.143935i 0.997549 0.0699705i \(-0.0222905\pi\)
−0.976854 + 0.213906i \(0.931381\pi\)
\(770\) 0 0
\(771\) 0.0658349 + 0.144158i 0.00237098 + 0.00519173i
\(772\) 0 0
\(773\) −9.56987 43.9920i −0.344204 1.58228i −0.745611 0.666382i \(-0.767842\pi\)
0.401407 0.915900i \(-0.368521\pi\)
\(774\) 0 0
\(775\) −9.15592 + 3.62372i −0.328890 + 0.130168i
\(776\) 0 0
\(777\) 0.142167 + 0.0309265i 0.00510021 + 0.00110948i
\(778\) 0 0
\(779\) 23.7401 + 6.97074i 0.850579 + 0.249753i
\(780\) 0 0
\(781\) 2.36497i 0.0846253i
\(782\) 0 0
\(783\) 0.0910491 0.0910491i 0.00325383 0.00325383i
\(784\) 0 0
\(785\) −33.0174 0.850998i −1.17844 0.0303734i
\(786\) 0 0
\(787\) −8.14000 + 37.4190i −0.290160 + 1.33384i 0.569085 + 0.822279i \(0.307297\pi\)
−0.859245 + 0.511564i \(0.829066\pi\)
\(788\) 0 0
\(789\) −0.00382139 + 0.0265783i −0.000136045 + 0.000946214i
\(790\) 0 0
\(791\) −20.8021 13.3687i −0.739636 0.475336i
\(792\) 0 0
\(793\) −4.03286 + 10.8125i −0.143211 + 0.383963i
\(794\) 0 0
\(795\) 0.0484296 0.120285i 0.00171762 0.00426605i
\(796\) 0 0
\(797\) −18.2619 + 33.4442i −0.646870 + 1.18465i 0.324230 + 0.945978i \(0.394895\pi\)
−0.971099 + 0.238675i \(0.923287\pi\)
\(798\) 0 0
\(799\) 23.7705 27.4326i 0.840939 0.970496i
\(800\) 0 0
\(801\) 17.2732 14.9673i 0.610320 0.528845i
\(802\) 0 0
\(803\) −42.7922 + 15.9607i −1.51010 + 0.563239i
\(804\) 0 0
\(805\) 29.7448 + 18.3461i 1.04837 + 0.646615i
\(806\) 0 0
\(807\) −0.0438026 + 0.0163375i −0.00154193 + 0.000575108i
\(808\) 0 0
\(809\) −11.9799 + 10.3806i −0.421191 + 0.364964i −0.839517 0.543333i \(-0.817162\pi\)
0.418327 + 0.908297i \(0.362617\pi\)
\(810\) 0 0
\(811\) 33.5042 38.6660i 1.17649 1.35775i 0.256148 0.966637i \(-0.417546\pi\)
0.920345 0.391108i \(-0.127908\pi\)
\(812\) 0 0
\(813\) −0.00981134 + 0.0179681i −0.000344099 + 0.000630169i
\(814\) 0 0
\(815\) −6.57187 15.4307i −0.230203 0.540512i
\(816\) 0 0
\(817\) −7.28616 + 19.5350i −0.254911 + 0.683442i
\(818\) 0 0
\(819\) −40.8653 26.2625i −1.42795 0.917687i
\(820\) 0 0
\(821\) −3.37929 + 23.5035i −0.117938 + 0.820276i 0.841882 + 0.539661i \(0.181448\pi\)
−0.959820 + 0.280615i \(0.909462\pi\)
\(822\) 0 0
\(823\) 4.85134 22.3012i 0.169107 0.777372i −0.811962 0.583711i \(-0.801600\pi\)
0.981068 0.193661i \(-0.0620362\pi\)
\(824\) 0 0
\(825\) 0.0476554 0.0774955i 0.00165915 0.00269805i
\(826\) 0 0
\(827\) −4.85964 + 4.85964i −0.168986 + 0.168986i −0.786534 0.617548i \(-0.788126\pi\)
0.617548 + 0.786534i \(0.288126\pi\)
\(828\) 0 0
\(829\) 5.96058i 0.207019i 0.994628 + 0.103510i \(0.0330073\pi\)
−0.994628 + 0.103510i \(0.966993\pi\)
\(830\) 0 0
\(831\) 0.119856 + 0.0351929i 0.00415775 + 0.00122083i
\(832\) 0 0
\(833\) 25.3171 + 5.50740i 0.877186 + 0.190820i
\(834\) 0 0
\(835\) −7.79182 + 0.916072i −0.269647 + 0.0317020i
\(836\) 0 0
\(837\) 0.0130982 + 0.0602114i 0.000452740 + 0.00208121i
\(838\) 0 0
\(839\) −12.8371 28.1094i −0.443187 0.970443i −0.991002 0.133844i \(-0.957268\pi\)
0.547816 0.836599i \(-0.315459\pi\)
\(840\) 0 0
\(841\) −1.71691 11.9414i −0.0592039 0.411772i
\(842\) 0 0
\(843\) −0.00269780 0.00147311i −9.29173e−5 5.07367e-5i
\(844\) 0 0
\(845\) 8.49931 + 24.7145i 0.292385 + 0.850203i
\(846\) 0 0
\(847\) −3.81632 0.272948i −0.131130 0.00937861i
\(848\) 0 0
\(849\) 0.0631572 0.138295i 0.00216755 0.00474627i
\(850\) 0 0
\(851\) −35.1289 + 21.2534i −1.20420 + 0.728558i
\(852\) 0 0
\(853\) 4.30136 + 11.5324i 0.147276 + 0.394862i 0.989550 0.144187i \(-0.0460567\pi\)
−0.842275 + 0.539049i \(0.818784\pi\)
\(854\) 0 0
\(855\) 33.5480 6.39738i 1.14732 0.218786i
\(856\) 0 0
\(857\) 9.58960 0.685862i 0.327575 0.0234286i 0.0934165 0.995627i \(-0.470221\pi\)
0.234158 + 0.972199i \(0.424767\pi\)
\(858\) 0 0
\(859\) 1.89517 + 6.45436i 0.0646624 + 0.220220i 0.985485 0.169761i \(-0.0542997\pi\)
−0.920823 + 0.389981i \(0.872481\pi\)
\(860\) 0 0
\(861\) −0.0817493 + 0.0117538i −0.00278601 + 0.000400568i
\(862\) 0 0
\(863\) 11.0950 + 4.13821i 0.377678 + 0.140866i 0.531132 0.847289i \(-0.321767\pi\)
−0.153454 + 0.988156i \(0.549040\pi\)
\(864\) 0 0
\(865\) −14.7448 4.74543i −0.501340 0.161349i
\(866\) 0 0
\(867\) 0.142851 0.106937i 0.00485147 0.00363177i
\(868\) 0 0
\(869\) 28.5064 + 44.3568i 0.967013 + 1.50470i
\(870\) 0 0
\(871\) −21.1892 + 72.1638i −0.717969 + 2.44518i
\(872\) 0 0
\(873\) −16.2856 16.2856i −0.551183 0.551183i
\(874\) 0 0
\(875\) −25.6111 25.9154i −0.865812 0.876100i
\(876\) 0 0
\(877\) −10.4941 19.2184i −0.354359 0.648960i 0.638316 0.769774i \(-0.279631\pi\)
−0.992675 + 0.120814i \(0.961449\pi\)
\(878\) 0 0
\(879\) 0.0497820 0.0319930i 0.00167911 0.00107910i
\(880\) 0 0
\(881\) 12.8485 + 1.84733i 0.432876 + 0.0622382i 0.355309 0.934749i \(-0.384376\pi\)
0.0775671 + 0.996987i \(0.475285\pi\)
\(882\) 0 0
\(883\) 3.70109 0.805123i 0.124552 0.0270946i −0.149857 0.988708i \(-0.547881\pi\)
0.274409 + 0.961613i \(0.411518\pi\)
\(884\) 0 0
\(885\) −0.0497316 + 0.0408975i −0.00167171 + 0.00137475i
\(886\) 0 0
\(887\) −17.7091 + 23.6566i −0.594614 + 0.794311i −0.992385 0.123174i \(-0.960693\pi\)
0.397771 + 0.917485i \(0.369784\pi\)
\(888\) 0 0
\(889\) 19.2050 5.63911i 0.644116 0.189130i
\(890\) 0 0
\(891\) 23.7315 + 20.5635i 0.795037 + 0.688903i
\(892\) 0 0
\(893\) 1.84215 25.7566i 0.0616451 0.861911i
\(894\) 0 0
\(895\) 13.7901 + 19.4464i 0.460952 + 0.650021i
\(896\) 0 0
\(897\) −0.122095 + 0.0231141i −0.00407664 + 0.000771756i
\(898\) 0 0
\(899\) −7.37225 3.36679i −0.245878 0.112289i
\(900\) 0 0
\(901\) 52.1161 + 60.1452i 1.73624 + 2.00373i
\(902\) 0 0
\(903\) −0.00496490 0.0694183i −0.000165221 0.00231010i
\(904\) 0 0
\(905\) −1.07647 + 4.39945i −0.0357831 + 0.146243i
\(906\) 0 0
\(907\) −15.6926 11.7474i −0.521065 0.390065i 0.306121 0.951993i \(-0.400969\pi\)
−0.827186 + 0.561928i \(0.810060\pi\)
\(908\) 0 0
\(909\) −1.50428 + 0.686983i −0.0498939 + 0.0227858i
\(910\) 0 0
\(911\) 23.7435 36.9456i 0.786657 1.22406i −0.183842 0.982956i \(-0.558853\pi\)
0.970499 0.241106i \(-0.0775101\pi\)
\(912\) 0 0
\(913\) −6.88801 9.20131i −0.227960 0.304519i
\(914\) 0 0
\(915\) 0.0200039 + 0.0182568i 0.000661309 + 0.000603552i
\(916\) 0 0
\(917\) 35.9322 19.6205i 1.18659 0.647926i
\(918\) 0 0
\(919\) −17.8568 −0.589040 −0.294520 0.955645i \(-0.595160\pi\)
−0.294520 + 0.955645i \(0.595160\pi\)
\(920\) 0 0
\(921\) −0.129413 −0.00426429
\(922\) 0 0
\(923\) −2.95588 + 1.61403i −0.0972940 + 0.0531265i
\(924\) 0 0
\(925\) 40.8242 12.8731i 1.34229 0.423266i
\(926\) 0 0
\(927\) −23.9592 32.0058i −0.786924 1.05121i
\(928\) 0 0
\(929\) 4.01575 6.24862i 0.131752 0.205011i −0.769109 0.639118i \(-0.779300\pi\)
0.900861 + 0.434107i \(0.142936\pi\)
\(930\) 0 0
\(931\) 16.7659 7.65673i 0.549480 0.250939i
\(932\) 0 0
\(933\) −0.122360 0.0915973i −0.00400588 0.00299876i
\(934\) 0 0
\(935\) 28.9670 + 47.7346i 0.947323 + 1.56109i
\(936\) 0 0
\(937\) −1.40384 19.6283i −0.0458616 0.641229i −0.967450 0.253061i \(-0.918563\pi\)
0.921589 0.388168i \(-0.126892\pi\)
\(938\) 0 0
\(939\) 0.0264021 + 0.0304696i 0.000861600 + 0.000994339i
\(940\) 0 0
\(941\) −0.804773 0.367527i −0.0262348 0.0119811i 0.402254 0.915528i \(-0.368227\pi\)
−0.428489 + 0.903547i \(0.640954\pi\)
\(942\) 0 0
\(943\) 14.4678 18.2728i 0.471137 0.595045i
\(944\) 0 0
\(945\) −0.185986 + 0.131889i −0.00605011 + 0.00429034i
\(946\) 0 0
\(947\) −1.80485 + 25.2351i −0.0586497 + 0.820030i 0.879960 + 0.475048i \(0.157569\pi\)
−0.938609 + 0.344982i \(0.887885\pi\)
\(948\) 0 0
\(949\) −49.1531 42.5914i −1.59558 1.38258i
\(950\) 0 0
\(951\) 0.0556459 0.0163391i 0.00180444 0.000529832i
\(952\) 0 0
\(953\) 25.8573 34.5413i 0.837601 1.11890i −0.153807 0.988101i \(-0.549154\pi\)
0.991408 0.130803i \(-0.0417556\pi\)
\(954\) 0 0
\(955\) 17.4629 + 1.70220i 0.565086 + 0.0550819i
\(956\) 0 0
\(957\) 0.0731676 0.0159166i 0.00236517 0.000514511i
\(958\) 0 0
\(959\) −19.6601 2.82669i −0.634856 0.0912786i
\(960\) 0 0
\(961\) −22.8161 + 14.6630i −0.736002 + 0.473000i
\(962\) 0 0
\(963\) 13.3791 + 24.5020i 0.431136 + 0.789567i
\(964\) 0 0
\(965\) 5.62193 1.49453i 0.180976 0.0481108i
\(966\) 0 0
\(967\) −15.2916 15.2916i −0.491746 0.491746i 0.417110 0.908856i \(-0.363043\pi\)
−0.908856 + 0.417110i \(0.863043\pi\)
\(968\) 0 0
\(969\) 0.0535314 0.182311i 0.00171968 0.00585669i
\(970\) 0 0
\(971\) −6.59675 10.2647i −0.211700 0.329411i 0.719123 0.694883i \(-0.244544\pi\)
−0.930822 + 0.365472i \(0.880908\pi\)
\(972\) 0 0
\(973\) 16.5957 12.4234i 0.532032 0.398274i
\(974\) 0 0
\(975\) 0.129382 + 0.00667387i 0.00414354 + 0.000213735i
\(976\) 0 0
\(977\) 33.1439 + 12.3620i 1.06037 + 0.395496i 0.818317 0.574768i \(-0.194908\pi\)
0.242050 + 0.970264i \(0.422180\pi\)
\(978\) 0 0
\(979\) 26.3119 3.78308i 0.840933 0.120908i
\(980\) 0 0
\(981\) −5.83703 19.8791i −0.186362 0.634691i
\(982\) 0 0
\(983\) −0.161482 + 0.0115495i −0.00515049 + 0.000368370i −0.0739142 0.997265i \(-0.523549\pi\)
0.0687637 + 0.997633i \(0.478095\pi\)
\(984\) 0 0
\(985\) 7.58941 11.1659i 0.241819 0.355776i
\(986\) 0 0
\(987\) 0.0301220 + 0.0807603i 0.000958795 + 0.00257063i
\(988\) 0 0
\(989\) 14.4889 + 13.2589i 0.460720 + 0.421609i
\(990\) 0 0
\(991\) 9.11550 19.9602i 0.289563 0.634055i −0.707817 0.706396i \(-0.750320\pi\)
0.997380 + 0.0723409i \(0.0230470\pi\)
\(992\) 0 0
\(993\) 0.0752671 + 0.00538321i 0.00238853 + 0.000170831i
\(994\) 0 0
\(995\) 30.7169 10.5635i 0.973790 0.334887i
\(996\) 0 0
\(997\) 15.4761 + 8.45057i 0.490132 + 0.267632i 0.705254 0.708955i \(-0.250833\pi\)
−0.215122 + 0.976587i \(0.569015\pi\)
\(998\) 0 0
\(999\) −0.0381215 0.265141i −0.00120611 0.00838869i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.17.19 720
5.3 odd 4 inner 920.2.bv.a.753.19 yes 720
23.19 odd 22 inner 920.2.bv.a.617.19 yes 720
115.88 even 44 inner 920.2.bv.a.433.19 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.19 720 1.1 even 1 trivial
920.2.bv.a.433.19 yes 720 115.88 even 44 inner
920.2.bv.a.617.19 yes 720 23.19 odd 22 inner
920.2.bv.a.753.19 yes 720 5.3 odd 4 inner