Properties

Label 920.2.bv.a.17.14
Level $920$
Weight $2$
Character 920.17
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 17.14
Character \(\chi\) \(=\) 920.17
Dual form 920.2.bv.a.433.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.908585 + 0.496125i) q^{3} +(-1.66942 + 1.48763i) q^{5} +(-2.79645 - 3.73561i) q^{7} +(-1.04254 + 1.62222i) q^{9} +(2.29557 - 1.04835i) q^{11} +(-0.327078 - 0.244848i) q^{13} +(0.778756 - 2.17988i) q^{15} +(0.0784177 + 1.09642i) q^{17} +(4.96085 + 5.72512i) q^{19} +(4.39414 + 2.00674i) q^{21} +(-2.00167 - 4.35813i) q^{23} +(0.573901 - 4.96695i) q^{25} +(0.363964 - 5.08888i) q^{27} +(-2.43252 - 2.10779i) q^{29} +(9.47417 - 2.78187i) q^{31} +(-1.56561 + 2.09141i) q^{33} +(10.2257 + 2.07621i) q^{35} +(9.82620 - 2.13756i) q^{37} +(0.418654 + 0.0601933i) q^{39} +(-1.80123 + 1.15758i) q^{41} +(4.57456 + 8.37769i) q^{43} +(-0.672836 - 4.25906i) q^{45} +(3.49473 + 3.49473i) q^{47} +(-4.16257 + 14.1764i) q^{49} +(-0.615212 - 0.957289i) q^{51} +(-0.250815 + 0.187757i) q^{53} +(-2.27270 + 5.16511i) q^{55} +(-7.34773 - 2.74056i) q^{57} +(4.13198 - 0.594090i) q^{59} +(-2.77586 - 9.45372i) q^{61} +(8.97537 - 0.641931i) q^{63} +(0.910273 - 0.0778194i) q^{65} +(-1.01878 - 2.73145i) q^{67} +(3.98087 + 2.96666i) q^{69} +(-0.534163 + 1.16965i) q^{71} +(11.6654 + 0.834326i) q^{73} +(1.94279 + 4.79763i) q^{75} +(-10.3357 - 5.64371i) q^{77} +(0.810015 + 5.63378i) q^{79} +(-0.209146 - 0.457966i) q^{81} +(-3.04666 - 14.0053i) q^{83} +(-1.76199 - 1.71373i) q^{85} +(3.25587 + 0.708272i) q^{87} +(3.01589 + 0.885546i) q^{89} +1.90654i q^{91} +(-7.22794 + 7.22794i) q^{93} +(-16.7986 - 2.17770i) q^{95} +(-0.547518 + 2.51690i) q^{97} +(-0.692560 + 4.81686i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.908585 + 0.496125i −0.524572 + 0.286438i −0.719635 0.694353i \(-0.755691\pi\)
0.195063 + 0.980791i \(0.437509\pi\)
\(4\) 0 0
\(5\) −1.66942 + 1.48763i −0.746586 + 0.665289i
\(6\) 0 0
\(7\) −2.79645 3.73561i −1.05696 1.41193i −0.905944 0.423397i \(-0.860837\pi\)
−0.151013 0.988532i \(-0.548254\pi\)
\(8\) 0 0
\(9\) −1.04254 + 1.62222i −0.347512 + 0.540739i
\(10\) 0 0
\(11\) 2.29557 1.04835i 0.692142 0.316090i −0.0381054 0.999274i \(-0.512132\pi\)
0.730247 + 0.683183i \(0.239405\pi\)
\(12\) 0 0
\(13\) −0.327078 0.244848i −0.0907152 0.0679085i 0.552957 0.833210i \(-0.313499\pi\)
−0.643673 + 0.765301i \(0.722590\pi\)
\(14\) 0 0
\(15\) 0.778756 2.17988i 0.201074 0.562843i
\(16\) 0 0
\(17\) 0.0784177 + 1.09642i 0.0190191 + 0.265922i 0.998060 + 0.0622582i \(0.0198302\pi\)
−0.979041 + 0.203663i \(0.934715\pi\)
\(18\) 0 0
\(19\) 4.96085 + 5.72512i 1.13810 + 1.31343i 0.943055 + 0.332638i \(0.107939\pi\)
0.195041 + 0.980795i \(0.437516\pi\)
\(20\) 0 0
\(21\) 4.39414 + 2.00674i 0.958880 + 0.437906i
\(22\) 0 0
\(23\) −2.00167 4.35813i −0.417377 0.908733i
\(24\) 0 0
\(25\) 0.573901 4.96695i 0.114780 0.993391i
\(26\) 0 0
\(27\) 0.363964 5.08888i 0.0700449 0.979355i
\(28\) 0 0
\(29\) −2.43252 2.10779i −0.451707 0.391406i 0.399081 0.916916i \(-0.369329\pi\)
−0.850788 + 0.525510i \(0.823875\pi\)
\(30\) 0 0
\(31\) 9.47417 2.78187i 1.70161 0.499638i 0.720561 0.693391i \(-0.243884\pi\)
0.981050 + 0.193753i \(0.0620660\pi\)
\(32\) 0 0
\(33\) −1.56561 + 2.09141i −0.272538 + 0.364068i
\(34\) 0 0
\(35\) 10.2257 + 2.07621i 1.72845 + 0.350944i
\(36\) 0 0
\(37\) 9.82620 2.13756i 1.61542 0.351412i 0.688079 0.725636i \(-0.258454\pi\)
0.927338 + 0.374224i \(0.122091\pi\)
\(38\) 0 0
\(39\) 0.418654 + 0.0601933i 0.0670382 + 0.00963864i
\(40\) 0 0
\(41\) −1.80123 + 1.15758i −0.281304 + 0.180783i −0.673683 0.739021i \(-0.735289\pi\)
0.392379 + 0.919804i \(0.371652\pi\)
\(42\) 0 0
\(43\) 4.57456 + 8.37769i 0.697614 + 1.27759i 0.950691 + 0.310139i \(0.100376\pi\)
−0.253077 + 0.967446i \(0.581443\pi\)
\(44\) 0 0
\(45\) −0.672836 4.25906i −0.100300 0.634904i
\(46\) 0 0
\(47\) 3.49473 + 3.49473i 0.509759 + 0.509759i 0.914453 0.404693i \(-0.132622\pi\)
−0.404693 + 0.914453i \(0.632622\pi\)
\(48\) 0 0
\(49\) −4.16257 + 14.1764i −0.594654 + 2.02520i
\(50\) 0 0
\(51\) −0.615212 0.957289i −0.0861469 0.134047i
\(52\) 0 0
\(53\) −0.250815 + 0.187757i −0.0344520 + 0.0257905i −0.616365 0.787461i \(-0.711395\pi\)
0.581913 + 0.813251i \(0.302304\pi\)
\(54\) 0 0
\(55\) −2.27270 + 5.16511i −0.306451 + 0.696463i
\(56\) 0 0
\(57\) −7.34773 2.74056i −0.973230 0.362996i
\(58\) 0 0
\(59\) 4.13198 0.594090i 0.537939 0.0773439i 0.132009 0.991248i \(-0.457857\pi\)
0.405929 + 0.913905i \(0.366948\pi\)
\(60\) 0 0
\(61\) −2.77586 9.45372i −0.355413 1.21042i −0.922250 0.386594i \(-0.873651\pi\)
0.566837 0.823830i \(-0.308167\pi\)
\(62\) 0 0
\(63\) 8.97537 0.641931i 1.13079 0.0808757i
\(64\) 0 0
\(65\) 0.910273 0.0778194i 0.112905 0.00965230i
\(66\) 0 0
\(67\) −1.01878 2.73145i −0.124464 0.333700i 0.859742 0.510728i \(-0.170624\pi\)
−0.984206 + 0.177029i \(0.943351\pi\)
\(68\) 0 0
\(69\) 3.98087 + 2.96666i 0.479240 + 0.357143i
\(70\) 0 0
\(71\) −0.534163 + 1.16965i −0.0633935 + 0.138812i −0.938677 0.344798i \(-0.887947\pi\)
0.875284 + 0.483610i \(0.160675\pi\)
\(72\) 0 0
\(73\) 11.6654 + 0.834326i 1.36533 + 0.0976505i 0.734679 0.678414i \(-0.237333\pi\)
0.630653 + 0.776065i \(0.282787\pi\)
\(74\) 0 0
\(75\) 1.94279 + 4.79763i 0.224334 + 0.553983i
\(76\) 0 0
\(77\) −10.3357 5.64371i −1.17786 0.643161i
\(78\) 0 0
\(79\) 0.810015 + 5.63378i 0.0911338 + 0.633849i 0.983280 + 0.182102i \(0.0582901\pi\)
−0.892146 + 0.451747i \(0.850801\pi\)
\(80\) 0 0
\(81\) −0.209146 0.457966i −0.0232385 0.0508851i
\(82\) 0 0
\(83\) −3.04666 14.0053i −0.334415 1.53728i −0.770539 0.637393i \(-0.780013\pi\)
0.436124 0.899887i \(-0.356351\pi\)
\(84\) 0 0
\(85\) −1.76199 1.71373i −0.191114 0.185880i
\(86\) 0 0
\(87\) 3.25587 + 0.708272i 0.349066 + 0.0759347i
\(88\) 0 0
\(89\) 3.01589 + 0.885546i 0.319684 + 0.0938677i 0.437638 0.899151i \(-0.355815\pi\)
−0.117954 + 0.993019i \(0.537633\pi\)
\(90\) 0 0
\(91\) 1.90654i 0.199860i
\(92\) 0 0
\(93\) −7.22794 + 7.22794i −0.749503 + 0.749503i
\(94\) 0 0
\(95\) −16.7986 2.17770i −1.72350 0.223427i
\(96\) 0 0
\(97\) −0.547518 + 2.51690i −0.0555920 + 0.255552i −0.996553 0.0829640i \(-0.973561\pi\)
0.940961 + 0.338516i \(0.109925\pi\)
\(98\) 0 0
\(99\) −0.692560 + 4.81686i −0.0696049 + 0.484113i
\(100\) 0 0
\(101\) 11.7181 + 7.53074i 1.16599 + 0.749336i 0.972759 0.231817i \(-0.0744670\pi\)
0.193231 + 0.981153i \(0.438103\pi\)
\(102\) 0 0
\(103\) 5.06784 13.5874i 0.499349 1.33881i −0.405897 0.913919i \(-0.633041\pi\)
0.905246 0.424887i \(-0.139686\pi\)
\(104\) 0 0
\(105\) −10.3209 + 3.18679i −1.00722 + 0.310998i
\(106\) 0 0
\(107\) 1.75531 3.21461i 0.169692 0.310768i −0.778969 0.627063i \(-0.784257\pi\)
0.948661 + 0.316295i \(0.102439\pi\)
\(108\) 0 0
\(109\) −0.538206 + 0.621123i −0.0515508 + 0.0594928i −0.780939 0.624607i \(-0.785259\pi\)
0.729389 + 0.684100i \(0.239805\pi\)
\(110\) 0 0
\(111\) −7.86744 + 6.81718i −0.746745 + 0.647058i
\(112\) 0 0
\(113\) −11.9275 + 4.44872i −1.12204 + 0.418500i −0.840914 0.541169i \(-0.817982\pi\)
−0.281130 + 0.959670i \(0.590709\pi\)
\(114\) 0 0
\(115\) 9.82492 + 4.29779i 0.916178 + 0.400771i
\(116\) 0 0
\(117\) 0.738187 0.275329i 0.0682454 0.0254542i
\(118\) 0 0
\(119\) 3.87652 3.35902i 0.355360 0.307921i
\(120\) 0 0
\(121\) −3.03285 + 3.50010i −0.275714 + 0.318191i
\(122\) 0 0
\(123\) 1.06226 1.94539i 0.0957811 0.175410i
\(124\) 0 0
\(125\) 6.43092 + 9.14567i 0.575199 + 0.818013i
\(126\) 0 0
\(127\) 4.29224 11.5080i 0.380875 1.02117i −0.595170 0.803600i \(-0.702915\pi\)
0.976046 0.217566i \(-0.0698118\pi\)
\(128\) 0 0
\(129\) −8.31276 5.34229i −0.731898 0.470362i
\(130\) 0 0
\(131\) 3.10553 21.5994i 0.271331 1.88715i −0.163351 0.986568i \(-0.552230\pi\)
0.434682 0.900584i \(-0.356861\pi\)
\(132\) 0 0
\(133\) 7.51411 34.5418i 0.651556 2.99515i
\(134\) 0 0
\(135\) 6.96277 + 9.03690i 0.599260 + 0.777773i
\(136\) 0 0
\(137\) −10.0994 + 10.0994i −0.862848 + 0.862848i −0.991668 0.128820i \(-0.958881\pi\)
0.128820 + 0.991668i \(0.458881\pi\)
\(138\) 0 0
\(139\) 17.7144i 1.50251i −0.660010 0.751257i \(-0.729448\pi\)
0.660010 0.751257i \(-0.270552\pi\)
\(140\) 0 0
\(141\) −4.90909 1.44144i −0.413420 0.121391i
\(142\) 0 0
\(143\) −1.00752 0.219172i −0.0842530 0.0183281i
\(144\) 0 0
\(145\) 7.19649 0.0999148i 0.597636 0.00829747i
\(146\) 0 0
\(147\) −3.25123 14.9457i −0.268157 1.23270i
\(148\) 0 0
\(149\) 1.01259 + 2.21726i 0.0829543 + 0.181645i 0.946564 0.322517i \(-0.104529\pi\)
−0.863609 + 0.504161i \(0.831802\pi\)
\(150\) 0 0
\(151\) 1.26068 + 8.76823i 0.102593 + 0.713548i 0.974583 + 0.224025i \(0.0719199\pi\)
−0.871991 + 0.489523i \(0.837171\pi\)
\(152\) 0 0
\(153\) −1.86039 1.01585i −0.150403 0.0821265i
\(154\) 0 0
\(155\) −11.6779 + 18.7382i −0.937995 + 1.50509i
\(156\) 0 0
\(157\) −3.87655 0.277256i −0.309382 0.0221274i −0.0842150 0.996448i \(-0.526838\pi\)
−0.225167 + 0.974320i \(0.572293\pi\)
\(158\) 0 0
\(159\) 0.134735 0.295029i 0.0106852 0.0233973i
\(160\) 0 0
\(161\) −10.6827 + 19.6647i −0.841918 + 1.54980i
\(162\) 0 0
\(163\) 1.47977 + 3.96741i 0.115904 + 0.310751i 0.981929 0.189250i \(-0.0606056\pi\)
−0.866025 + 0.500001i \(0.833333\pi\)
\(164\) 0 0
\(165\) −0.497594 5.82049i −0.0387377 0.453124i
\(166\) 0 0
\(167\) −23.0561 + 1.64901i −1.78414 + 0.127604i −0.923983 0.382432i \(-0.875086\pi\)
−0.860153 + 0.510036i \(0.829632\pi\)
\(168\) 0 0
\(169\) −3.61549 12.3132i −0.278115 0.947172i
\(170\) 0 0
\(171\) −14.4592 + 2.07893i −1.10573 + 0.158979i
\(172\) 0 0
\(173\) 23.2171 + 8.65954i 1.76517 + 0.658373i 0.999892 + 0.0146662i \(0.00466858\pi\)
0.765273 + 0.643706i \(0.222604\pi\)
\(174\) 0 0
\(175\) −20.1595 + 11.7459i −1.52392 + 0.887910i
\(176\) 0 0
\(177\) −3.45952 + 2.58976i −0.260033 + 0.194658i
\(178\) 0 0
\(179\) −6.34238 9.86893i −0.474051 0.737638i 0.519069 0.854732i \(-0.326279\pi\)
−0.993121 + 0.117094i \(0.962642\pi\)
\(180\) 0 0
\(181\) −1.47105 + 5.00995i −0.109343 + 0.372387i −0.995925 0.0901837i \(-0.971255\pi\)
0.886583 + 0.462570i \(0.153073\pi\)
\(182\) 0 0
\(183\) 7.21233 + 7.21233i 0.533151 + 0.533151i
\(184\) 0 0
\(185\) −13.2241 + 18.1862i −0.972256 + 1.33708i
\(186\) 0 0
\(187\) 1.32945 + 2.43471i 0.0972192 + 0.178044i
\(188\) 0 0
\(189\) −20.0279 + 12.8711i −1.45681 + 0.936238i
\(190\) 0 0
\(191\) −0.995170 0.143084i −0.0720080 0.0103532i 0.106217 0.994343i \(-0.466126\pi\)
−0.178225 + 0.983990i \(0.557035\pi\)
\(192\) 0 0
\(193\) 14.6657 3.19033i 1.05566 0.229645i 0.348946 0.937143i \(-0.386540\pi\)
0.706716 + 0.707498i \(0.250176\pi\)
\(194\) 0 0
\(195\) −0.788453 + 0.522315i −0.0564623 + 0.0374037i
\(196\) 0 0
\(197\) −1.88542 + 2.51863i −0.134331 + 0.179445i −0.862663 0.505780i \(-0.831205\pi\)
0.728332 + 0.685224i \(0.240296\pi\)
\(198\) 0 0
\(199\) −4.56898 + 1.34157i −0.323886 + 0.0951015i −0.439634 0.898177i \(-0.644892\pi\)
0.115748 + 0.993279i \(0.463074\pi\)
\(200\) 0 0
\(201\) 2.28079 + 1.97631i 0.160874 + 0.139398i
\(202\) 0 0
\(203\) −1.07148 + 14.9812i −0.0752032 + 1.05148i
\(204\) 0 0
\(205\) 1.28495 4.61204i 0.0897445 0.322119i
\(206\) 0 0
\(207\) 9.15665 + 1.29636i 0.636431 + 0.0901035i
\(208\) 0 0
\(209\) 17.3899 + 7.94172i 1.20289 + 0.549340i
\(210\) 0 0
\(211\) 3.89959 + 4.50036i 0.268459 + 0.309818i 0.873932 0.486048i \(-0.161562\pi\)
−0.605474 + 0.795865i \(0.707016\pi\)
\(212\) 0 0
\(213\) −0.0949619 1.32774i −0.00650668 0.0909753i
\(214\) 0 0
\(215\) −20.0998 7.18058i −1.37079 0.489711i
\(216\) 0 0
\(217\) −36.8860 27.6125i −2.50398 1.87446i
\(218\) 0 0
\(219\) −11.0129 + 5.02944i −0.744186 + 0.339858i
\(220\) 0 0
\(221\) 0.242808 0.377816i 0.0163330 0.0254147i
\(222\) 0 0
\(223\) −0.822245 1.09839i −0.0550616 0.0735537i 0.772165 0.635422i \(-0.219174\pi\)
−0.827227 + 0.561868i \(0.810083\pi\)
\(224\) 0 0
\(225\) 7.45916 + 6.10922i 0.497278 + 0.407281i
\(226\) 0 0
\(227\) 7.43176 4.05805i 0.493263 0.269342i −0.213307 0.976985i \(-0.568423\pi\)
0.706570 + 0.707643i \(0.250242\pi\)
\(228\) 0 0
\(229\) 3.36156 0.222138 0.111069 0.993813i \(-0.464572\pi\)
0.111069 + 0.993813i \(0.464572\pi\)
\(230\) 0 0
\(231\) 12.1908 0.802099
\(232\) 0 0
\(233\) 13.1660 7.18917i 0.862533 0.470978i 0.0138643 0.999904i \(-0.495587\pi\)
0.848668 + 0.528925i \(0.177405\pi\)
\(234\) 0 0
\(235\) −11.0330 0.635287i −0.719717 0.0414416i
\(236\) 0 0
\(237\) −3.53103 4.71690i −0.229365 0.306395i
\(238\) 0 0
\(239\) −4.84076 + 7.53238i −0.313123 + 0.487229i −0.961769 0.273861i \(-0.911699\pi\)
0.648646 + 0.761090i \(0.275335\pi\)
\(240\) 0 0
\(241\) −2.76023 + 1.26055i −0.177802 + 0.0811994i −0.502327 0.864678i \(-0.667523\pi\)
0.324525 + 0.945877i \(0.394795\pi\)
\(242\) 0 0
\(243\) 12.6700 + 9.48466i 0.812783 + 0.608441i
\(244\) 0 0
\(245\) −14.1402 29.8587i −0.903387 1.90760i
\(246\) 0 0
\(247\) −0.220802 3.08721i −0.0140493 0.196435i
\(248\) 0 0
\(249\) 9.71653 + 11.2135i 0.615760 + 0.710625i
\(250\) 0 0
\(251\) 25.8793 + 11.8187i 1.63349 + 0.745988i 0.999623 0.0274564i \(-0.00874076\pi\)
0.633864 + 0.773445i \(0.281468\pi\)
\(252\) 0 0
\(253\) −9.16385 7.90596i −0.576126 0.497043i
\(254\) 0 0
\(255\) 2.45114 + 0.682904i 0.153496 + 0.0427651i
\(256\) 0 0
\(257\) −0.488538 + 6.83065i −0.0304742 + 0.426084i 0.959198 + 0.282735i \(0.0912417\pi\)
−0.989672 + 0.143349i \(0.954213\pi\)
\(258\) 0 0
\(259\) −35.4635 30.7293i −2.20360 1.90943i
\(260\) 0 0
\(261\) 5.95527 1.74862i 0.368622 0.108237i
\(262\) 0 0
\(263\) −3.94607 + 5.27134i −0.243325 + 0.325045i −0.905533 0.424276i \(-0.860529\pi\)
0.662208 + 0.749320i \(0.269620\pi\)
\(264\) 0 0
\(265\) 0.139400 0.686565i 0.00856327 0.0421754i
\(266\) 0 0
\(267\) −3.17954 + 0.691666i −0.194585 + 0.0423293i
\(268\) 0 0
\(269\) 14.8287 + 2.13205i 0.904124 + 0.129993i 0.578667 0.815564i \(-0.303573\pi\)
0.325456 + 0.945557i \(0.394482\pi\)
\(270\) 0 0
\(271\) 17.0531 10.9594i 1.03590 0.665735i 0.0919334 0.995765i \(-0.470695\pi\)
0.943970 + 0.330030i \(0.107059\pi\)
\(272\) 0 0
\(273\) −0.945883 1.73226i −0.0572474 0.104841i
\(274\) 0 0
\(275\) −3.88969 12.0037i −0.234557 0.723848i
\(276\) 0 0
\(277\) −7.90757 7.90757i −0.475120 0.475120i 0.428447 0.903567i \(-0.359061\pi\)
−0.903567 + 0.428447i \(0.859061\pi\)
\(278\) 0 0
\(279\) −5.36437 + 18.2694i −0.321156 + 1.09376i
\(280\) 0 0
\(281\) 5.93709 + 9.23829i 0.354177 + 0.551110i 0.971932 0.235260i \(-0.0755942\pi\)
−0.617756 + 0.786370i \(0.711958\pi\)
\(282\) 0 0
\(283\) −13.7973 + 10.3285i −0.820164 + 0.613967i −0.924761 0.380548i \(-0.875736\pi\)
0.104597 + 0.994515i \(0.466645\pi\)
\(284\) 0 0
\(285\) 16.3434 6.35558i 0.968097 0.376472i
\(286\) 0 0
\(287\) 9.36129 + 3.49158i 0.552580 + 0.206101i
\(288\) 0 0
\(289\) 15.6310 2.24739i 0.919469 0.132200i
\(290\) 0 0
\(291\) −0.751230 2.55845i −0.0440379 0.149979i
\(292\) 0 0
\(293\) −30.7770 + 2.20122i −1.79801 + 0.128596i −0.929910 0.367788i \(-0.880115\pi\)
−0.868103 + 0.496384i \(0.834661\pi\)
\(294\) 0 0
\(295\) −6.01422 + 7.13866i −0.350161 + 0.415629i
\(296\) 0 0
\(297\) −4.49944 12.0635i −0.261084 0.699993i
\(298\) 0 0
\(299\) −0.412376 + 1.91555i −0.0238483 + 0.110779i
\(300\) 0 0
\(301\) 18.5033 40.5165i 1.06651 2.33533i
\(302\) 0 0
\(303\) −14.3830 1.02870i −0.826284 0.0590970i
\(304\) 0 0
\(305\) 18.6977 + 11.6527i 1.07063 + 0.667233i
\(306\) 0 0
\(307\) 0.390980 + 0.213491i 0.0223144 + 0.0121846i 0.490367 0.871516i \(-0.336863\pi\)
−0.468053 + 0.883700i \(0.655044\pi\)
\(308\) 0 0
\(309\) 2.13649 + 14.8596i 0.121540 + 0.845333i
\(310\) 0 0
\(311\) −0.181415 0.397244i −0.0102871 0.0225257i 0.904419 0.426646i \(-0.140305\pi\)
−0.914706 + 0.404120i \(0.867578\pi\)
\(312\) 0 0
\(313\) −4.08378 18.7728i −0.230829 1.06110i −0.935982 0.352049i \(-0.885485\pi\)
0.705153 0.709056i \(-0.250878\pi\)
\(314\) 0 0
\(315\) −14.0287 + 14.4237i −0.790426 + 0.812683i
\(316\) 0 0
\(317\) −8.82084 1.91886i −0.495428 0.107774i −0.0420923 0.999114i \(-0.513402\pi\)
−0.453335 + 0.891340i \(0.649766\pi\)
\(318\) 0 0
\(319\) −7.79373 2.28844i −0.436365 0.128128i
\(320\) 0 0
\(321\) 3.79160i 0.211626i
\(322\) 0 0
\(323\) −5.88813 + 5.88813i −0.327625 + 0.327625i
\(324\) 0 0
\(325\) −1.40386 + 1.48406i −0.0778720 + 0.0823211i
\(326\) 0 0
\(327\) 0.180851 0.831360i 0.0100011 0.0459743i
\(328\) 0 0
\(329\) 3.28214 22.8278i 0.180950 1.25854i
\(330\) 0 0
\(331\) 10.2991 + 6.61882i 0.566089 + 0.363803i 0.792166 0.610306i \(-0.208954\pi\)
−0.226077 + 0.974110i \(0.572590\pi\)
\(332\) 0 0
\(333\) −6.77657 + 18.1687i −0.371354 + 0.995639i
\(334\) 0 0
\(335\) 5.76416 + 3.04436i 0.314930 + 0.166331i
\(336\) 0 0
\(337\) −3.82562 + 7.00610i −0.208395 + 0.381647i −0.960881 0.276961i \(-0.910673\pi\)
0.752486 + 0.658608i \(0.228854\pi\)
\(338\) 0 0
\(339\) 8.63001 9.95957i 0.468718 0.540929i
\(340\) 0 0
\(341\) 18.8323 16.3183i 1.01983 0.883684i
\(342\) 0 0
\(343\) 33.9931 12.6788i 1.83545 0.684588i
\(344\) 0 0
\(345\) −11.0590 + 0.969482i −0.595398 + 0.0521952i
\(346\) 0 0
\(347\) 30.6040 11.4147i 1.64291 0.612772i 0.653368 0.757040i \(-0.273355\pi\)
0.989539 + 0.144268i \(0.0460827\pi\)
\(348\) 0 0
\(349\) 4.11194 3.56302i 0.220107 0.190724i −0.537826 0.843056i \(-0.680754\pi\)
0.757934 + 0.652331i \(0.226209\pi\)
\(350\) 0 0
\(351\) −1.36504 + 1.57535i −0.0728607 + 0.0840857i
\(352\) 0 0
\(353\) −5.59997 + 10.2556i −0.298056 + 0.545849i −0.983194 0.182564i \(-0.941560\pi\)
0.685138 + 0.728414i \(0.259742\pi\)
\(354\) 0 0
\(355\) −0.848274 2.74728i −0.0450217 0.145810i
\(356\) 0 0
\(357\) −1.85565 + 4.97520i −0.0982116 + 0.263315i
\(358\) 0 0
\(359\) 16.0422 + 10.3097i 0.846677 + 0.544126i 0.890537 0.454912i \(-0.150329\pi\)
−0.0438599 + 0.999038i \(0.513966\pi\)
\(360\) 0 0
\(361\) −5.46304 + 37.9963i −0.287528 + 1.99980i
\(362\) 0 0
\(363\) 1.01912 4.68481i 0.0534899 0.245889i
\(364\) 0 0
\(365\) −20.7156 + 15.9610i −1.08430 + 0.835437i
\(366\) 0 0
\(367\) 5.33139 5.33139i 0.278296 0.278296i −0.554132 0.832429i \(-0.686950\pi\)
0.832429 + 0.554132i \(0.186950\pi\)
\(368\) 0 0
\(369\) 4.12879i 0.214936i
\(370\) 0 0
\(371\) 1.40278 + 0.411893i 0.0728286 + 0.0213844i
\(372\) 0 0
\(373\) 8.70268 + 1.89315i 0.450608 + 0.0980237i 0.432141 0.901806i \(-0.357758\pi\)
0.0184660 + 0.999829i \(0.494122\pi\)
\(374\) 0 0
\(375\) −10.3804 5.11908i −0.536043 0.264348i
\(376\) 0 0
\(377\) 0.279536 + 1.28501i 0.0143968 + 0.0661812i
\(378\) 0 0
\(379\) −3.91207 8.56624i −0.200950 0.440018i 0.782150 0.623090i \(-0.214123\pi\)
−0.983099 + 0.183072i \(0.941396\pi\)
\(380\) 0 0
\(381\) 1.80951 + 12.5854i 0.0927042 + 0.644772i
\(382\) 0 0
\(383\) −6.39673 3.49288i −0.326858 0.178478i 0.307439 0.951568i \(-0.400528\pi\)
−0.634296 + 0.773090i \(0.718710\pi\)
\(384\) 0 0
\(385\) 25.6503 5.95400i 1.30726 0.303444i
\(386\) 0 0
\(387\) −18.3596 1.31310i −0.933269 0.0667487i
\(388\) 0 0
\(389\) 0.235617 0.515930i 0.0119463 0.0261587i −0.903565 0.428451i \(-0.859059\pi\)
0.915511 + 0.402293i \(0.131787\pi\)
\(390\) 0 0
\(391\) 4.62139 2.53643i 0.233714 0.128273i
\(392\) 0 0
\(393\) 7.89439 + 21.1657i 0.398219 + 1.06767i
\(394\) 0 0
\(395\) −9.73324 8.20011i −0.489732 0.412593i
\(396\) 0 0
\(397\) 6.94846 0.496964i 0.348733 0.0249419i 0.104126 0.994564i \(-0.466796\pi\)
0.244607 + 0.969622i \(0.421341\pi\)
\(398\) 0 0
\(399\) 10.3098 + 35.1121i 0.516138 + 1.75780i
\(400\) 0 0
\(401\) −27.5340 + 3.95879i −1.37498 + 0.197693i −0.789877 0.613265i \(-0.789856\pi\)
−0.585105 + 0.810957i \(0.698947\pi\)
\(402\) 0 0
\(403\) −3.77993 1.40984i −0.188292 0.0702292i
\(404\) 0 0
\(405\) 1.03044 + 0.453404i 0.0512028 + 0.0225298i
\(406\) 0 0
\(407\) 20.3158 15.2083i 1.00702 0.753845i
\(408\) 0 0
\(409\) 20.2927 + 31.5761i 1.00341 + 1.56134i 0.815174 + 0.579215i \(0.196641\pi\)
0.188237 + 0.982124i \(0.439723\pi\)
\(410\) 0 0
\(411\) 4.16559 14.1867i 0.205473 0.699778i
\(412\) 0 0
\(413\) −13.7742 13.7742i −0.677782 0.677782i
\(414\) 0 0
\(415\) 25.9209 + 18.8483i 1.27241 + 0.925228i
\(416\) 0 0
\(417\) 8.78854 + 16.0950i 0.430377 + 0.788176i
\(418\) 0 0
\(419\) 2.04143 1.31195i 0.0997304 0.0640929i −0.489825 0.871821i \(-0.662939\pi\)
0.589555 + 0.807728i \(0.299303\pi\)
\(420\) 0 0
\(421\) 30.5447 + 4.39166i 1.48866 + 0.214037i 0.838140 0.545455i \(-0.183643\pi\)
0.650517 + 0.759492i \(0.274552\pi\)
\(422\) 0 0
\(423\) −9.31260 + 2.02583i −0.452794 + 0.0984993i
\(424\) 0 0
\(425\) 5.49089 + 0.239741i 0.266347 + 0.0116292i
\(426\) 0 0
\(427\) −27.5529 + 36.8063i −1.33338 + 1.78118i
\(428\) 0 0
\(429\) 1.02415 0.300719i 0.0494466 0.0145188i
\(430\) 0 0
\(431\) 13.7314 + 11.8984i 0.661420 + 0.573123i 0.919543 0.392988i \(-0.128559\pi\)
−0.258124 + 0.966112i \(0.583104\pi\)
\(432\) 0 0
\(433\) 0.547340 7.65281i 0.0263035 0.367771i −0.967204 0.254002i \(-0.918253\pi\)
0.993507 0.113769i \(-0.0362923\pi\)
\(434\) 0 0
\(435\) −6.48906 + 3.66114i −0.311127 + 0.175538i
\(436\) 0 0
\(437\) 15.0209 33.0798i 0.718545 1.58242i
\(438\) 0 0
\(439\) −29.4630 13.4553i −1.40619 0.642185i −0.439525 0.898230i \(-0.644853\pi\)
−0.966665 + 0.256045i \(0.917580\pi\)
\(440\) 0 0
\(441\) −18.6576 21.5320i −0.888457 1.02533i
\(442\) 0 0
\(443\) 2.55779 + 35.7626i 0.121524 + 1.69913i 0.583396 + 0.812188i \(0.301723\pi\)
−0.461872 + 0.886947i \(0.652822\pi\)
\(444\) 0 0
\(445\) −6.35215 + 3.00820i −0.301121 + 0.142602i
\(446\) 0 0
\(447\) −2.02006 1.51220i −0.0955454 0.0715244i
\(448\) 0 0
\(449\) 12.0812 5.51730i 0.570147 0.260378i −0.109414 0.993996i \(-0.534897\pi\)
0.679561 + 0.733619i \(0.262170\pi\)
\(450\) 0 0
\(451\) −2.92130 + 4.54563i −0.137558 + 0.214045i
\(452\) 0 0
\(453\) −5.49557 7.34123i −0.258205 0.344921i
\(454\) 0 0
\(455\) −2.83623 3.18281i −0.132965 0.149212i
\(456\) 0 0
\(457\) 21.1981 11.5750i 0.991603 0.541456i 0.100345 0.994953i \(-0.468005\pi\)
0.891258 + 0.453496i \(0.149824\pi\)
\(458\) 0 0
\(459\) 5.60810 0.261764
\(460\) 0 0
\(461\) 31.4875 1.46652 0.733260 0.679948i \(-0.237998\pi\)
0.733260 + 0.679948i \(0.237998\pi\)
\(462\) 0 0
\(463\) 21.6165 11.8035i 1.00461 0.548557i 0.109301 0.994009i \(-0.465139\pi\)
0.895306 + 0.445452i \(0.146957\pi\)
\(464\) 0 0
\(465\) 1.31393 22.8190i 0.0609318 1.05820i
\(466\) 0 0
\(467\) 11.3731 + 15.1927i 0.526284 + 0.703034i 0.982379 0.186897i \(-0.0598432\pi\)
−0.456095 + 0.889931i \(0.650752\pi\)
\(468\) 0 0
\(469\) −7.35468 + 11.4441i −0.339608 + 0.528440i
\(470\) 0 0
\(471\) 3.65973 1.67134i 0.168631 0.0770113i
\(472\) 0 0
\(473\) 19.2840 + 14.4358i 0.886680 + 0.663761i
\(474\) 0 0
\(475\) 31.2835 21.3546i 1.43538 0.979818i
\(476\) 0 0
\(477\) −0.0431002 0.602619i −0.00197342 0.0275920i
\(478\) 0 0
\(479\) −18.1339 20.9276i −0.828559 0.956208i 0.171019 0.985268i \(-0.445294\pi\)
−0.999578 + 0.0290599i \(0.990749\pi\)
\(480\) 0 0
\(481\) −3.73731 1.70677i −0.170407 0.0778222i
\(482\) 0 0
\(483\) −0.0499973 23.1671i −0.00227495 1.05414i
\(484\) 0 0
\(485\) −2.83018 5.01625i −0.128512 0.227776i
\(486\) 0 0
\(487\) 0.171613 2.39946i 0.00777651 0.108730i −0.992081 0.125598i \(-0.959915\pi\)
0.999858 + 0.0168683i \(0.00536959\pi\)
\(488\) 0 0
\(489\) −3.31282 2.87058i −0.149811 0.129812i
\(490\) 0 0
\(491\) −7.18583 + 2.10995i −0.324292 + 0.0952207i −0.439827 0.898083i \(-0.644960\pi\)
0.115535 + 0.993303i \(0.463142\pi\)
\(492\) 0 0
\(493\) 2.12027 2.83235i 0.0954923 0.127563i
\(494\) 0 0
\(495\) −6.00955 9.07163i −0.270109 0.407739i
\(496\) 0 0
\(497\) 5.86313 1.27545i 0.262997 0.0572116i
\(498\) 0 0
\(499\) −12.5114 1.79886i −0.560085 0.0805281i −0.143542 0.989644i \(-0.545849\pi\)
−0.416543 + 0.909116i \(0.636758\pi\)
\(500\) 0 0
\(501\) 20.1303 12.9370i 0.899357 0.577982i
\(502\) 0 0
\(503\) −13.2785 24.3178i −0.592060 1.08428i −0.986252 0.165249i \(-0.947157\pi\)
0.394191 0.919028i \(-0.371025\pi\)
\(504\) 0 0
\(505\) −30.7653 + 4.86022i −1.36904 + 0.216277i
\(506\) 0 0
\(507\) 9.39389 + 9.39389i 0.417197 + 0.417197i
\(508\) 0 0
\(509\) 7.68252 26.1643i 0.340522 1.15971i −0.594196 0.804320i \(-0.702530\pi\)
0.934718 0.355390i \(-0.115652\pi\)
\(510\) 0 0
\(511\) −29.5050 45.9106i −1.30522 2.03097i
\(512\) 0 0
\(513\) 30.9400 23.1614i 1.36604 1.02260i
\(514\) 0 0
\(515\) 11.7527 + 30.2221i 0.517887 + 1.33174i
\(516\) 0 0
\(517\) 11.6861 + 4.35871i 0.513956 + 0.191696i
\(518\) 0 0
\(519\) −25.3910 + 3.65067i −1.11454 + 0.160247i
\(520\) 0 0
\(521\) −5.23328 17.8229i −0.229274 0.780837i −0.991108 0.133063i \(-0.957519\pi\)
0.761833 0.647773i \(-0.224300\pi\)
\(522\) 0 0
\(523\) −35.9161 + 2.56877i −1.57050 + 0.112325i −0.829241 0.558892i \(-0.811227\pi\)
−0.741261 + 0.671216i \(0.765772\pi\)
\(524\) 0 0
\(525\) 12.4892 20.6738i 0.545072 0.902280i
\(526\) 0 0
\(527\) 3.79305 + 10.1696i 0.165228 + 0.442993i
\(528\) 0 0
\(529\) −14.9866 + 17.4471i −0.651593 + 0.758569i
\(530\) 0 0
\(531\) −3.34400 + 7.32233i −0.145117 + 0.317762i
\(532\) 0 0
\(533\) 0.872572 + 0.0624076i 0.0377953 + 0.00270317i
\(534\) 0 0
\(535\) 1.85181 + 7.97777i 0.0800609 + 0.344909i
\(536\) 0 0
\(537\) 10.6588 + 5.82015i 0.459962 + 0.251158i
\(538\) 0 0
\(539\) 5.30641 + 36.9069i 0.228563 + 1.58969i
\(540\) 0 0
\(541\) −15.1112 33.0890i −0.649683 1.42261i −0.891831 0.452368i \(-0.850579\pi\)
0.242148 0.970239i \(-0.422148\pi\)
\(542\) 0 0
\(543\) −1.14898 5.28179i −0.0493076 0.226663i
\(544\) 0 0
\(545\) −0.0255124 1.83756i −0.00109283 0.0787126i
\(546\) 0 0
\(547\) 33.8155 + 7.35610i 1.44584 + 0.314524i 0.865935 0.500157i \(-0.166724\pi\)
0.579909 + 0.814681i \(0.303088\pi\)
\(548\) 0 0
\(549\) 18.2299 + 5.35278i 0.778033 + 0.228451i
\(550\) 0 0
\(551\) 24.3829i 1.03874i
\(552\) 0 0
\(553\) 18.7805 18.7805i 0.798626 0.798626i
\(554\) 0 0
\(555\) 2.99258 23.0846i 0.127028 0.979885i
\(556\) 0 0
\(557\) −6.29030 + 28.9161i −0.266529 + 1.22521i 0.628004 + 0.778210i \(0.283872\pi\)
−0.894533 + 0.447003i \(0.852491\pi\)
\(558\) 0 0
\(559\) 0.555017 3.86023i 0.0234747 0.163270i
\(560\) 0 0
\(561\) −2.41584 1.55257i −0.101997 0.0655494i
\(562\) 0 0
\(563\) −6.59967 + 17.6944i −0.278143 + 0.745730i 0.720490 + 0.693465i \(0.243917\pi\)
−0.998633 + 0.0522650i \(0.983356\pi\)
\(564\) 0 0
\(565\) 13.2939 25.1705i 0.559277 1.05893i
\(566\) 0 0
\(567\) −1.12592 + 2.06197i −0.0472842 + 0.0865945i
\(568\) 0 0
\(569\) 14.4449 16.6703i 0.605562 0.698856i −0.367337 0.930088i \(-0.619730\pi\)
0.972899 + 0.231232i \(0.0742757\pi\)
\(570\) 0 0
\(571\) −15.4271 + 13.3676i −0.645603 + 0.559418i −0.914921 0.403633i \(-0.867747\pi\)
0.269318 + 0.963051i \(0.413202\pi\)
\(572\) 0 0
\(573\) 0.975184 0.363725i 0.0407389 0.0151948i
\(574\) 0 0
\(575\) −22.7954 + 7.44107i −0.950634 + 0.310314i
\(576\) 0 0
\(577\) 6.49398 2.42213i 0.270348 0.100834i −0.210634 0.977565i \(-0.567553\pi\)
0.480982 + 0.876730i \(0.340280\pi\)
\(578\) 0 0
\(579\) −11.7423 + 10.1747i −0.487991 + 0.422847i
\(580\) 0 0
\(581\) −43.7985 + 50.5462i −1.81707 + 2.09701i
\(582\) 0 0
\(583\) −0.378927 + 0.693953i −0.0156936 + 0.0287406i
\(584\) 0 0
\(585\) −0.822752 + 1.55779i −0.0340166 + 0.0644067i
\(586\) 0 0
\(587\) 1.30231 3.49162i 0.0537520 0.144115i −0.907299 0.420487i \(-0.861859\pi\)
0.961051 + 0.276372i \(0.0891321\pi\)
\(588\) 0 0
\(589\) 62.9264 + 40.4404i 2.59284 + 1.66632i
\(590\) 0 0
\(591\) 0.463511 3.22379i 0.0190663 0.132609i
\(592\) 0 0
\(593\) −2.37207 + 10.9042i −0.0974093 + 0.447783i 0.902447 + 0.430802i \(0.141769\pi\)
−0.999856 + 0.0169813i \(0.994594\pi\)
\(594\) 0 0
\(595\) −1.47453 + 11.3744i −0.0604500 + 0.466307i
\(596\) 0 0
\(597\) 3.48572 3.48572i 0.142661 0.142661i
\(598\) 0 0
\(599\) 37.6571i 1.53863i −0.638871 0.769314i \(-0.720598\pi\)
0.638871 0.769314i \(-0.279402\pi\)
\(600\) 0 0
\(601\) 16.3859 + 4.81132i 0.668393 + 0.196258i 0.598287 0.801282i \(-0.295848\pi\)
0.0701058 + 0.997540i \(0.477666\pi\)
\(602\) 0 0
\(603\) 5.49311 + 1.19495i 0.223697 + 0.0486623i
\(604\) 0 0
\(605\) −0.143765 10.3549i −0.00584489 0.420986i
\(606\) 0 0
\(607\) 3.41348 + 15.6915i 0.138549 + 0.636900i 0.993074 + 0.117490i \(0.0374846\pi\)
−0.854525 + 0.519410i \(0.826152\pi\)
\(608\) 0 0
\(609\) −6.45904 14.1433i −0.261734 0.573117i
\(610\) 0 0
\(611\) −0.287374 1.99873i −0.0116259 0.0808599i
\(612\) 0 0
\(613\) 4.95664 + 2.70653i 0.200197 + 0.109316i 0.576220 0.817294i \(-0.304527\pi\)
−0.376024 + 0.926610i \(0.622709\pi\)
\(614\) 0 0
\(615\) 1.12067 + 4.82793i 0.0451896 + 0.194681i
\(616\) 0 0
\(617\) −0.750821 0.0536998i −0.0302269 0.00216187i 0.0562175 0.998419i \(-0.482096\pi\)
−0.0864444 + 0.996257i \(0.527551\pi\)
\(618\) 0 0
\(619\) 8.87716 19.4383i 0.356803 0.781290i −0.643077 0.765802i \(-0.722342\pi\)
0.999880 0.0154884i \(-0.00493032\pi\)
\(620\) 0 0
\(621\) −22.9065 + 8.60006i −0.919208 + 0.345108i
\(622\) 0 0
\(623\) −5.12572 13.7426i −0.205358 0.550586i
\(624\) 0 0
\(625\) −24.3413 5.70108i −0.973651 0.228043i
\(626\) 0 0
\(627\) −19.7403 + 1.41186i −0.788353 + 0.0563841i
\(628\) 0 0
\(629\) 3.11422 + 10.6060i 0.124172 + 0.422891i
\(630\) 0 0
\(631\) −16.4566 + 2.36610i −0.655125 + 0.0941928i −0.461859 0.886953i \(-0.652817\pi\)
−0.193267 + 0.981146i \(0.561908\pi\)
\(632\) 0 0
\(633\) −5.77585 2.15428i −0.229569 0.0856250i
\(634\) 0 0
\(635\) 9.95406 + 25.5968i 0.395015 + 1.01578i
\(636\) 0 0
\(637\) 4.83255 3.61760i 0.191473 0.143335i
\(638\) 0 0
\(639\) −1.34055 2.08593i −0.0530312 0.0825182i
\(640\) 0 0
\(641\) −6.98945 + 23.8039i −0.276067 + 0.940197i 0.698408 + 0.715700i \(0.253892\pi\)
−0.974475 + 0.224497i \(0.927926\pi\)
\(642\) 0 0
\(643\) 19.4265 + 19.4265i 0.766106 + 0.766106i 0.977418 0.211313i \(-0.0677739\pi\)
−0.211313 + 0.977418i \(0.567774\pi\)
\(644\) 0 0
\(645\) 21.8248 3.44783i 0.859351 0.135758i
\(646\) 0 0
\(647\) −9.56364 17.5145i −0.375986 0.688566i 0.619342 0.785121i \(-0.287399\pi\)
−0.995328 + 0.0965551i \(0.969218\pi\)
\(648\) 0 0
\(649\) 8.86246 5.69556i 0.347882 0.223570i
\(650\) 0 0
\(651\) 47.2133 + 6.78825i 1.85044 + 0.266053i
\(652\) 0 0
\(653\) −2.34642 + 0.510432i −0.0918224 + 0.0199747i −0.258242 0.966080i \(-0.583143\pi\)
0.166419 + 0.986055i \(0.446779\pi\)
\(654\) 0 0
\(655\) 26.9476 + 40.6783i 1.05293 + 1.58943i
\(656\) 0 0
\(657\) −13.5151 + 18.0540i −0.527273 + 0.704354i
\(658\) 0 0
\(659\) 13.8132 4.05592i 0.538085 0.157996i −0.00138759 0.999999i \(-0.500442\pi\)
0.539473 + 0.842003i \(0.318624\pi\)
\(660\) 0 0
\(661\) 11.2080 + 9.71181i 0.435942 + 0.377746i 0.845003 0.534761i \(-0.179598\pi\)
−0.409061 + 0.912507i \(0.634144\pi\)
\(662\) 0 0
\(663\) −0.0331674 + 0.463742i −0.00128812 + 0.0180102i
\(664\) 0 0
\(665\) 38.8413 + 68.8429i 1.50620 + 2.66961i
\(666\) 0 0
\(667\) −4.31692 + 14.8203i −0.167152 + 0.573845i
\(668\) 0 0
\(669\) 1.29202 + 0.590045i 0.0499523 + 0.0228125i
\(670\) 0 0
\(671\) −16.2830 18.7916i −0.628599 0.725442i
\(672\) 0 0
\(673\) 2.58360 + 36.1234i 0.0995905 + 1.39246i 0.764062 + 0.645143i \(0.223202\pi\)
−0.664471 + 0.747314i \(0.731343\pi\)
\(674\) 0 0
\(675\) −25.0673 4.72831i −0.964843 0.181993i
\(676\) 0 0
\(677\) −14.5252 10.8734i −0.558248 0.417899i 0.282546 0.959254i \(-0.408821\pi\)
−0.840795 + 0.541354i \(0.817912\pi\)
\(678\) 0 0
\(679\) 10.9333 4.99305i 0.419580 0.191616i
\(680\) 0 0
\(681\) −4.73909 + 7.37416i −0.181602 + 0.282579i
\(682\) 0 0
\(683\) −15.2455 20.3656i −0.583354 0.779269i 0.407645 0.913140i \(-0.366350\pi\)
−0.990999 + 0.133871i \(0.957259\pi\)
\(684\) 0 0
\(685\) 1.83591 31.8842i 0.0701464 1.21823i
\(686\) 0 0
\(687\) −3.05427 + 1.66776i −0.116528 + 0.0636288i
\(688\) 0 0
\(689\) 0.128008 0.00487671
\(690\) 0 0
\(691\) 1.91646 0.0729055 0.0364528 0.999335i \(-0.488394\pi\)
0.0364528 + 0.999335i \(0.488394\pi\)
\(692\) 0 0
\(693\) 19.9306 10.8830i 0.757103 0.413409i
\(694\) 0 0
\(695\) 26.3525 + 29.5727i 0.999606 + 1.12175i
\(696\) 0 0
\(697\) −1.41044 1.88413i −0.0534243 0.0713665i
\(698\) 0 0
\(699\) −8.39569 + 13.0640i −0.317554 + 0.494124i
\(700\) 0 0
\(701\) −28.0197 + 12.7962i −1.05829 + 0.483305i −0.867041 0.498236i \(-0.833981\pi\)
−0.191249 + 0.981541i \(0.561254\pi\)
\(702\) 0 0
\(703\) 60.9840 + 45.6521i 2.30006 + 1.72180i
\(704\) 0 0
\(705\) 10.3396 4.89656i 0.389414 0.184415i
\(706\) 0 0
\(707\) −4.63698 64.8334i −0.174392 2.43831i
\(708\) 0 0
\(709\) −21.4177 24.7174i −0.804359 0.928280i 0.194253 0.980951i \(-0.437772\pi\)
−0.998612 + 0.0526718i \(0.983226\pi\)
\(710\) 0 0
\(711\) −9.98367 4.55939i −0.374417 0.170991i
\(712\) 0 0
\(713\) −31.0879 35.7213i −1.16425 1.33777i
\(714\) 0 0
\(715\) 2.00802 1.13293i 0.0750956 0.0423691i
\(716\) 0 0
\(717\) 0.661246 9.24543i 0.0246947 0.345277i
\(718\) 0 0
\(719\) 4.50733 + 3.90562i 0.168095 + 0.145655i 0.734846 0.678234i \(-0.237254\pi\)
−0.566751 + 0.823889i \(0.691800\pi\)
\(720\) 0 0
\(721\) −64.9292 + 19.0649i −2.41809 + 0.710015i
\(722\) 0 0
\(723\) 1.88251 2.51474i 0.0700113 0.0935241i
\(724\) 0 0
\(725\) −11.8653 + 10.8725i −0.440666 + 0.403796i
\(726\) 0 0
\(727\) −30.8905 + 6.71981i −1.14566 + 0.249224i −0.745041 0.667019i \(-0.767570\pi\)
−0.400624 + 0.916243i \(0.631207\pi\)
\(728\) 0 0
\(729\) −14.7224 2.11676i −0.545273 0.0783984i
\(730\) 0 0
\(731\) −8.82676 + 5.67261i −0.326469 + 0.209809i
\(732\) 0 0
\(733\) −14.3815 26.3377i −0.531193 0.972807i −0.996166 0.0874821i \(-0.972118\pi\)
0.464973 0.885325i \(-0.346064\pi\)
\(734\) 0 0
\(735\) 27.6613 + 20.1139i 1.02030 + 0.741912i
\(736\) 0 0
\(737\) −5.20220 5.20220i −0.191626 0.191626i
\(738\) 0 0
\(739\) 6.23853 21.2465i 0.229488 0.781565i −0.761564 0.648090i \(-0.775568\pi\)
0.991052 0.133475i \(-0.0426137\pi\)
\(740\) 0 0
\(741\) 1.73226 + 2.69545i 0.0636362 + 0.0990199i
\(742\) 0 0
\(743\) −32.6497 + 24.4412i −1.19780 + 0.896662i −0.996560 0.0828800i \(-0.973588\pi\)
−0.201240 + 0.979542i \(0.564497\pi\)
\(744\) 0 0
\(745\) −4.98889 2.19517i −0.182779 0.0804247i
\(746\) 0 0
\(747\) 25.8959 + 9.65866i 0.947480 + 0.353392i
\(748\) 0 0
\(749\) −16.9172 + 2.43232i −0.618140 + 0.0888751i
\(750\) 0 0
\(751\) −7.23427 24.6376i −0.263982 0.899040i −0.979669 0.200619i \(-0.935705\pi\)
0.715687 0.698421i \(-0.246114\pi\)
\(752\) 0 0
\(753\) −29.3771 + 2.10109i −1.07056 + 0.0765680i
\(754\) 0 0
\(755\) −15.1485 12.7624i −0.551310 0.464471i
\(756\) 0 0
\(757\) 3.29524 + 8.83489i 0.119768 + 0.321110i 0.982975 0.183740i \(-0.0588205\pi\)
−0.863207 + 0.504850i \(0.831548\pi\)
\(758\) 0 0
\(759\) 12.2485 + 2.63682i 0.444592 + 0.0957106i
\(760\) 0 0
\(761\) −4.23144 + 9.26556i −0.153390 + 0.335876i −0.970690 0.240336i \(-0.922742\pi\)
0.817300 + 0.576212i \(0.195470\pi\)
\(762\) 0 0
\(763\) 3.82534 + 0.273594i 0.138487 + 0.00990475i
\(764\) 0 0
\(765\) 4.61697 1.07170i 0.166927 0.0387473i
\(766\) 0 0
\(767\) −1.49694 0.817393i −0.0540515 0.0295144i
\(768\) 0 0
\(769\) −6.23644 43.3754i −0.224892 1.56416i −0.719159 0.694846i \(-0.755473\pi\)
0.494267 0.869310i \(-0.335437\pi\)
\(770\) 0 0
\(771\) −2.94498 6.44861i −0.106061 0.232241i
\(772\) 0 0
\(773\) 3.24830 + 14.9322i 0.116833 + 0.537074i 0.997940 + 0.0641564i \(0.0204356\pi\)
−0.881107 + 0.472918i \(0.843201\pi\)
\(774\) 0 0
\(775\) −8.38017 48.6543i −0.301025 1.74771i
\(776\) 0 0
\(777\) 47.4672 + 10.3259i 1.70288 + 0.370438i
\(778\) 0 0
\(779\) −15.5629 4.56967i −0.557598 0.163725i
\(780\) 0 0
\(781\) 3.24502i 0.116116i
\(782\) 0 0
\(783\) −11.6116 + 11.6116i −0.414965 + 0.414965i
\(784\) 0 0
\(785\) 6.88402 5.30402i 0.245701 0.189309i
\(786\) 0 0
\(787\) −1.65623 + 7.61359i −0.0590384 + 0.271395i −0.997198 0.0748081i \(-0.976166\pi\)
0.938160 + 0.346203i \(0.112529\pi\)
\(788\) 0 0
\(789\) 0.970102 6.74721i 0.0345365 0.240207i
\(790\) 0 0
\(791\) 49.9733 + 32.1159i 1.77684 + 1.14191i
\(792\) 0 0
\(793\) −1.40680 + 3.77177i −0.0499568 + 0.133939i
\(794\) 0 0
\(795\) 0.213965 + 0.692963i 0.00758857 + 0.0245769i
\(796\) 0 0
\(797\) 8.03765 14.7198i 0.284708 0.521404i −0.695712 0.718321i \(-0.744911\pi\)
0.980420 + 0.196917i \(0.0630929\pi\)
\(798\) 0 0
\(799\) −3.55766 + 4.10576i −0.125861 + 0.145251i
\(800\) 0 0
\(801\) −4.58072 + 3.96922i −0.161852 + 0.140245i
\(802\) 0 0
\(803\) 27.6535 10.3142i 0.975870 0.363981i
\(804\) 0 0
\(805\) −11.4200 48.7206i −0.402501 1.71718i
\(806\) 0 0
\(807\) −14.5309 + 5.41976i −0.511513 + 0.190784i
\(808\) 0 0
\(809\) −38.7029 + 33.5362i −1.36072 + 1.17907i −0.395246 + 0.918575i \(0.629341\pi\)
−0.965475 + 0.260496i \(0.916114\pi\)
\(810\) 0 0
\(811\) 23.4211 27.0294i 0.822428 0.949132i −0.176957 0.984219i \(-0.556625\pi\)
0.999384 + 0.0350865i \(0.0111707\pi\)
\(812\) 0 0
\(813\) −10.0570 + 18.4180i −0.352714 + 0.645948i
\(814\) 0 0
\(815\) −8.37238 4.42190i −0.293272 0.154893i
\(816\) 0 0
\(817\) −25.2696 + 67.7503i −0.884070 + 2.37028i
\(818\) 0 0
\(819\) −3.09282 1.98764i −0.108072 0.0694536i
\(820\) 0 0
\(821\) 1.10418 7.67976i 0.0385363 0.268026i −0.961439 0.275017i \(-0.911316\pi\)
0.999976 + 0.00699163i \(0.00222552\pi\)
\(822\) 0 0
\(823\) 1.93658 8.90234i 0.0675051 0.310316i −0.930997 0.365026i \(-0.881060\pi\)
0.998502 + 0.0547105i \(0.0174236\pi\)
\(824\) 0 0
\(825\) 9.48944 + 8.97658i 0.330380 + 0.312524i
\(826\) 0 0
\(827\) 1.87995 1.87995i 0.0653724 0.0653724i −0.673665 0.739037i \(-0.735281\pi\)
0.739037 + 0.673665i \(0.235281\pi\)
\(828\) 0 0
\(829\) 40.0737i 1.39182i 0.718130 + 0.695909i \(0.244998\pi\)
−0.718130 + 0.695909i \(0.755002\pi\)
\(830\) 0 0
\(831\) 11.1078 + 3.26156i 0.385327 + 0.113142i
\(832\) 0 0
\(833\) −15.8698 3.45226i −0.549855 0.119614i
\(834\) 0 0
\(835\) 36.0372 37.0519i 1.24712 1.28223i
\(836\) 0 0
\(837\) −10.7083 49.2254i −0.370134 1.70148i
\(838\) 0 0
\(839\) −15.3586 33.6307i −0.530238 1.16106i −0.965416 0.260715i \(-0.916042\pi\)
0.435178 0.900344i \(-0.356685\pi\)
\(840\) 0 0
\(841\) −2.65276 18.4504i −0.0914746 0.636220i
\(842\) 0 0
\(843\) −9.97770 5.44823i −0.343650 0.187647i
\(844\) 0 0
\(845\) 24.3533 + 15.1774i 0.837780 + 0.522118i
\(846\) 0 0
\(847\) 21.5562 + 1.54173i 0.740681 + 0.0529745i
\(848\) 0 0
\(849\) 7.41178 16.2295i 0.254372 0.556996i
\(850\) 0 0
\(851\) −28.9846 38.5452i −0.993578 1.32131i
\(852\) 0 0
\(853\) −1.96610 5.27131i −0.0673179 0.180486i 0.898935 0.438083i \(-0.144342\pi\)
−0.966253 + 0.257596i \(0.917070\pi\)
\(854\) 0 0
\(855\) 21.0458 24.9806i 0.719752 0.854319i
\(856\) 0 0
\(857\) −4.78393 + 0.342154i −0.163416 + 0.0116878i −0.152807 0.988256i \(-0.548831\pi\)
−0.0106086 + 0.999944i \(0.503377\pi\)
\(858\) 0 0
\(859\) 3.21388 + 10.9455i 0.109656 + 0.373455i 0.995976 0.0896187i \(-0.0285648\pi\)
−0.886320 + 0.463073i \(0.846747\pi\)
\(860\) 0 0
\(861\) −10.2378 + 1.47197i −0.348903 + 0.0501647i
\(862\) 0 0
\(863\) −36.2512 13.5210i −1.23400 0.460260i −0.354009 0.935242i \(-0.615182\pi\)
−0.879996 + 0.474982i \(0.842455\pi\)
\(864\) 0 0
\(865\) −51.6412 + 20.0822i −1.75586 + 0.682814i
\(866\) 0 0
\(867\) −13.0871 + 9.79687i −0.444461 + 0.332719i
\(868\) 0 0
\(869\) 7.76564 + 12.0836i 0.263431 + 0.409907i
\(870\) 0 0
\(871\) −0.335569 + 1.14284i −0.0113703 + 0.0387238i
\(872\) 0 0
\(873\) −3.51215 3.51215i −0.118868 0.118868i
\(874\) 0 0
\(875\) 16.1810 49.5988i 0.547017 1.67675i
\(876\) 0 0
\(877\) 22.4562 + 41.1254i 0.758291 + 1.38871i 0.915983 + 0.401217i \(0.131413\pi\)
−0.157692 + 0.987488i \(0.550405\pi\)
\(878\) 0 0
\(879\) 26.8715 17.2692i 0.906352 0.582477i
\(880\) 0 0
\(881\) −52.2809 7.51685i −1.76139 0.253249i −0.815734 0.578427i \(-0.803667\pi\)
−0.945653 + 0.325178i \(0.894576\pi\)
\(882\) 0 0
\(883\) 5.11569 1.11285i 0.172157 0.0374504i −0.125661 0.992073i \(-0.540105\pi\)
0.297817 + 0.954623i \(0.403741\pi\)
\(884\) 0 0
\(885\) 1.92276 9.46988i 0.0646329 0.318327i
\(886\) 0 0
\(887\) −16.2757 + 21.7418i −0.546485 + 0.730018i −0.985727 0.168350i \(-0.946156\pi\)
0.439243 + 0.898369i \(0.355247\pi\)
\(888\) 0 0
\(889\) −54.9923 + 16.1472i −1.84438 + 0.541560i
\(890\) 0 0
\(891\) −0.960221 0.832036i −0.0321686 0.0278743i
\(892\) 0 0
\(893\) −2.67094 + 37.3446i −0.0893796 + 1.24969i
\(894\) 0 0
\(895\) 25.2694 + 7.04023i 0.844663 + 0.235329i
\(896\) 0 0
\(897\) −0.575676 1.94503i −0.0192213 0.0649428i
\(898\) 0 0
\(899\) −28.9097 13.2026i −0.964191 0.440331i
\(900\) 0 0
\(901\) −0.225530 0.260275i −0.00751349 0.00867102i
\(902\) 0 0
\(903\) 3.28946 + 45.9927i 0.109466 + 1.53054i
\(904\) 0 0
\(905\) −4.99716 10.5521i −0.166111 0.350763i
\(906\) 0 0
\(907\) −1.42715 1.06835i −0.0473878 0.0354740i 0.575321 0.817928i \(-0.304877\pi\)
−0.622709 + 0.782454i \(0.713968\pi\)
\(908\) 0 0
\(909\) −24.4330 + 11.1582i −0.810391 + 0.370093i
\(910\) 0 0
\(911\) −15.1645 + 23.5964i −0.502421 + 0.781783i −0.996134 0.0878422i \(-0.972003\pi\)
0.493713 + 0.869625i \(0.335639\pi\)
\(912\) 0 0
\(913\) −21.6763 28.9562i −0.717382 0.958310i
\(914\) 0 0
\(915\) −22.7697 1.31109i −0.752743 0.0433432i
\(916\) 0 0
\(917\) −89.3716 + 48.8006i −2.95131 + 1.61154i
\(918\) 0 0
\(919\) 18.0327 0.594842 0.297421 0.954746i \(-0.403873\pi\)
0.297421 + 0.954746i \(0.403873\pi\)
\(920\) 0 0
\(921\) −0.461157 −0.0151957
\(922\) 0 0
\(923\) 0.461100 0.251780i 0.0151773 0.00828743i
\(924\) 0 0
\(925\) −4.97789 50.0330i −0.163672 1.64508i
\(926\) 0 0
\(927\) 16.7583 + 22.3865i 0.550415 + 0.735268i
\(928\) 0 0
\(929\) 14.6298 22.7643i 0.479987 0.746874i −0.513832 0.857891i \(-0.671774\pi\)
0.993819 + 0.111017i \(0.0354108\pi\)
\(930\) 0 0
\(931\) −101.812 + 46.4958i −3.33674 + 1.52384i
\(932\) 0 0
\(933\) 0.361914 + 0.270926i 0.0118485 + 0.00886971i
\(934\) 0 0
\(935\) −5.84136 2.08681i −0.191033 0.0682459i
\(936\) 0 0
\(937\) 1.95628 + 27.3524i 0.0639089 + 0.893564i 0.923749 + 0.383000i \(0.125109\pi\)
−0.859840 + 0.510564i \(0.829437\pi\)
\(938\) 0 0
\(939\) 13.0241 + 15.0307i 0.425027 + 0.490507i
\(940\) 0 0
\(941\) 16.2510 + 7.42160i 0.529769 + 0.241937i 0.662296 0.749242i \(-0.269582\pi\)
−0.132528 + 0.991179i \(0.542309\pi\)
\(942\) 0 0
\(943\) 8.65033 + 5.53289i 0.281694 + 0.180176i
\(944\) 0 0
\(945\) 14.2874 51.2814i 0.464768 1.66818i
\(946\) 0 0
\(947\) −2.73963 + 38.3050i −0.0890259 + 1.24475i 0.734950 + 0.678121i \(0.237205\pi\)
−0.823976 + 0.566624i \(0.808249\pi\)
\(948\) 0 0
\(949\) −3.61122 3.12914i −0.117225 0.101576i
\(950\) 0 0
\(951\) 8.96648 2.63280i 0.290758 0.0853743i
\(952\) 0 0
\(953\) −6.81386 + 9.10225i −0.220723 + 0.294851i −0.897211 0.441603i \(-0.854410\pi\)
0.676488 + 0.736454i \(0.263501\pi\)
\(954\) 0 0
\(955\) 1.87421 1.24158i 0.0606480 0.0401766i
\(956\) 0 0
\(957\) 8.21662 1.78742i 0.265606 0.0577790i
\(958\) 0 0
\(959\) 65.9697 + 9.48501i 2.13027 + 0.306287i
\(960\) 0 0
\(961\) 55.9423 35.9519i 1.80459 1.15974i
\(962\) 0 0
\(963\) 3.38482 + 6.19883i 0.109074 + 0.199755i
\(964\) 0 0
\(965\) −19.7371 + 27.1432i −0.635361 + 0.873770i
\(966\) 0 0
\(967\) −37.4013 37.4013i −1.20275 1.20275i −0.973328 0.229417i \(-0.926318\pi\)
−0.229417 0.973328i \(-0.573682\pi\)
\(968\) 0 0
\(969\) 2.42862 8.27112i 0.0780186 0.265707i
\(970\) 0 0
\(971\) −16.8325 26.1919i −0.540182 0.840539i 0.458662 0.888611i \(-0.348329\pi\)
−0.998844 + 0.0480716i \(0.984692\pi\)
\(972\) 0 0
\(973\) −66.1740 + 49.5373i −2.12144 + 1.58809i
\(974\) 0 0
\(975\) 0.539243 2.04489i 0.0172696 0.0654888i
\(976\) 0 0
\(977\) −24.4922 9.13511i −0.783574 0.292258i −0.0743416 0.997233i \(-0.523686\pi\)
−0.709232 + 0.704975i \(0.750958\pi\)
\(978\) 0 0
\(979\) 7.85157 1.12889i 0.250937 0.0360793i
\(980\) 0 0
\(981\) −0.446497 1.52063i −0.0142555 0.0485499i
\(982\) 0 0
\(983\) −8.71131 + 0.623045i −0.277848 + 0.0198720i −0.209568 0.977794i \(-0.567206\pi\)
−0.0682799 + 0.997666i \(0.521751\pi\)
\(984\) 0 0
\(985\) −0.599238 7.00945i −0.0190933 0.223340i
\(986\) 0 0
\(987\) 8.34334 + 22.3694i 0.265572 + 0.712025i
\(988\) 0 0
\(989\) 27.3543 36.7059i 0.869816 1.16718i
\(990\) 0 0
\(991\) −7.61859 + 16.6824i −0.242013 + 0.529934i −0.991192 0.132434i \(-0.957721\pi\)
0.749179 + 0.662367i \(0.230448\pi\)
\(992\) 0 0
\(993\) −12.6414 0.904128i −0.401161 0.0286916i
\(994\) 0 0
\(995\) 5.63176 9.03660i 0.178539 0.286479i
\(996\) 0 0
\(997\) −0.342757 0.187160i −0.0108552 0.00592740i 0.473812 0.880626i \(-0.342878\pi\)
−0.484667 + 0.874699i \(0.661059\pi\)
\(998\) 0 0
\(999\) −7.30140 50.7823i −0.231006 1.60668i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.17.14 720
5.3 odd 4 inner 920.2.bv.a.753.14 yes 720
23.19 odd 22 inner 920.2.bv.a.617.14 yes 720
115.88 even 44 inner 920.2.bv.a.433.14 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.14 720 1.1 even 1 trivial
920.2.bv.a.433.14 yes 720 115.88 even 44 inner
920.2.bv.a.617.14 yes 720 23.19 odd 22 inner
920.2.bv.a.753.14 yes 720 5.3 odd 4 inner