Properties

Label 920.2.bv.a.17.13
Level $920$
Weight $2$
Character 920.17
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 17.13
Character \(\chi\) \(=\) 920.17
Dual form 920.2.bv.a.433.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.07094 + 0.584775i) q^{3} +(1.80656 + 1.31770i) q^{5} +(-2.43642 - 3.25467i) q^{7} +(-0.816980 + 1.27125i) q^{9} +(1.21800 - 0.556244i) q^{11} +(1.32143 + 0.989210i) q^{13} +(-2.70527 - 0.354745i) q^{15} +(0.0608051 + 0.850167i) q^{17} +(2.89714 + 3.34347i) q^{19} +(4.51250 + 2.06079i) q^{21} +(1.11655 + 4.66405i) q^{23} +(1.52732 + 4.76102i) q^{25} +(0.392683 - 5.49042i) q^{27} +(5.55196 + 4.81080i) q^{29} +(-4.57200 + 1.34246i) q^{31} +(-0.979127 + 1.30796i) q^{33} +(-0.112840 - 9.09023i) q^{35} +(-7.64488 + 1.66304i) q^{37} +(-1.99363 - 0.286641i) q^{39} +(-0.0100982 + 0.00648973i) q^{41} +(2.57469 + 4.71519i) q^{43} +(-3.15105 + 1.22004i) q^{45} +(0.883714 + 0.883714i) q^{47} +(-2.68463 + 9.14301i) q^{49} +(-0.562275 - 0.874917i) q^{51} +(-0.834514 + 0.624709i) q^{53} +(2.93336 + 0.600081i) q^{55} +(-5.05783 - 1.88647i) q^{57} +(2.99919 - 0.431219i) q^{59} +(2.14000 + 7.28816i) q^{61} +(6.12799 - 0.438283i) q^{63} +(1.08376 + 3.52832i) q^{65} +(-0.148110 - 0.397099i) q^{67} +(-3.92317 - 4.34196i) q^{69} +(-4.03329 + 8.83168i) q^{71} +(-2.77739 - 0.198643i) q^{73} +(-4.41978 - 4.20561i) q^{75} +(-4.77795 - 2.60896i) q^{77} +(1.17612 + 8.18007i) q^{79} +(0.906883 + 1.98580i) q^{81} +(-1.65960 - 7.62905i) q^{83} +(-1.01042 + 1.61600i) q^{85} +(-8.75904 - 1.90541i) q^{87} +(11.0149 + 3.23428i) q^{89} -6.71094i q^{91} +(4.11128 - 4.11128i) q^{93} +(0.828143 + 9.85775i) q^{95} +(0.272889 - 1.25445i) q^{97} +(-0.287963 + 2.00282i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.07094 + 0.584775i −0.618305 + 0.337620i −0.757687 0.652619i \(-0.773670\pi\)
0.139381 + 0.990239i \(0.455489\pi\)
\(4\) 0 0
\(5\) 1.80656 + 1.31770i 0.807918 + 0.589295i
\(6\) 0 0
\(7\) −2.43642 3.25467i −0.920879 1.23015i −0.972835 0.231500i \(-0.925637\pi\)
0.0519563 0.998649i \(-0.483454\pi\)
\(8\) 0 0
\(9\) −0.816980 + 1.27125i −0.272327 + 0.423749i
\(10\) 0 0
\(11\) 1.21800 0.556244i 0.367242 0.167714i −0.223242 0.974763i \(-0.571664\pi\)
0.590484 + 0.807049i \(0.298937\pi\)
\(12\) 0 0
\(13\) 1.32143 + 0.989210i 0.366499 + 0.274357i 0.766615 0.642107i \(-0.221939\pi\)
−0.400117 + 0.916464i \(0.631030\pi\)
\(14\) 0 0
\(15\) −2.70527 0.354745i −0.698498 0.0915947i
\(16\) 0 0
\(17\) 0.0608051 + 0.850167i 0.0147474 + 0.206196i 0.999483 + 0.0321408i \(0.0102325\pi\)
−0.984736 + 0.174055i \(0.944313\pi\)
\(18\) 0 0
\(19\) 2.89714 + 3.34347i 0.664648 + 0.767045i 0.983529 0.180750i \(-0.0578524\pi\)
−0.318881 + 0.947795i \(0.603307\pi\)
\(20\) 0 0
\(21\) 4.51250 + 2.06079i 0.984707 + 0.449701i
\(22\) 0 0
\(23\) 1.11655 + 4.66405i 0.232816 + 0.972521i
\(24\) 0 0
\(25\) 1.52732 + 4.76102i 0.305463 + 0.952204i
\(26\) 0 0
\(27\) 0.392683 5.49042i 0.0755718 1.05663i
\(28\) 0 0
\(29\) 5.55196 + 4.81080i 1.03097 + 0.893344i 0.994368 0.105986i \(-0.0337999\pi\)
0.0366059 + 0.999330i \(0.488345\pi\)
\(30\) 0 0
\(31\) −4.57200 + 1.34246i −0.821155 + 0.241113i −0.665213 0.746653i \(-0.731659\pi\)
−0.155942 + 0.987766i \(0.549841\pi\)
\(32\) 0 0
\(33\) −0.979127 + 1.30796i −0.170444 + 0.227687i
\(34\) 0 0
\(35\) −0.112840 9.09023i −0.0190735 1.53653i
\(36\) 0 0
\(37\) −7.64488 + 1.66304i −1.25681 + 0.273402i −0.791184 0.611579i \(-0.790535\pi\)
−0.465627 + 0.884981i \(0.654171\pi\)
\(38\) 0 0
\(39\) −1.99363 0.286641i −0.319237 0.0458993i
\(40\) 0 0
\(41\) −0.0100982 + 0.00648973i −0.00157708 + 0.00101353i −0.541429 0.840746i \(-0.682117\pi\)
0.539852 + 0.841760i \(0.318480\pi\)
\(42\) 0 0
\(43\) 2.57469 + 4.71519i 0.392636 + 0.719060i 0.996980 0.0776643i \(-0.0247462\pi\)
−0.604343 + 0.796724i \(0.706564\pi\)
\(44\) 0 0
\(45\) −3.15105 + 1.22004i −0.469731 + 0.181873i
\(46\) 0 0
\(47\) 0.883714 + 0.883714i 0.128903 + 0.128903i 0.768615 0.639712i \(-0.220946\pi\)
−0.639712 + 0.768615i \(0.720946\pi\)
\(48\) 0 0
\(49\) −2.68463 + 9.14301i −0.383518 + 1.30614i
\(50\) 0 0
\(51\) −0.562275 0.874917i −0.0787342 0.122513i
\(52\) 0 0
\(53\) −0.834514 + 0.624709i −0.114629 + 0.0858104i −0.655054 0.755582i \(-0.727354\pi\)
0.540425 + 0.841392i \(0.318263\pi\)
\(54\) 0 0
\(55\) 2.93336 + 0.600081i 0.395534 + 0.0809148i
\(56\) 0 0
\(57\) −5.05783 1.88647i −0.669926 0.249869i
\(58\) 0 0
\(59\) 2.99919 0.431219i 0.390462 0.0561399i 0.0557117 0.998447i \(-0.482257\pi\)
0.334750 + 0.942307i \(0.391348\pi\)
\(60\) 0 0
\(61\) 2.14000 + 7.28816i 0.273999 + 0.933153i 0.975410 + 0.220397i \(0.0707353\pi\)
−0.701412 + 0.712756i \(0.747447\pi\)
\(62\) 0 0
\(63\) 6.12799 0.438283i 0.772054 0.0552184i
\(64\) 0 0
\(65\) 1.08376 + 3.52832i 0.134423 + 0.437634i
\(66\) 0 0
\(67\) −0.148110 0.397099i −0.0180946 0.0485134i 0.927588 0.373604i \(-0.121878\pi\)
−0.945683 + 0.325090i \(0.894605\pi\)
\(68\) 0 0
\(69\) −3.92317 4.34196i −0.472294 0.522711i
\(70\) 0 0
\(71\) −4.03329 + 8.83168i −0.478664 + 1.04813i 0.504165 + 0.863607i \(0.331800\pi\)
−0.982829 + 0.184520i \(0.940927\pi\)
\(72\) 0 0
\(73\) −2.77739 0.198643i −0.325069 0.0232494i −0.0921489 0.995745i \(-0.529374\pi\)
−0.232920 + 0.972496i \(0.574828\pi\)
\(74\) 0 0
\(75\) −4.41978 4.20561i −0.510353 0.485622i
\(76\) 0 0
\(77\) −4.77795 2.60896i −0.544498 0.297319i
\(78\) 0 0
\(79\) 1.17612 + 8.18007i 0.132324 + 0.920330i 0.942515 + 0.334165i \(0.108454\pi\)
−0.810191 + 0.586166i \(0.800637\pi\)
\(80\) 0 0
\(81\) 0.906883 + 1.98580i 0.100765 + 0.220644i
\(82\) 0 0
\(83\) −1.65960 7.62905i −0.182165 0.837397i −0.973980 0.226636i \(-0.927227\pi\)
0.791815 0.610761i \(-0.209136\pi\)
\(84\) 0 0
\(85\) −1.01042 + 1.61600i −0.109595 + 0.175280i
\(86\) 0 0
\(87\) −8.75904 1.90541i −0.939067 0.204282i
\(88\) 0 0
\(89\) 11.0149 + 3.23428i 1.16758 + 0.342833i 0.807374 0.590040i \(-0.200888\pi\)
0.360207 + 0.932872i \(0.382706\pi\)
\(90\) 0 0
\(91\) 6.71094i 0.703498i
\(92\) 0 0
\(93\) 4.11128 4.11128i 0.426320 0.426320i
\(94\) 0 0
\(95\) 0.828143 + 9.85775i 0.0849657 + 1.01138i
\(96\) 0 0
\(97\) 0.272889 1.25445i 0.0277077 0.127370i −0.961215 0.275798i \(-0.911058\pi\)
0.988923 + 0.148428i \(0.0474214\pi\)
\(98\) 0 0
\(99\) −0.287963 + 2.00282i −0.0289413 + 0.201291i
\(100\) 0 0
\(101\) 0.767945 + 0.493528i 0.0764134 + 0.0491079i 0.578290 0.815832i \(-0.303720\pi\)
−0.501876 + 0.864939i \(0.667357\pi\)
\(102\) 0 0
\(103\) 0.0186687 0.0500528i 0.00183948 0.00493185i −0.936027 0.351929i \(-0.885526\pi\)
0.937866 + 0.346997i \(0.112799\pi\)
\(104\) 0 0
\(105\) 5.43659 + 9.66907i 0.530557 + 0.943605i
\(106\) 0 0
\(107\) −4.46975 + 8.18573i −0.432107 + 0.791344i −0.999484 0.0321136i \(-0.989776\pi\)
0.567378 + 0.823458i \(0.307958\pi\)
\(108\) 0 0
\(109\) 2.73263 3.15363i 0.261739 0.302063i −0.609635 0.792682i \(-0.708684\pi\)
0.871374 + 0.490619i \(0.163229\pi\)
\(110\) 0 0
\(111\) 7.21467 6.25155i 0.684787 0.593371i
\(112\) 0 0
\(113\) 15.4989 5.78080i 1.45802 0.543812i 0.509481 0.860482i \(-0.329837\pi\)
0.948536 + 0.316670i \(0.102565\pi\)
\(114\) 0 0
\(115\) −4.12872 + 9.89716i −0.385005 + 0.922915i
\(116\) 0 0
\(117\) −2.33711 + 0.871697i −0.216066 + 0.0805884i
\(118\) 0 0
\(119\) 2.61887 2.26926i 0.240071 0.208023i
\(120\) 0 0
\(121\) −6.02934 + 6.95823i −0.548122 + 0.632566i
\(122\) 0 0
\(123\) 0.00701951 0.0128553i 0.000632928 0.00115912i
\(124\) 0 0
\(125\) −3.51443 + 10.6136i −0.314340 + 0.949311i
\(126\) 0 0
\(127\) 5.78703 15.5156i 0.513515 1.37679i −0.378843 0.925461i \(-0.623678\pi\)
0.892359 0.451327i \(-0.149049\pi\)
\(128\) 0 0
\(129\) −5.51465 3.54405i −0.485538 0.312036i
\(130\) 0 0
\(131\) 0.643818 4.47785i 0.0562506 0.391231i −0.942174 0.335124i \(-0.891222\pi\)
0.998425 0.0561078i \(-0.0178690\pi\)
\(132\) 0 0
\(133\) 3.82327 17.5753i 0.331520 1.52397i
\(134\) 0 0
\(135\) 7.94415 9.40133i 0.683724 0.809138i
\(136\) 0 0
\(137\) 9.39149 9.39149i 0.802369 0.802369i −0.181096 0.983465i \(-0.557965\pi\)
0.983465 + 0.181096i \(0.0579646\pi\)
\(138\) 0 0
\(139\) 20.8682i 1.77002i 0.465570 + 0.885011i \(0.345849\pi\)
−0.465570 + 0.885011i \(0.654151\pi\)
\(140\) 0 0
\(141\) −1.46318 0.429627i −0.123222 0.0361811i
\(142\) 0 0
\(143\) 2.15975 + 0.469824i 0.180607 + 0.0392887i
\(144\) 0 0
\(145\) 3.69074 + 16.0068i 0.306499 + 1.32930i
\(146\) 0 0
\(147\) −2.47154 11.3615i −0.203849 0.937079i
\(148\) 0 0
\(149\) −5.27807 11.5574i −0.432396 0.946816i −0.992932 0.118685i \(-0.962132\pi\)
0.560536 0.828130i \(-0.310595\pi\)
\(150\) 0 0
\(151\) −0.0969597 0.674369i −0.00789047 0.0548794i 0.985496 0.169700i \(-0.0542798\pi\)
−0.993386 + 0.114820i \(0.963371\pi\)
\(152\) 0 0
\(153\) −1.13045 0.617271i −0.0913913 0.0499034i
\(154\) 0 0
\(155\) −10.0285 3.59930i −0.805512 0.289103i
\(156\) 0 0
\(157\) 12.3191 + 0.881077i 0.983169 + 0.0703176i 0.553658 0.832744i \(-0.313231\pi\)
0.429511 + 0.903062i \(0.358686\pi\)
\(158\) 0 0
\(159\) 0.528396 1.15703i 0.0419046 0.0917582i
\(160\) 0 0
\(161\) 12.4596 14.9976i 0.981950 1.18197i
\(162\) 0 0
\(163\) −8.44582 22.6441i −0.661527 1.77362i −0.633154 0.774026i \(-0.718240\pi\)
−0.0283736 0.999597i \(-0.509033\pi\)
\(164\) 0 0
\(165\) −3.49236 + 1.07271i −0.271879 + 0.0835103i
\(166\) 0 0
\(167\) −14.0945 + 1.00806i −1.09066 + 0.0780059i −0.605065 0.796176i \(-0.706853\pi\)
−0.485599 + 0.874182i \(0.661398\pi\)
\(168\) 0 0
\(169\) −2.89488 9.85907i −0.222683 0.758390i
\(170\) 0 0
\(171\) −6.61728 + 0.951421i −0.506036 + 0.0727570i
\(172\) 0 0
\(173\) −2.49459 0.930435i −0.189660 0.0707397i 0.252839 0.967508i \(-0.418636\pi\)
−0.442500 + 0.896769i \(0.645908\pi\)
\(174\) 0 0
\(175\) 11.7744 16.5707i 0.890059 1.25263i
\(176\) 0 0
\(177\) −2.95978 + 2.21566i −0.222471 + 0.166539i
\(178\) 0 0
\(179\) −11.7907 18.3467i −0.881278 1.37129i −0.928076 0.372390i \(-0.878538\pi\)
0.0467986 0.998904i \(-0.485098\pi\)
\(180\) 0 0
\(181\) 5.61046 19.1075i 0.417022 1.42025i −0.436741 0.899587i \(-0.643868\pi\)
0.853764 0.520661i \(-0.174314\pi\)
\(182\) 0 0
\(183\) −6.55374 6.55374i −0.484466 0.484466i
\(184\) 0 0
\(185\) −16.0023 7.06930i −1.17651 0.519745i
\(186\) 0 0
\(187\) 0.546961 + 1.00168i 0.0399977 + 0.0732504i
\(188\) 0 0
\(189\) −18.8262 + 12.0989i −1.36941 + 0.880065i
\(190\) 0 0
\(191\) −1.04899 0.150821i −0.0759019 0.0109130i 0.104259 0.994550i \(-0.466753\pi\)
−0.180161 + 0.983637i \(0.557662\pi\)
\(192\) 0 0
\(193\) 12.7306 2.76938i 0.916371 0.199344i 0.270437 0.962738i \(-0.412832\pi\)
0.645934 + 0.763393i \(0.276468\pi\)
\(194\) 0 0
\(195\) −3.22391 3.14485i −0.230869 0.225207i
\(196\) 0 0
\(197\) 5.35232 7.14986i 0.381337 0.509406i −0.568273 0.822840i \(-0.692388\pi\)
0.949610 + 0.313433i \(0.101479\pi\)
\(198\) 0 0
\(199\) −5.54204 + 1.62729i −0.392865 + 0.115356i −0.472198 0.881493i \(-0.656539\pi\)
0.0793328 + 0.996848i \(0.474721\pi\)
\(200\) 0 0
\(201\) 0.390831 + 0.338657i 0.0275671 + 0.0238870i
\(202\) 0 0
\(203\) 2.13069 29.7909i 0.149545 2.09091i
\(204\) 0 0
\(205\) −0.0267946 0.00158237i −0.00187141 0.000110518i
\(206\) 0 0
\(207\) −6.84135 2.39103i −0.475507 0.166188i
\(208\) 0 0
\(209\) 5.38851 + 2.46085i 0.372731 + 0.170221i
\(210\) 0 0
\(211\) 9.17733 + 10.5912i 0.631793 + 0.729128i 0.977901 0.209066i \(-0.0670425\pi\)
−0.346108 + 0.938195i \(0.612497\pi\)
\(212\) 0 0
\(213\) −0.845149 11.8167i −0.0579087 0.809669i
\(214\) 0 0
\(215\) −1.56189 + 11.9109i −0.106520 + 0.812320i
\(216\) 0 0
\(217\) 15.5085 + 11.6096i 1.05279 + 0.788108i
\(218\) 0 0
\(219\) 3.09057 1.41142i 0.208841 0.0953747i
\(220\) 0 0
\(221\) −0.760643 + 1.18358i −0.0511664 + 0.0796165i
\(222\) 0 0
\(223\) 10.5623 + 14.1095i 0.707301 + 0.944843i 0.999935 0.0113810i \(-0.00362277\pi\)
−0.292634 + 0.956224i \(0.594532\pi\)
\(224\) 0 0
\(225\) −7.30022 1.94807i −0.486681 0.129871i
\(226\) 0 0
\(227\) −17.9808 + 9.81827i −1.19343 + 0.651661i −0.948160 0.317794i \(-0.897058\pi\)
−0.245269 + 0.969455i \(0.578876\pi\)
\(228\) 0 0
\(229\) −17.3640 −1.14744 −0.573722 0.819050i \(-0.694501\pi\)
−0.573722 + 0.819050i \(0.694501\pi\)
\(230\) 0 0
\(231\) 6.64254 0.437047
\(232\) 0 0
\(233\) −22.2091 + 12.1271i −1.45496 + 0.794470i −0.995593 0.0937748i \(-0.970107\pi\)
−0.459370 + 0.888245i \(0.651925\pi\)
\(234\) 0 0
\(235\) 0.432009 + 2.76096i 0.0281812 + 0.180105i
\(236\) 0 0
\(237\) −6.04305 8.07257i −0.392538 0.524370i
\(238\) 0 0
\(239\) 11.9041 18.5231i 0.770009 1.19816i −0.205599 0.978636i \(-0.565914\pi\)
0.975608 0.219521i \(-0.0704495\pi\)
\(240\) 0 0
\(241\) 28.0058 12.7898i 1.80401 0.823865i 0.848331 0.529466i \(-0.177608\pi\)
0.955682 0.294400i \(-0.0951197\pi\)
\(242\) 0 0
\(243\) 11.0871 + 8.29974i 0.711241 + 0.532428i
\(244\) 0 0
\(245\) −16.8977 + 12.9798i −1.07956 + 0.829252i
\(246\) 0 0
\(247\) 0.520965 + 7.28404i 0.0331482 + 0.463472i
\(248\) 0 0
\(249\) 6.23860 + 7.19973i 0.395356 + 0.456265i
\(250\) 0 0
\(251\) 8.02684 + 3.66573i 0.506649 + 0.231379i 0.652305 0.757956i \(-0.273802\pi\)
−0.145656 + 0.989335i \(0.546529\pi\)
\(252\) 0 0
\(253\) 3.95431 + 5.05975i 0.248605 + 0.318104i
\(254\) 0 0
\(255\) 0.137098 2.32150i 0.00858539 0.145378i
\(256\) 0 0
\(257\) 1.98043 27.6900i 0.123536 1.72726i −0.437289 0.899321i \(-0.644061\pi\)
0.560825 0.827934i \(-0.310484\pi\)
\(258\) 0 0
\(259\) 24.0388 + 20.8297i 1.49370 + 1.29429i
\(260\) 0 0
\(261\) −10.6516 + 3.12758i −0.659315 + 0.193592i
\(262\) 0 0
\(263\) −14.1029 + 18.8392i −0.869621 + 1.16168i 0.116091 + 0.993239i \(0.462964\pi\)
−0.985712 + 0.168439i \(0.946127\pi\)
\(264\) 0 0
\(265\) −2.33078 + 0.0289328i −0.143179 + 0.00177732i
\(266\) 0 0
\(267\) −13.6876 + 2.97756i −0.837669 + 0.182224i
\(268\) 0 0
\(269\) −25.7186 3.69777i −1.56809 0.225457i −0.697178 0.716898i \(-0.745561\pi\)
−0.870911 + 0.491441i \(0.836470\pi\)
\(270\) 0 0
\(271\) 13.3162 8.55777i 0.808899 0.519848i −0.0696098 0.997574i \(-0.522175\pi\)
0.878509 + 0.477727i \(0.158539\pi\)
\(272\) 0 0
\(273\) 3.92439 + 7.18699i 0.237515 + 0.434976i
\(274\) 0 0
\(275\) 4.50856 + 4.94938i 0.271877 + 0.298459i
\(276\) 0 0
\(277\) −4.36695 4.36695i −0.262384 0.262384i 0.563638 0.826022i \(-0.309401\pi\)
−0.826022 + 0.563638i \(0.809401\pi\)
\(278\) 0 0
\(279\) 2.02864 6.90890i 0.121451 0.413625i
\(280\) 0 0
\(281\) 13.0555 + 20.3148i 0.778827 + 1.21188i 0.972976 + 0.230906i \(0.0741690\pi\)
−0.194149 + 0.980972i \(0.562195\pi\)
\(282\) 0 0
\(283\) 18.6947 13.9947i 1.11128 0.831896i 0.124224 0.992254i \(-0.460356\pi\)
0.987059 + 0.160358i \(0.0512648\pi\)
\(284\) 0 0
\(285\) −6.65146 10.0727i −0.393998 0.596658i
\(286\) 0 0
\(287\) 0.0457254 + 0.0170547i 0.00269908 + 0.00100671i
\(288\) 0 0
\(289\) 16.1079 2.31596i 0.947522 0.136233i
\(290\) 0 0
\(291\) 0.441325 + 1.50302i 0.0258710 + 0.0881084i
\(292\) 0 0
\(293\) 5.58066 0.399137i 0.326026 0.0233178i 0.0926329 0.995700i \(-0.470472\pi\)
0.233393 + 0.972383i \(0.425017\pi\)
\(294\) 0 0
\(295\) 5.98644 + 3.17302i 0.348544 + 0.184741i
\(296\) 0 0
\(297\) −2.57572 6.90578i −0.149459 0.400714i
\(298\) 0 0
\(299\) −3.13828 + 7.26771i −0.181491 + 0.420302i
\(300\) 0 0
\(301\) 9.07338 19.8679i 0.522981 1.14517i
\(302\) 0 0
\(303\) −1.11102 0.0794620i −0.0638266 0.00456497i
\(304\) 0 0
\(305\) −5.73760 + 15.9864i −0.328534 + 0.915377i
\(306\) 0 0
\(307\) −3.25108 1.77523i −0.185549 0.101317i 0.383789 0.923421i \(-0.374619\pi\)
−0.569339 + 0.822103i \(0.692801\pi\)
\(308\) 0 0
\(309\) 0.00927663 + 0.0645204i 0.000527729 + 0.00367044i
\(310\) 0 0
\(311\) 4.56427 + 9.99436i 0.258816 + 0.566728i 0.993778 0.111380i \(-0.0355272\pi\)
−0.734962 + 0.678109i \(0.762800\pi\)
\(312\) 0 0
\(313\) 6.63811 + 30.5149i 0.375208 + 1.72480i 0.647037 + 0.762459i \(0.276008\pi\)
−0.271829 + 0.962346i \(0.587628\pi\)
\(314\) 0 0
\(315\) 11.6481 + 7.28309i 0.656297 + 0.410356i
\(316\) 0 0
\(317\) −12.2692 2.66901i −0.689109 0.149907i −0.145643 0.989337i \(-0.546525\pi\)
−0.543467 + 0.839431i \(0.682889\pi\)
\(318\) 0 0
\(319\) 9.43829 + 2.77133i 0.528443 + 0.155165i
\(320\) 0 0
\(321\) 11.3802i 0.635180i
\(322\) 0 0
\(323\) −2.66635 + 2.66635i −0.148360 + 0.148360i
\(324\) 0 0
\(325\) −2.69141 + 7.80219i −0.149292 + 0.432787i
\(326\) 0 0
\(327\) −1.08231 + 4.97531i −0.0598520 + 0.275135i
\(328\) 0 0
\(329\) 0.723103 5.02929i 0.0398660 0.277274i
\(330\) 0 0
\(331\) 12.1057 + 7.77989i 0.665392 + 0.427621i 0.829262 0.558861i \(-0.188761\pi\)
−0.163870 + 0.986482i \(0.552398\pi\)
\(332\) 0 0
\(333\) 4.13158 11.0772i 0.226409 0.607027i
\(334\) 0 0
\(335\) 0.255689 0.912549i 0.0139698 0.0498579i
\(336\) 0 0
\(337\) 9.39973 17.2143i 0.512036 0.937723i −0.485932 0.873997i \(-0.661520\pi\)
0.997967 0.0637266i \(-0.0202986\pi\)
\(338\) 0 0
\(339\) −13.2179 + 15.2543i −0.717897 + 0.828498i
\(340\) 0 0
\(341\) −4.82198 + 4.17827i −0.261125 + 0.226266i
\(342\) 0 0
\(343\) 9.63359 3.59314i 0.520165 0.194011i
\(344\) 0 0
\(345\) −1.36602 13.0136i −0.0735441 0.700628i
\(346\) 0 0
\(347\) −10.1574 + 3.78852i −0.545279 + 0.203378i −0.606981 0.794716i \(-0.707620\pi\)
0.0617026 + 0.998095i \(0.480347\pi\)
\(348\) 0 0
\(349\) −14.6510 + 12.6952i −0.784251 + 0.679557i −0.951941 0.306283i \(-0.900915\pi\)
0.167690 + 0.985840i \(0.446369\pi\)
\(350\) 0 0
\(351\) 5.95008 6.86676i 0.317592 0.366520i
\(352\) 0 0
\(353\) −6.70933 + 12.2872i −0.357101 + 0.653983i −0.993043 0.117755i \(-0.962430\pi\)
0.635941 + 0.771738i \(0.280612\pi\)
\(354\) 0 0
\(355\) −18.9239 + 10.6403i −1.00438 + 0.564727i
\(356\) 0 0
\(357\) −1.47763 + 3.96168i −0.0782045 + 0.209674i
\(358\) 0 0
\(359\) −15.1568 9.74069i −0.799945 0.514094i 0.0756526 0.997134i \(-0.475896\pi\)
−0.875598 + 0.483041i \(0.839532\pi\)
\(360\) 0 0
\(361\) −0.0814332 + 0.566381i −0.00428596 + 0.0298095i
\(362\) 0 0
\(363\) 2.38804 10.9776i 0.125339 0.576176i
\(364\) 0 0
\(365\) −4.75577 4.01864i −0.248928 0.210345i
\(366\) 0 0
\(367\) −9.28332 + 9.28332i −0.484585 + 0.484585i −0.906592 0.422007i \(-0.861326\pi\)
0.422007 + 0.906592i \(0.361326\pi\)
\(368\) 0 0
\(369\) 0.0181393i 0.000944294i
\(370\) 0 0
\(371\) 4.06644 + 1.19402i 0.211119 + 0.0619902i
\(372\) 0 0
\(373\) −27.3307 5.94543i −1.41513 0.307843i −0.560963 0.827841i \(-0.689569\pi\)
−0.854168 + 0.519998i \(0.825933\pi\)
\(374\) 0 0
\(375\) −2.44286 13.4217i −0.126149 0.693091i
\(376\) 0 0
\(377\) 2.57763 + 11.8492i 0.132755 + 0.610264i
\(378\) 0 0
\(379\) 8.39675 + 18.3863i 0.431312 + 0.944442i 0.993112 + 0.117169i \(0.0373818\pi\)
−0.561800 + 0.827273i \(0.689891\pi\)
\(380\) 0 0
\(381\) 2.87562 + 20.0003i 0.147322 + 1.02465i
\(382\) 0 0
\(383\) −24.9911 13.6462i −1.27699 0.697288i −0.309667 0.950845i \(-0.600218\pi\)
−0.967320 + 0.253557i \(0.918399\pi\)
\(384\) 0 0
\(385\) −5.19382 11.0092i −0.264702 0.561079i
\(386\) 0 0
\(387\) −8.09764 0.579155i −0.411626 0.0294401i
\(388\) 0 0
\(389\) 11.0293 24.1509i 0.559209 1.22450i −0.393137 0.919480i \(-0.628610\pi\)
0.952347 0.305018i \(-0.0986625\pi\)
\(390\) 0 0
\(391\) −3.89732 + 1.23285i −0.197096 + 0.0623479i
\(392\) 0 0
\(393\) 1.92905 + 5.17198i 0.0973076 + 0.260892i
\(394\) 0 0
\(395\) −8.65419 + 16.3276i −0.435439 + 0.821529i
\(396\) 0 0
\(397\) 31.7661 2.27195i 1.59429 0.114026i 0.754265 0.656570i \(-0.227993\pi\)
0.840028 + 0.542543i \(0.182539\pi\)
\(398\) 0 0
\(399\) 6.18313 + 21.0578i 0.309543 + 1.05421i
\(400\) 0 0
\(401\) 28.4526 4.09087i 1.42086 0.204288i 0.611332 0.791374i \(-0.290634\pi\)
0.809524 + 0.587086i \(0.199725\pi\)
\(402\) 0 0
\(403\) −7.36955 2.74870i −0.367103 0.136922i
\(404\) 0 0
\(405\) −0.978352 + 4.78246i −0.0486147 + 0.237642i
\(406\) 0 0
\(407\) −8.38644 + 6.27801i −0.415700 + 0.311189i
\(408\) 0 0
\(409\) −10.2918 16.0143i −0.508894 0.791855i 0.487812 0.872949i \(-0.337795\pi\)
−0.996707 + 0.0810934i \(0.974159\pi\)
\(410\) 0 0
\(411\) −4.56577 + 15.5496i −0.225213 + 0.767005i
\(412\) 0 0
\(413\) −8.71076 8.71076i −0.428628 0.428628i
\(414\) 0 0
\(415\) 7.05466 15.9692i 0.346300 0.783897i
\(416\) 0 0
\(417\) −12.2032 22.3486i −0.597595 1.09441i
\(418\) 0 0
\(419\) 25.6777 16.5021i 1.25444 0.806178i 0.266925 0.963717i \(-0.413993\pi\)
0.987513 + 0.157540i \(0.0503562\pi\)
\(420\) 0 0
\(421\) −20.3583 2.92708i −0.992203 0.142657i −0.372952 0.927850i \(-0.621655\pi\)
−0.619251 + 0.785193i \(0.712564\pi\)
\(422\) 0 0
\(423\) −1.84540 + 0.401441i −0.0897262 + 0.0195187i
\(424\) 0 0
\(425\) −3.95479 + 1.58797i −0.191836 + 0.0770277i
\(426\) 0 0
\(427\) 18.5066 24.7220i 0.895599 1.19638i
\(428\) 0 0
\(429\) −2.58769 + 0.759816i −0.124935 + 0.0366842i
\(430\) 0 0
\(431\) 2.53265 + 2.19456i 0.121994 + 0.105708i 0.713721 0.700430i \(-0.247008\pi\)
−0.591727 + 0.806138i \(0.701554\pi\)
\(432\) 0 0
\(433\) −2.36058 + 33.0052i −0.113442 + 1.58613i 0.548224 + 0.836331i \(0.315304\pi\)
−0.661666 + 0.749798i \(0.730150\pi\)
\(434\) 0 0
\(435\) −13.3130 14.9841i −0.638307 0.718430i
\(436\) 0 0
\(437\) −12.3593 + 17.2455i −0.591226 + 0.824965i
\(438\) 0 0
\(439\) 2.45365 + 1.12054i 0.117106 + 0.0534806i 0.473107 0.881005i \(-0.343133\pi\)
−0.356000 + 0.934486i \(0.615860\pi\)
\(440\) 0 0
\(441\) −9.42972 10.8825i −0.449034 0.518213i
\(442\) 0 0
\(443\) 1.18644 + 16.5886i 0.0563694 + 0.788148i 0.944491 + 0.328538i \(0.106556\pi\)
−0.888121 + 0.459609i \(0.847989\pi\)
\(444\) 0 0
\(445\) 15.6373 + 20.3573i 0.741280 + 0.965030i
\(446\) 0 0
\(447\) 12.4109 + 9.29071i 0.587017 + 0.439435i
\(448\) 0 0
\(449\) 0.996767 0.455208i 0.0470404 0.0214826i −0.391756 0.920069i \(-0.628132\pi\)
0.438796 + 0.898587i \(0.355405\pi\)
\(450\) 0 0
\(451\) −0.00868979 + 0.0135216i −0.000409186 + 0.000636706i
\(452\) 0 0
\(453\) 0.498192 + 0.665507i 0.0234071 + 0.0312682i
\(454\) 0 0
\(455\) 8.84303 12.1237i 0.414568 0.568369i
\(456\) 0 0
\(457\) 1.02044 0.557202i 0.0477341 0.0260648i −0.455205 0.890387i \(-0.650434\pi\)
0.502939 + 0.864322i \(0.332252\pi\)
\(458\) 0 0
\(459\) 4.69165 0.218987
\(460\) 0 0
\(461\) −30.7280 −1.43114 −0.715572 0.698539i \(-0.753834\pi\)
−0.715572 + 0.698539i \(0.753834\pi\)
\(462\) 0 0
\(463\) −0.429190 + 0.234355i −0.0199461 + 0.0108914i −0.489191 0.872177i \(-0.662708\pi\)
0.469245 + 0.883068i \(0.344526\pi\)
\(464\) 0 0
\(465\) 12.8447 2.00982i 0.595660 0.0932034i
\(466\) 0 0
\(467\) −0.600604 0.802313i −0.0277926 0.0371266i 0.786430 0.617680i \(-0.211927\pi\)
−0.814222 + 0.580553i \(0.802836\pi\)
\(468\) 0 0
\(469\) −0.931568 + 1.44955i −0.0430158 + 0.0669339i
\(470\) 0 0
\(471\) −13.7082 + 6.26031i −0.631639 + 0.288460i
\(472\) 0 0
\(473\) 5.75878 + 4.31097i 0.264789 + 0.198218i
\(474\) 0 0
\(475\) −11.4935 + 18.8999i −0.527358 + 0.867185i
\(476\) 0 0
\(477\) −0.112378 1.57125i −0.00514543 0.0719425i
\(478\) 0 0
\(479\) −3.03499 3.50257i −0.138672 0.160037i 0.682165 0.731198i \(-0.261038\pi\)
−0.820838 + 0.571162i \(0.806493\pi\)
\(480\) 0 0
\(481\) −11.7473 5.36480i −0.535629 0.244614i
\(482\) 0 0
\(483\) −4.57319 + 23.3475i −0.208087 + 1.06235i
\(484\) 0 0
\(485\) 2.14599 1.90665i 0.0974442 0.0865767i
\(486\) 0 0
\(487\) −2.22417 + 31.0980i −0.100787 + 1.40919i 0.655623 + 0.755088i \(0.272406\pi\)
−0.756410 + 0.654097i \(0.773049\pi\)
\(488\) 0 0
\(489\) 22.2866 + 19.3115i 1.00784 + 0.873296i
\(490\) 0 0
\(491\) −0.135245 + 0.0397115i −0.00610352 + 0.00179216i −0.284783 0.958592i \(-0.591922\pi\)
0.278679 + 0.960384i \(0.410103\pi\)
\(492\) 0 0
\(493\) −3.75240 + 5.01261i −0.168999 + 0.225757i
\(494\) 0 0
\(495\) −3.15935 + 3.23877i −0.142002 + 0.145572i
\(496\) 0 0
\(497\) 38.5710 8.39060i 1.73014 0.376370i
\(498\) 0 0
\(499\) 36.1577 + 5.19870i 1.61864 + 0.232726i 0.891256 0.453501i \(-0.149825\pi\)
0.727387 + 0.686227i \(0.240734\pi\)
\(500\) 0 0
\(501\) 14.5048 9.32168i 0.648027 0.416462i
\(502\) 0 0
\(503\) 10.4232 + 19.0887i 0.464748 + 0.851123i 0.999979 + 0.00641733i \(0.00204271\pi\)
−0.535231 + 0.844706i \(0.679775\pi\)
\(504\) 0 0
\(505\) 0.737015 + 1.90351i 0.0327967 + 0.0847052i
\(506\) 0 0
\(507\) 8.86558 + 8.86558i 0.393734 + 0.393734i
\(508\) 0 0
\(509\) 8.23773 28.0551i 0.365131 1.24352i −0.548215 0.836337i \(-0.684693\pi\)
0.913346 0.407184i \(-0.133489\pi\)
\(510\) 0 0
\(511\) 6.12036 + 9.52347i 0.270749 + 0.421294i
\(512\) 0 0
\(513\) 19.4947 14.5936i 0.860713 0.644322i
\(514\) 0 0
\(515\) 0.0996809 0.0658235i 0.00439247 0.00290053i
\(516\) 0 0
\(517\) 1.56793 + 0.584807i 0.0689574 + 0.0257198i
\(518\) 0 0
\(519\) 3.21565 0.462340i 0.141151 0.0202945i
\(520\) 0 0
\(521\) −4.97811 16.9539i −0.218095 0.742764i −0.993752 0.111609i \(-0.964400\pi\)
0.775657 0.631155i \(-0.217419\pi\)
\(522\) 0 0
\(523\) 44.1354 3.15663i 1.92991 0.138030i 0.946892 0.321553i \(-0.104205\pi\)
0.983015 + 0.183523i \(0.0587502\pi\)
\(524\) 0 0
\(525\) −2.91945 + 24.6316i −0.127415 + 1.07501i
\(526\) 0 0
\(527\) −1.41932 3.80533i −0.0618263 0.165763i
\(528\) 0 0
\(529\) −20.5066 + 10.4153i −0.891593 + 0.452838i
\(530\) 0 0
\(531\) −1.90210 + 4.16501i −0.0825440 + 0.180746i
\(532\) 0 0
\(533\) −0.0197638 0.00141353i −0.000856064 6.12269e-5i
\(534\) 0 0
\(535\) −18.8612 + 8.89821i −0.815442 + 0.384703i
\(536\) 0 0
\(537\) 23.3558 + 12.7532i 1.00788 + 0.550342i
\(538\) 0 0
\(539\) 1.81585 + 12.6295i 0.0782143 + 0.543992i
\(540\) 0 0
\(541\) −3.97134 8.69602i −0.170741 0.373871i 0.804846 0.593484i \(-0.202248\pi\)
−0.975587 + 0.219613i \(0.929521\pi\)
\(542\) 0 0
\(543\) 5.16514 + 23.7437i 0.221657 + 1.01894i
\(544\) 0 0
\(545\) 9.09221 2.09641i 0.389467 0.0898005i
\(546\) 0 0
\(547\) −1.63871 0.356479i −0.0700661 0.0152419i 0.177396 0.984140i \(-0.443233\pi\)
−0.247462 + 0.968898i \(0.579596\pi\)
\(548\) 0 0
\(549\) −11.0134 3.23382i −0.470040 0.138016i
\(550\) 0 0
\(551\) 32.5004i 1.38456i
\(552\) 0 0
\(553\) 23.7579 23.7579i 1.01029 1.01029i
\(554\) 0 0
\(555\) 21.2714 1.78700i 0.902922 0.0758539i
\(556\) 0 0
\(557\) 2.47069 11.3576i 0.104686 0.481236i −0.894715 0.446638i \(-0.852621\pi\)
0.999401 0.0345980i \(-0.0110151\pi\)
\(558\) 0 0
\(559\) −1.26204 + 8.77770i −0.0533787 + 0.371257i
\(560\) 0 0
\(561\) −1.17152 0.752890i −0.0494616 0.0317871i
\(562\) 0 0
\(563\) 3.83561 10.2837i 0.161652 0.433405i −0.830719 0.556691i \(-0.812071\pi\)
0.992371 + 0.123286i \(0.0393434\pi\)
\(564\) 0 0
\(565\) 35.6171 + 9.97963i 1.49842 + 0.419846i
\(566\) 0 0
\(567\) 4.25357 7.78983i 0.178633 0.327142i
\(568\) 0 0
\(569\) −12.9010 + 14.8885i −0.540837 + 0.624159i −0.958723 0.284340i \(-0.908225\pi\)
0.417887 + 0.908499i \(0.362771\pi\)
\(570\) 0 0
\(571\) −7.01070 + 6.07481i −0.293389 + 0.254223i −0.789100 0.614264i \(-0.789453\pi\)
0.495711 + 0.868487i \(0.334907\pi\)
\(572\) 0 0
\(573\) 1.21159 0.451901i 0.0506150 0.0188784i
\(574\) 0 0
\(575\) −20.5003 + 12.4394i −0.854921 + 0.518758i
\(576\) 0 0
\(577\) −33.0120 + 12.3129i −1.37431 + 0.512591i −0.924721 0.380645i \(-0.875702\pi\)
−0.449588 + 0.893236i \(0.648429\pi\)
\(578\) 0 0
\(579\) −12.0142 + 10.4104i −0.499294 + 0.432641i
\(580\) 0 0
\(581\) −20.7866 + 23.9890i −0.862372 + 0.995231i
\(582\) 0 0
\(583\) −0.668950 + 1.22509i −0.0277051 + 0.0507381i
\(584\) 0 0
\(585\) −5.37077 1.50485i −0.222054 0.0622177i
\(586\) 0 0
\(587\) 4.91766 13.1847i 0.202973 0.544193i −0.795084 0.606500i \(-0.792573\pi\)
0.998057 + 0.0623071i \(0.0198458\pi\)
\(588\) 0 0
\(589\) −17.7342 11.3971i −0.730724 0.469608i
\(590\) 0 0
\(591\) −1.55093 + 10.7869i −0.0637967 + 0.443716i
\(592\) 0 0
\(593\) −6.33647 + 29.1283i −0.260208 + 1.19615i 0.642631 + 0.766176i \(0.277843\pi\)
−0.902839 + 0.429979i \(0.858521\pi\)
\(594\) 0 0
\(595\) 7.72135 0.648665i 0.316544 0.0265927i
\(596\) 0 0
\(597\) 4.98358 4.98358i 0.203964 0.203964i
\(598\) 0 0
\(599\) 31.9108i 1.30384i −0.758288 0.651919i \(-0.773964\pi\)
0.758288 0.651919i \(-0.226036\pi\)
\(600\) 0 0
\(601\) −9.13983 2.68370i −0.372822 0.109470i 0.0899537 0.995946i \(-0.471328\pi\)
−0.462775 + 0.886476i \(0.653146\pi\)
\(602\) 0 0
\(603\) 0.625814 + 0.136138i 0.0254851 + 0.00554395i
\(604\) 0 0
\(605\) −20.0612 + 4.62558i −0.815606 + 0.188056i
\(606\) 0 0
\(607\) 5.84192 + 26.8549i 0.237116 + 1.09001i 0.929599 + 0.368572i \(0.120153\pi\)
−0.692483 + 0.721434i \(0.743483\pi\)
\(608\) 0 0
\(609\) 15.1392 + 33.1501i 0.613470 + 1.34331i
\(610\) 0 0
\(611\) 0.293587 + 2.04194i 0.0118773 + 0.0826082i
\(612\) 0 0
\(613\) −13.3999 7.31688i −0.541216 0.295526i 0.185293 0.982683i \(-0.440677\pi\)
−0.726509 + 0.687157i \(0.758858\pi\)
\(614\) 0 0
\(615\) 0.0296206 0.0139742i 0.00119442 0.000563493i
\(616\) 0 0
\(617\) −35.4427 2.53491i −1.42687 0.102052i −0.663579 0.748107i \(-0.730963\pi\)
−0.763291 + 0.646055i \(0.776418\pi\)
\(618\) 0 0
\(619\) 1.93373 4.23427i 0.0777230 0.170190i −0.866782 0.498688i \(-0.833815\pi\)
0.944504 + 0.328499i \(0.106543\pi\)
\(620\) 0 0
\(621\) 26.0460 4.29883i 1.04519 0.172506i
\(622\) 0 0
\(623\) −16.3105 43.7300i −0.653465 1.75201i
\(624\) 0 0
\(625\) −20.3346 + 14.5432i −0.813385 + 0.581726i
\(626\) 0 0
\(627\) −7.20979 + 0.515655i −0.287931 + 0.0205933i
\(628\) 0 0
\(629\) −1.87871 6.39830i −0.0749091 0.255117i
\(630\) 0 0
\(631\) −48.4682 + 6.96868i −1.92949 + 0.277419i −0.996576 0.0826816i \(-0.973652\pi\)
−0.932914 + 0.360100i \(0.882742\pi\)
\(632\) 0 0
\(633\) −16.0218 5.97582i −0.636810 0.237518i
\(634\) 0 0
\(635\) 30.8996 20.4043i 1.22621 0.809720i
\(636\) 0 0
\(637\) −12.5919 + 9.42618i −0.498909 + 0.373479i
\(638\) 0 0
\(639\) −7.93212 12.3426i −0.313790 0.488266i
\(640\) 0 0
\(641\) −5.08931 + 17.3326i −0.201016 + 0.684596i 0.795851 + 0.605493i \(0.207024\pi\)
−0.996866 + 0.0791036i \(0.974794\pi\)
\(642\) 0 0
\(643\) 11.3099 + 11.3099i 0.446019 + 0.446019i 0.894029 0.448010i \(-0.147867\pi\)
−0.448010 + 0.894029i \(0.647867\pi\)
\(644\) 0 0
\(645\) −5.29254 13.6692i −0.208394 0.538225i
\(646\) 0 0
\(647\) −19.1935 35.1504i −0.754576 1.38190i −0.918496 0.395430i \(-0.870596\pi\)
0.163920 0.986474i \(-0.447586\pi\)
\(648\) 0 0
\(649\) 3.41317 2.19351i 0.133979 0.0861028i
\(650\) 0 0
\(651\) −23.3976 3.36407i −0.917026 0.131848i
\(652\) 0 0
\(653\) 48.4789 10.5459i 1.89713 0.412695i 0.897527 0.440960i \(-0.145362\pi\)
0.999600 + 0.0282651i \(0.00899826\pi\)
\(654\) 0 0
\(655\) 7.06357 7.24114i 0.275997 0.282935i
\(656\) 0 0
\(657\) 2.52160 3.36846i 0.0983769 0.131416i
\(658\) 0 0
\(659\) −24.7815 + 7.27649i −0.965349 + 0.283452i −0.726163 0.687522i \(-0.758698\pi\)
−0.239185 + 0.970974i \(0.576880\pi\)
\(660\) 0 0
\(661\) −24.8546 21.5366i −0.966730 0.837676i 0.0200405 0.999799i \(-0.493620\pi\)
−0.986771 + 0.162123i \(0.948166\pi\)
\(662\) 0 0
\(663\) 0.122470 1.71235i 0.00475633 0.0665021i
\(664\) 0 0
\(665\) 30.0660 26.7129i 1.16591 1.03588i
\(666\) 0 0
\(667\) −16.2388 + 31.2661i −0.628767 + 1.21063i
\(668\) 0 0
\(669\) −19.5624 8.93385i −0.756326 0.345403i
\(670\) 0 0
\(671\) 6.66052 + 7.68665i 0.257127 + 0.296740i
\(672\) 0 0
\(673\) 2.00066 + 27.9729i 0.0771199 + 1.07828i 0.877750 + 0.479119i \(0.159044\pi\)
−0.800630 + 0.599159i \(0.795502\pi\)
\(674\) 0 0
\(675\) 26.7398 6.51603i 1.02921 0.250802i
\(676\) 0 0
\(677\) 29.0797 + 21.7688i 1.11762 + 0.836643i 0.987928 0.154911i \(-0.0495092\pi\)
0.129695 + 0.991554i \(0.458600\pi\)
\(678\) 0 0
\(679\) −4.74770 + 2.16820i −0.182200 + 0.0832079i
\(680\) 0 0
\(681\) 13.5148 21.0295i 0.517889 0.805851i
\(682\) 0 0
\(683\) −24.5638 32.8134i −0.939909 1.25557i −0.966695 0.255930i \(-0.917618\pi\)
0.0267867 0.999641i \(-0.491473\pi\)
\(684\) 0 0
\(685\) 29.3415 4.59109i 1.12108 0.175416i
\(686\) 0 0
\(687\) 18.5957 10.1540i 0.709471 0.387400i
\(688\) 0 0
\(689\) −1.72072 −0.0655542
\(690\) 0 0
\(691\) −12.5963 −0.479185 −0.239592 0.970874i \(-0.577014\pi\)
−0.239592 + 0.970874i \(0.577014\pi\)
\(692\) 0 0
\(693\) 7.22013 3.94249i 0.274270 0.149763i
\(694\) 0 0
\(695\) −27.4982 + 37.6997i −1.04306 + 1.43003i
\(696\) 0 0
\(697\) −0.00613137 0.00819056i −0.000232242 0.000310239i
\(698\) 0 0
\(699\) 16.6929 25.9746i 0.631382 0.982450i
\(700\) 0 0
\(701\) 2.38649 1.08987i 0.0901363 0.0411639i −0.369837 0.929097i \(-0.620586\pi\)
0.459973 + 0.887933i \(0.347859\pi\)
\(702\) 0 0
\(703\) −27.7086 20.7424i −1.04505 0.782314i
\(704\) 0 0
\(705\) −2.07719 2.70418i −0.0782316 0.101845i
\(706\) 0 0
\(707\) −0.264761 3.70185i −0.00995738 0.139222i
\(708\) 0 0
\(709\) −15.7252 18.1478i −0.590572 0.681556i 0.379271 0.925285i \(-0.376175\pi\)
−0.969843 + 0.243729i \(0.921629\pi\)
\(710\) 0 0
\(711\) −11.3598 5.18783i −0.426024 0.194559i
\(712\) 0 0
\(713\) −11.3661 19.8251i −0.425666 0.742455i
\(714\) 0 0
\(715\) 3.28262 + 3.69467i 0.122763 + 0.138173i
\(716\) 0 0
\(717\) −1.91665 + 26.7982i −0.0715785 + 1.00080i
\(718\) 0 0
\(719\) 33.3339 + 28.8840i 1.24315 + 1.07719i 0.994074 + 0.108706i \(0.0346707\pi\)
0.249071 + 0.968485i \(0.419875\pi\)
\(720\) 0 0
\(721\) −0.208390 + 0.0611889i −0.00776086 + 0.00227879i
\(722\) 0 0
\(723\) −22.5133 + 30.0742i −0.837278 + 1.11847i
\(724\) 0 0
\(725\) −14.4247 + 33.7806i −0.535721 + 1.25458i
\(726\) 0 0
\(727\) 28.8215 6.26974i 1.06893 0.232532i 0.356516 0.934289i \(-0.383965\pi\)
0.712416 + 0.701757i \(0.247601\pi\)
\(728\) 0 0
\(729\) −23.2097 3.33705i −0.859618 0.123594i
\(730\) 0 0
\(731\) −3.85214 + 2.47562i −0.142477 + 0.0915642i
\(732\) 0 0
\(733\) −15.0124 27.4932i −0.554497 1.01549i −0.993152 0.116830i \(-0.962727\pi\)
0.438655 0.898656i \(-0.355455\pi\)
\(734\) 0 0
\(735\) 10.5061 23.7820i 0.387523 0.877210i
\(736\) 0 0
\(737\) −0.401283 0.401283i −0.0147814 0.0147814i
\(738\) 0 0
\(739\) 12.0878 41.1672i 0.444656 1.51436i −0.366998 0.930222i \(-0.619614\pi\)
0.811654 0.584138i \(-0.198567\pi\)
\(740\) 0 0
\(741\) −4.81745 7.49609i −0.176973 0.275376i
\(742\) 0 0
\(743\) −14.6599 + 10.9742i −0.537819 + 0.402606i −0.833365 0.552722i \(-0.813589\pi\)
0.295547 + 0.955328i \(0.404498\pi\)
\(744\) 0 0
\(745\) 5.69402 27.8340i 0.208613 1.01976i
\(746\) 0 0
\(747\) 11.0543 + 4.12303i 0.404454 + 0.150854i
\(748\) 0 0
\(749\) 37.5320 5.39629i 1.37139 0.197176i
\(750\) 0 0
\(751\) 5.21331 + 17.7549i 0.190236 + 0.647886i 0.998273 + 0.0587528i \(0.0187124\pi\)
−0.808036 + 0.589133i \(0.799469\pi\)
\(752\) 0 0
\(753\) −10.7399 + 0.768130i −0.391382 + 0.0279922i
\(754\) 0 0
\(755\) 0.713455 1.34605i 0.0259653 0.0489879i
\(756\) 0 0
\(757\) −1.21798 3.26554i −0.0442683 0.118688i 0.912934 0.408106i \(-0.133811\pi\)
−0.957203 + 0.289419i \(0.906538\pi\)
\(758\) 0 0
\(759\) −7.19363 3.10629i −0.261112 0.112751i
\(760\) 0 0
\(761\) 9.68209 21.2008i 0.350976 0.768529i −0.648994 0.760793i \(-0.724810\pi\)
0.999970 0.00773628i \(-0.00246256\pi\)
\(762\) 0 0
\(763\) −16.9218 1.21027i −0.612612 0.0438149i
\(764\) 0 0
\(765\) −1.22884 2.60473i −0.0444288 0.0941743i
\(766\) 0 0
\(767\) 4.38979 + 2.39701i 0.158506 + 0.0865509i
\(768\) 0 0
\(769\) 2.04474 + 14.2215i 0.0737352 + 0.512840i 0.992899 + 0.118963i \(0.0379571\pi\)
−0.919163 + 0.393876i \(0.871134\pi\)
\(770\) 0 0
\(771\) 14.0715 + 30.8123i 0.506774 + 1.10968i
\(772\) 0 0
\(773\) 10.6411 + 48.9165i 0.382735 + 1.75940i 0.616738 + 0.787168i \(0.288454\pi\)
−0.234003 + 0.972236i \(0.575183\pi\)
\(774\) 0 0
\(775\) −13.3744 19.7170i −0.480421 0.708256i
\(776\) 0 0
\(777\) −37.9247 8.25001i −1.36054 0.295967i
\(778\) 0 0
\(779\) −0.0509541 0.0149615i −0.00182562 0.000536051i
\(780\) 0 0
\(781\) 13.0005i 0.465195i
\(782\) 0 0
\(783\) 28.5935 28.5935i 1.02185 1.02185i
\(784\) 0 0
\(785\) 21.0941 + 17.8246i 0.752882 + 0.636187i
\(786\) 0 0
\(787\) 1.28641 5.91354i 0.0458557 0.210795i −0.948518 0.316723i \(-0.897418\pi\)
0.994374 + 0.105928i \(0.0337812\pi\)
\(788\) 0 0
\(789\) 4.08656 28.4226i 0.145485 1.01187i
\(790\) 0 0
\(791\) −56.5764 36.3595i −2.01163 1.29279i
\(792\) 0 0
\(793\) −4.38166 + 11.7477i −0.155597 + 0.417173i
\(794\) 0 0
\(795\) 2.47920 1.39397i 0.0879281 0.0494389i
\(796\) 0 0
\(797\) 9.16429 16.7831i 0.324616 0.594490i −0.663504 0.748172i \(-0.730932\pi\)
0.988120 + 0.153683i \(0.0491134\pi\)
\(798\) 0 0
\(799\) −0.697570 + 0.805039i −0.0246782 + 0.0284802i
\(800\) 0 0
\(801\) −13.1105 + 11.3604i −0.463238 + 0.401398i
\(802\) 0 0
\(803\) −3.49337 + 1.30296i −0.123278 + 0.0459804i
\(804\) 0 0
\(805\) 42.2712 10.6760i 1.48987 0.376279i
\(806\) 0 0
\(807\) 29.7053 11.0795i 1.04568 0.390017i
\(808\) 0 0
\(809\) 30.5662 26.4857i 1.07465 0.931189i 0.0768205 0.997045i \(-0.475523\pi\)
0.997829 + 0.0658557i \(0.0209777\pi\)
\(810\) 0 0
\(811\) 36.6283 42.2713i 1.28619 1.48434i 0.500486 0.865744i \(-0.333155\pi\)
0.785706 0.618600i \(-0.212300\pi\)
\(812\) 0 0
\(813\) −9.25638 + 16.9518i −0.324635 + 0.594525i
\(814\) 0 0
\(815\) 14.5803 52.0370i 0.510727 1.82278i
\(816\) 0 0
\(817\) −8.30589 + 22.2689i −0.290586 + 0.779092i
\(818\) 0 0
\(819\) 8.53126 + 5.48271i 0.298106 + 0.191581i
\(820\) 0 0
\(821\) 3.70611 25.7765i 0.129344 0.899607i −0.817044 0.576575i \(-0.804389\pi\)
0.946388 0.323032i \(-0.104702\pi\)
\(822\) 0 0
\(823\) 4.31700 19.8449i 0.150481 0.691750i −0.838645 0.544679i \(-0.816652\pi\)
0.989126 0.147072i \(-0.0469848\pi\)
\(824\) 0 0
\(825\) −7.72266 2.66397i −0.268869 0.0927477i
\(826\) 0 0
\(827\) −9.70906 + 9.70906i −0.337617 + 0.337617i −0.855470 0.517853i \(-0.826732\pi\)
0.517853 + 0.855470i \(0.326732\pi\)
\(828\) 0 0
\(829\) 6.66980i 0.231652i −0.993270 0.115826i \(-0.963049\pi\)
0.993270 0.115826i \(-0.0369515\pi\)
\(830\) 0 0
\(831\) 7.23040 + 2.12304i 0.250820 + 0.0736474i
\(832\) 0 0
\(833\) −7.93632 1.72644i −0.274977 0.0598176i
\(834\) 0 0
\(835\) −26.7909 16.7512i −0.927136 0.579701i
\(836\) 0 0
\(837\) 5.57532 + 25.6293i 0.192711 + 0.885880i
\(838\) 0 0
\(839\) 17.6718 + 38.6958i 0.610098 + 1.33593i 0.922507 + 0.385981i \(0.126137\pi\)
−0.312408 + 0.949948i \(0.601136\pi\)
\(840\) 0 0
\(841\) 3.55333 + 24.7140i 0.122529 + 0.852206i
\(842\) 0 0
\(843\) −25.8612 14.1213i −0.890707 0.486363i
\(844\) 0 0
\(845\) 7.76155 21.6256i 0.267005 0.743943i
\(846\) 0 0
\(847\) 37.3367 + 2.67038i 1.28291 + 0.0917552i
\(848\) 0 0
\(849\) −11.8371 + 25.9196i −0.406247 + 0.889558i
\(850\) 0 0
\(851\) −16.2924 33.7992i −0.558496 1.15862i
\(852\) 0 0
\(853\) 1.65430 + 4.43535i 0.0566421 + 0.151863i 0.962189 0.272383i \(-0.0878118\pi\)
−0.905547 + 0.424246i \(0.860539\pi\)
\(854\) 0 0
\(855\) −13.2082 7.00081i −0.451711 0.239423i
\(856\) 0 0
\(857\) 31.6946 2.26684i 1.08267 0.0774339i 0.481415 0.876493i \(-0.340123\pi\)
0.601253 + 0.799059i \(0.294668\pi\)
\(858\) 0 0
\(859\) 7.22686 + 24.6124i 0.246577 + 0.839765i 0.986032 + 0.166558i \(0.0532654\pi\)
−0.739454 + 0.673207i \(0.764916\pi\)
\(860\) 0 0
\(861\) −0.0589421 + 0.00847459i −0.00200874 + 0.000288813i
\(862\) 0 0
\(863\) −13.1217 4.89414i −0.446668 0.166598i 0.116057 0.993243i \(-0.462974\pi\)
−0.562725 + 0.826644i \(0.690247\pi\)
\(864\) 0 0
\(865\) −3.28059 4.96802i −0.111544 0.168918i
\(866\) 0 0
\(867\) −15.8962 + 11.8997i −0.539863 + 0.404136i
\(868\) 0 0
\(869\) 5.98263 + 9.30916i 0.202947 + 0.315792i
\(870\) 0 0
\(871\) 0.197097 0.671251i 0.00667838 0.0227445i
\(872\) 0 0
\(873\) 1.37177 + 1.37177i 0.0464274 + 0.0464274i
\(874\) 0 0
\(875\) 43.1064 14.4209i 1.45726 0.487515i
\(876\) 0 0
\(877\) 11.8176 + 21.6423i 0.399051 + 0.730808i 0.997523 0.0703358i \(-0.0224071\pi\)
−0.598472 + 0.801144i \(0.704225\pi\)
\(878\) 0 0
\(879\) −5.74313 + 3.69088i −0.193711 + 0.124490i
\(880\) 0 0
\(881\) 32.8948 + 4.72956i 1.10825 + 0.159343i 0.672050 0.740505i \(-0.265414\pi\)
0.436203 + 0.899848i \(0.356323\pi\)
\(882\) 0 0
\(883\) 6.40150 1.39256i 0.215428 0.0468634i −0.103556 0.994624i \(-0.533022\pi\)
0.318984 + 0.947760i \(0.396658\pi\)
\(884\) 0 0
\(885\) −8.26660 + 0.102616i −0.277879 + 0.00344940i
\(886\) 0 0
\(887\) 11.4502 15.2957i 0.384461 0.513579i −0.566008 0.824400i \(-0.691513\pi\)
0.950469 + 0.310820i \(0.100604\pi\)
\(888\) 0 0
\(889\) −64.5978 + 18.9676i −2.16654 + 0.636154i
\(890\) 0 0
\(891\) 2.20917 + 1.91426i 0.0740101 + 0.0641301i
\(892\) 0 0
\(893\) −0.394434 + 5.51491i −0.0131992 + 0.184550i
\(894\) 0 0
\(895\) 2.87489 48.6810i 0.0960969 1.62723i
\(896\) 0 0
\(897\) −0.889081 9.61844i −0.0296855 0.321150i
\(898\) 0 0
\(899\) −31.8419 14.5417i −1.06199 0.484993i
\(900\) 0 0
\(901\) −0.581849 0.671490i −0.0193842 0.0223706i
\(902\) 0 0
\(903\) 1.90127 + 26.5832i 0.0632702 + 0.884632i
\(904\) 0 0
\(905\) 35.3136 27.1259i 1.17386 0.901695i
\(906\) 0 0
\(907\) −6.03539 4.51804i −0.200402 0.150019i 0.494364 0.869255i \(-0.335401\pi\)
−0.694766 + 0.719236i \(0.744492\pi\)
\(908\) 0 0
\(909\) −1.25479 + 0.573045i −0.0416188 + 0.0190067i
\(910\) 0 0
\(911\) 8.22683 12.8012i 0.272567 0.424122i −0.677804 0.735243i \(-0.737068\pi\)
0.950370 + 0.311121i \(0.100704\pi\)
\(912\) 0 0
\(913\) −6.26501 8.36907i −0.207342 0.276976i
\(914\) 0 0
\(915\) −3.20384 20.4756i −0.105916 0.676903i
\(916\) 0 0
\(917\) −16.1425 + 8.81449i −0.533073 + 0.291080i
\(918\) 0 0
\(919\) 18.6058 0.613747 0.306874 0.951750i \(-0.400717\pi\)
0.306874 + 0.951750i \(0.400717\pi\)
\(920\) 0 0
\(921\) 4.51981 0.148933
\(922\) 0 0
\(923\) −14.0661 + 7.68067i −0.462991 + 0.252812i
\(924\) 0 0
\(925\) −19.5939 33.8574i −0.644244 1.11323i
\(926\) 0 0
\(927\) 0.0483775 + 0.0646247i 0.00158892 + 0.00212255i
\(928\) 0 0
\(929\) 21.5481 33.5294i 0.706969 1.10007i −0.283046 0.959106i \(-0.591345\pi\)
0.990015 0.140959i \(-0.0450187\pi\)
\(930\) 0 0
\(931\) −38.3471 + 17.5125i −1.25678 + 0.573951i
\(932\) 0 0
\(933\) −10.7325 8.03425i −0.351366 0.263029i
\(934\) 0 0
\(935\) −0.331805 + 2.53033i −0.0108512 + 0.0827508i
\(936\) 0 0
\(937\) 3.52800 + 49.3279i 0.115255 + 1.61147i 0.645590 + 0.763685i \(0.276612\pi\)
−0.530335 + 0.847788i \(0.677934\pi\)
\(938\) 0 0
\(939\) −24.9534 28.7977i −0.814322 0.939778i
\(940\) 0 0
\(941\) 28.9967 + 13.2424i 0.945267 + 0.431689i 0.827571 0.561361i \(-0.189722\pi\)
0.117696 + 0.993050i \(0.462449\pi\)
\(942\) 0 0
\(943\) −0.0415435 0.0398524i −0.00135284 0.00129777i
\(944\) 0 0
\(945\) −49.9535 2.95004i −1.62499 0.0959647i
\(946\) 0 0
\(947\) 1.29907 18.1633i 0.0422140 0.590229i −0.931688 0.363260i \(-0.881664\pi\)
0.973902 0.226969i \(-0.0728817\pi\)
\(948\) 0 0
\(949\) −3.47363 3.00992i −0.112759 0.0977060i
\(950\) 0 0
\(951\) 14.7003 4.31641i 0.476691 0.139969i
\(952\) 0 0
\(953\) −1.47447 + 1.96966i −0.0477627 + 0.0638035i −0.823787 0.566900i \(-0.808143\pi\)
0.776024 + 0.630703i \(0.217234\pi\)
\(954\) 0 0
\(955\) −1.69632 1.65472i −0.0548915 0.0535455i
\(956\) 0 0
\(957\) −11.7284 + 2.55136i −0.379126 + 0.0824738i
\(958\) 0 0
\(959\) −53.4478 7.68463i −1.72592 0.248150i
\(960\) 0 0
\(961\) −6.97790 + 4.48442i −0.225093 + 0.144659i
\(962\) 0 0
\(963\) −6.75438 12.3697i −0.217657 0.398609i
\(964\) 0 0
\(965\) 26.6479 + 11.7721i 0.857825 + 0.378959i
\(966\) 0 0
\(967\) −12.0004 12.0004i −0.385907 0.385907i 0.487318 0.873225i \(-0.337975\pi\)
−0.873225 + 0.487318i \(0.837975\pi\)
\(968\) 0 0
\(969\) 1.29627 4.41470i 0.0416423 0.141821i
\(970\) 0 0
\(971\) −11.2382 17.4870i −0.360652 0.561186i 0.612753 0.790274i \(-0.290062\pi\)
−0.973406 + 0.229088i \(0.926426\pi\)
\(972\) 0 0
\(973\) 67.9193 50.8437i 2.17739 1.62997i
\(974\) 0 0
\(975\) −1.68020 9.92951i −0.0538095 0.317999i
\(976\) 0 0
\(977\) 18.8379 + 7.02618i 0.602679 + 0.224788i 0.632236 0.774776i \(-0.282137\pi\)
−0.0295576 + 0.999563i \(0.509410\pi\)
\(978\) 0 0
\(979\) 15.2153 2.18763i 0.486283 0.0699169i
\(980\) 0 0
\(981\) 1.77653 + 6.05030i 0.0567202 + 0.193171i
\(982\) 0 0
\(983\) 40.3466 2.88564i 1.28686 0.0920377i 0.588916 0.808194i \(-0.299555\pi\)
0.697940 + 0.716157i \(0.254100\pi\)
\(984\) 0 0
\(985\) 19.0907 5.86388i 0.608279 0.186839i
\(986\) 0 0
\(987\) 2.16661 + 5.80890i 0.0689639 + 0.184899i
\(988\) 0 0
\(989\) −19.1171 + 17.2732i −0.607888 + 0.549256i
\(990\) 0 0
\(991\) 17.6327 38.6102i 0.560121 1.22649i −0.391772 0.920062i \(-0.628138\pi\)
0.951893 0.306431i \(-0.0991349\pi\)
\(992\) 0 0
\(993\) −17.5140 1.25262i −0.555789 0.0397508i
\(994\) 0 0
\(995\) −12.1563 4.36297i −0.385381 0.138316i
\(996\) 0 0
\(997\) 8.04494 + 4.39287i 0.254786 + 0.139124i 0.601567 0.798823i \(-0.294543\pi\)
−0.346781 + 0.937946i \(0.612725\pi\)
\(998\) 0 0
\(999\) 6.12879 + 42.6267i 0.193906 + 1.34865i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.17.13 720
5.3 odd 4 inner 920.2.bv.a.753.13 yes 720
23.19 odd 22 inner 920.2.bv.a.617.13 yes 720
115.88 even 44 inner 920.2.bv.a.433.13 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.13 720 1.1 even 1 trivial
920.2.bv.a.433.13 yes 720 115.88 even 44 inner
920.2.bv.a.617.13 yes 720 23.19 odd 22 inner
920.2.bv.a.753.13 yes 720 5.3 odd 4 inner