Properties

Label 920.2.bv.a.17.11
Level $920$
Weight $2$
Character 920.17
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 17.11
Character \(\chi\) \(=\) 920.17
Dual form 920.2.bv.a.433.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.25117 + 0.683192i) q^{3} +(-2.21439 + 0.310585i) q^{5} +(1.08006 + 1.44279i) q^{7} +(-0.523240 + 0.814177i) q^{9} +(-0.838110 + 0.382752i) q^{11} +(-2.55861 - 1.91535i) q^{13} +(2.55840 - 1.90145i) q^{15} +(0.172280 + 2.40878i) q^{17} +(-2.33469 - 2.69438i) q^{19} +(-2.33704 - 1.06729i) q^{21} +(2.67427 - 3.98099i) q^{23} +(4.80707 - 1.37551i) q^{25} +(0.403516 - 5.64190i) q^{27} +(5.38824 + 4.66893i) q^{29} +(-3.38961 + 0.995279i) q^{31} +(0.787127 - 1.05148i) q^{33} +(-2.83978 - 2.85945i) q^{35} +(-5.63382 + 1.22556i) q^{37} +(4.50981 + 0.648413i) q^{39} +(4.48092 - 2.87971i) q^{41} +(-4.50132 - 8.24355i) q^{43} +(0.905787 - 1.96542i) q^{45} +(-7.74918 - 7.74918i) q^{47} +(1.05702 - 3.59987i) q^{49} +(-1.86121 - 2.89611i) q^{51} +(-0.873743 + 0.654076i) q^{53} +(1.73703 - 1.10787i) q^{55} +(4.76188 + 1.77609i) q^{57} +(5.72104 - 0.822561i) q^{59} +(-2.47142 - 8.41688i) q^{61} +(-1.73981 + 0.124434i) q^{63} +(6.26064 + 3.44667i) q^{65} +(-3.47499 - 9.31680i) q^{67} +(-0.626195 + 6.80795i) q^{69} +(3.57510 - 7.82838i) q^{71} +(-9.21950 - 0.659392i) q^{73} +(-5.07474 + 5.00516i) q^{75} +(-1.45744 - 0.795820i) q^{77} +(0.194438 + 1.35234i) q^{79} +(2.14350 + 4.69360i) q^{81} +(0.760562 + 3.49625i) q^{83} +(-1.12963 - 5.28049i) q^{85} +(-9.93140 - 2.16044i) q^{87} +(6.35945 + 1.86730i) q^{89} -5.76021i q^{91} +(3.56102 - 3.56102i) q^{93} +(6.00676 + 5.24129i) q^{95} +(-3.95701 + 18.1901i) q^{97} +(0.126905 - 0.882640i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.25117 + 0.683192i −0.722365 + 0.394441i −0.797970 0.602697i \(-0.794093\pi\)
0.0756053 + 0.997138i \(0.475911\pi\)
\(4\) 0 0
\(5\) −2.21439 + 0.310585i −0.990307 + 0.138898i
\(6\) 0 0
\(7\) 1.08006 + 1.44279i 0.408223 + 0.545322i 0.956788 0.290786i \(-0.0939166\pi\)
−0.548565 + 0.836108i \(0.684826\pi\)
\(8\) 0 0
\(9\) −0.523240 + 0.814177i −0.174413 + 0.271392i
\(10\) 0 0
\(11\) −0.838110 + 0.382752i −0.252700 + 0.115404i −0.537738 0.843112i \(-0.680721\pi\)
0.285038 + 0.958516i \(0.407994\pi\)
\(12\) 0 0
\(13\) −2.55861 1.91535i −0.709630 0.531222i 0.182386 0.983227i \(-0.441618\pi\)
−0.892015 + 0.452005i \(0.850709\pi\)
\(14\) 0 0
\(15\) 2.55840 1.90145i 0.660576 0.490953i
\(16\) 0 0
\(17\) 0.172280 + 2.40878i 0.0417840 + 0.584216i 0.974613 + 0.223897i \(0.0718778\pi\)
−0.932829 + 0.360320i \(0.882668\pi\)
\(18\) 0 0
\(19\) −2.33469 2.69438i −0.535615 0.618133i 0.421856 0.906663i \(-0.361379\pi\)
−0.957471 + 0.288530i \(0.906833\pi\)
\(20\) 0 0
\(21\) −2.33704 1.06729i −0.509984 0.232902i
\(22\) 0 0
\(23\) 2.67427 3.98099i 0.557624 0.830094i
\(24\) 0 0
\(25\) 4.80707 1.37551i 0.961415 0.275103i
\(26\) 0 0
\(27\) 0.403516 5.64190i 0.0776568 1.08578i
\(28\) 0 0
\(29\) 5.38824 + 4.66893i 1.00057 + 0.866999i 0.991122 0.132956i \(-0.0424469\pi\)
0.00944858 + 0.999955i \(0.496992\pi\)
\(30\) 0 0
\(31\) −3.38961 + 0.995279i −0.608792 + 0.178757i −0.571575 0.820550i \(-0.693667\pi\)
−0.0372167 + 0.999307i \(0.511849\pi\)
\(32\) 0 0
\(33\) 0.787127 1.05148i 0.137021 0.183039i
\(34\) 0 0
\(35\) −2.83978 2.85945i −0.480010 0.483335i
\(36\) 0 0
\(37\) −5.63382 + 1.22556i −0.926194 + 0.201481i −0.650274 0.759700i \(-0.725346\pi\)
−0.275920 + 0.961181i \(0.588982\pi\)
\(38\) 0 0
\(39\) 4.50981 + 0.648413i 0.722148 + 0.103829i
\(40\) 0 0
\(41\) 4.48092 2.87971i 0.699802 0.449735i −0.141757 0.989902i \(-0.545275\pi\)
0.841558 + 0.540166i \(0.181639\pi\)
\(42\) 0 0
\(43\) −4.50132 8.24355i −0.686445 1.25713i −0.955780 0.294083i \(-0.904986\pi\)
0.269335 0.963047i \(-0.413196\pi\)
\(44\) 0 0
\(45\) 0.905787 1.96542i 0.135027 0.292987i
\(46\) 0 0
\(47\) −7.74918 7.74918i −1.13033 1.13033i −0.990121 0.140213i \(-0.955221\pi\)
−0.140213 0.990121i \(-0.544779\pi\)
\(48\) 0 0
\(49\) 1.05702 3.59987i 0.151002 0.514267i
\(50\) 0 0
\(51\) −1.86121 2.89611i −0.260622 0.405536i
\(52\) 0 0
\(53\) −0.873743 + 0.654076i −0.120018 + 0.0898442i −0.657601 0.753367i \(-0.728429\pi\)
0.537583 + 0.843211i \(0.319338\pi\)
\(54\) 0 0
\(55\) 1.73703 1.10787i 0.234221 0.149385i
\(56\) 0 0
\(57\) 4.76188 + 1.77609i 0.630727 + 0.235249i
\(58\) 0 0
\(59\) 5.72104 0.822561i 0.744816 0.107088i 0.240550 0.970637i \(-0.422672\pi\)
0.504266 + 0.863548i \(0.331763\pi\)
\(60\) 0 0
\(61\) −2.47142 8.41688i −0.316433 1.07767i −0.952120 0.305724i \(-0.901101\pi\)
0.635687 0.771947i \(-0.280717\pi\)
\(62\) 0 0
\(63\) −1.73981 + 0.124434i −0.219196 + 0.0156772i
\(64\) 0 0
\(65\) 6.26064 + 3.44667i 0.776536 + 0.427507i
\(66\) 0 0
\(67\) −3.47499 9.31680i −0.424537 1.13823i −0.956569 0.291504i \(-0.905844\pi\)
0.532032 0.846724i \(-0.321429\pi\)
\(68\) 0 0
\(69\) −0.626195 + 6.80795i −0.0753850 + 0.819581i
\(70\) 0 0
\(71\) 3.57510 7.82838i 0.424287 0.929058i −0.569933 0.821691i \(-0.693031\pi\)
0.994219 0.107367i \(-0.0342419\pi\)
\(72\) 0 0
\(73\) −9.21950 0.659392i −1.07906 0.0771759i −0.479528 0.877526i \(-0.659192\pi\)
−0.599532 + 0.800350i \(0.704647\pi\)
\(74\) 0 0
\(75\) −5.07474 + 5.00516i −0.585981 + 0.577946i
\(76\) 0 0
\(77\) −1.45744 0.795820i −0.166090 0.0906921i
\(78\) 0 0
\(79\) 0.194438 + 1.35234i 0.0218759 + 0.152151i 0.997832 0.0658186i \(-0.0209659\pi\)
−0.975956 + 0.217969i \(0.930057\pi\)
\(80\) 0 0
\(81\) 2.14350 + 4.69360i 0.238166 + 0.521512i
\(82\) 0 0
\(83\) 0.760562 + 3.49625i 0.0834825 + 0.383763i 0.999863 0.0165451i \(-0.00526672\pi\)
−0.916381 + 0.400308i \(0.868903\pi\)
\(84\) 0 0
\(85\) −1.12963 5.28049i −0.122525 0.572749i
\(86\) 0 0
\(87\) −9.93140 2.16044i −1.06476 0.231624i
\(88\) 0 0
\(89\) 6.35945 + 1.86730i 0.674100 + 0.197934i 0.600828 0.799378i \(-0.294838\pi\)
0.0732721 + 0.997312i \(0.476656\pi\)
\(90\) 0 0
\(91\) 5.76021i 0.603834i
\(92\) 0 0
\(93\) 3.56102 3.56102i 0.369261 0.369261i
\(94\) 0 0
\(95\) 6.00676 + 5.24129i 0.616281 + 0.537745i
\(96\) 0 0
\(97\) −3.95701 + 18.1901i −0.401773 + 1.84692i 0.118544 + 0.992949i \(0.462177\pi\)
−0.520317 + 0.853973i \(0.674186\pi\)
\(98\) 0 0
\(99\) 0.126905 0.882640i 0.0127544 0.0887087i
\(100\) 0 0
\(101\) 0.755886 + 0.485778i 0.0752134 + 0.0483367i 0.577707 0.816244i \(-0.303948\pi\)
−0.502494 + 0.864581i \(0.667584\pi\)
\(102\) 0 0
\(103\) 1.78867 4.79562i 0.176243 0.472527i −0.818550 0.574435i \(-0.805222\pi\)
0.994794 + 0.101908i \(0.0324947\pi\)
\(104\) 0 0
\(105\) 5.50661 + 1.63755i 0.537390 + 0.159809i
\(106\) 0 0
\(107\) 4.42829 8.10981i 0.428099 0.784005i −0.571224 0.820794i \(-0.693531\pi\)
0.999323 + 0.0367890i \(0.0117130\pi\)
\(108\) 0 0
\(109\) −3.04348 + 3.51236i −0.291512 + 0.336423i −0.882548 0.470222i \(-0.844174\pi\)
0.591036 + 0.806645i \(0.298719\pi\)
\(110\) 0 0
\(111\) 6.21159 5.38237i 0.589578 0.510872i
\(112\) 0 0
\(113\) 16.4525 6.13645i 1.54772 0.577269i 0.576843 0.816855i \(-0.304284\pi\)
0.970875 + 0.239586i \(0.0770117\pi\)
\(114\) 0 0
\(115\) −4.68545 + 9.64606i −0.436921 + 0.899500i
\(116\) 0 0
\(117\) 2.89820 1.08097i 0.267938 0.0999358i
\(118\) 0 0
\(119\) −3.28929 + 2.85019i −0.301529 + 0.261276i
\(120\) 0 0
\(121\) −6.64754 + 7.67167i −0.604322 + 0.697424i
\(122\) 0 0
\(123\) −3.63901 + 6.66435i −0.328118 + 0.600904i
\(124\) 0 0
\(125\) −10.2175 + 4.53893i −0.913884 + 0.405975i
\(126\) 0 0
\(127\) −2.05910 + 5.52066i −0.182715 + 0.489879i −0.995725 0.0923718i \(-0.970555\pi\)
0.813009 + 0.582251i \(0.197828\pi\)
\(128\) 0 0
\(129\) 11.2639 + 7.23884i 0.991727 + 0.637345i
\(130\) 0 0
\(131\) −1.41728 + 9.85737i −0.123828 + 0.861242i 0.829328 + 0.558762i \(0.188724\pi\)
−0.953156 + 0.302480i \(0.902185\pi\)
\(132\) 0 0
\(133\) 1.36581 6.27855i 0.118431 0.544419i
\(134\) 0 0
\(135\) 0.858744 + 12.6187i 0.0739089 + 1.08604i
\(136\) 0 0
\(137\) −11.1812 + 11.1812i −0.955277 + 0.955277i −0.999042 0.0437647i \(-0.986065\pi\)
0.0437647 + 0.999042i \(0.486065\pi\)
\(138\) 0 0
\(139\) 7.93759i 0.673257i 0.941637 + 0.336629i \(0.109287\pi\)
−0.941637 + 0.336629i \(0.890713\pi\)
\(140\) 0 0
\(141\) 14.9898 + 4.40139i 1.26237 + 0.370664i
\(142\) 0 0
\(143\) 2.87749 + 0.625961i 0.240628 + 0.0523455i
\(144\) 0 0
\(145\) −13.3818 8.66535i −1.11130 0.719618i
\(146\) 0 0
\(147\) 1.13689 + 5.22620i 0.0937692 + 0.431050i
\(148\) 0 0
\(149\) −0.539036 1.18032i −0.0441596 0.0966959i 0.886266 0.463176i \(-0.153290\pi\)
−0.930426 + 0.366480i \(0.880563\pi\)
\(150\) 0 0
\(151\) 1.27342 + 8.85683i 0.103629 + 0.720759i 0.973700 + 0.227832i \(0.0731638\pi\)
−0.870071 + 0.492926i \(0.835927\pi\)
\(152\) 0 0
\(153\) −2.05132 1.12011i −0.165839 0.0905552i
\(154\) 0 0
\(155\) 7.19681 3.25670i 0.578061 0.261584i
\(156\) 0 0
\(157\) −13.8103 0.987735i −1.10218 0.0788298i −0.491630 0.870804i \(-0.663599\pi\)
−0.610555 + 0.791974i \(0.709053\pi\)
\(158\) 0 0
\(159\) 0.646344 1.41530i 0.0512584 0.112240i
\(160\) 0 0
\(161\) 8.63208 0.441291i 0.680304 0.0347786i
\(162\) 0 0
\(163\) −5.31017 14.2371i −0.415925 1.11514i −0.960951 0.276719i \(-0.910753\pi\)
0.545026 0.838419i \(-0.316520\pi\)
\(164\) 0 0
\(165\) −1.41644 + 2.57286i −0.110269 + 0.200297i
\(166\) 0 0
\(167\) −19.8464 + 1.41944i −1.53576 + 0.109840i −0.813412 0.581688i \(-0.802392\pi\)
−0.722350 + 0.691528i \(0.756938\pi\)
\(168\) 0 0
\(169\) −0.784619 2.67217i −0.0603553 0.205551i
\(170\) 0 0
\(171\) 3.41530 0.491047i 0.261175 0.0375513i
\(172\) 0 0
\(173\) −18.1716 6.77764i −1.38156 0.515295i −0.454680 0.890655i \(-0.650246\pi\)
−0.926879 + 0.375360i \(0.877519\pi\)
\(174\) 0 0
\(175\) 7.17649 + 5.44995i 0.542491 + 0.411978i
\(176\) 0 0
\(177\) −6.59605 + 4.93774i −0.495789 + 0.371143i
\(178\) 0 0
\(179\) −0.0841560 0.130949i −0.00629011 0.00978761i 0.838094 0.545525i \(-0.183670\pi\)
−0.844384 + 0.535738i \(0.820034\pi\)
\(180\) 0 0
\(181\) 2.79815 9.52964i 0.207985 0.708332i −0.787743 0.616004i \(-0.788751\pi\)
0.995729 0.0923289i \(-0.0294311\pi\)
\(182\) 0 0
\(183\) 8.84252 + 8.84252i 0.653658 + 0.653658i
\(184\) 0 0
\(185\) 12.0948 4.46365i 0.889231 0.328174i
\(186\) 0 0
\(187\) −1.06636 1.95288i −0.0779797 0.142809i
\(188\) 0 0
\(189\) 8.57588 5.51138i 0.623803 0.400894i
\(190\) 0 0
\(191\) 0.324078 + 0.0465954i 0.0234495 + 0.00337153i 0.154030 0.988066i \(-0.450775\pi\)
−0.130580 + 0.991438i \(0.541684\pi\)
\(192\) 0 0
\(193\) 20.5529 4.47102i 1.47943 0.321831i 0.600827 0.799379i \(-0.294838\pi\)
0.878605 + 0.477549i \(0.158475\pi\)
\(194\) 0 0
\(195\) −10.1879 0.0351621i −0.729569 0.00251801i
\(196\) 0 0
\(197\) −8.02053 + 10.7142i −0.571439 + 0.763353i −0.989416 0.145104i \(-0.953648\pi\)
0.417977 + 0.908457i \(0.362739\pi\)
\(198\) 0 0
\(199\) −5.25073 + 1.54175i −0.372214 + 0.109292i −0.462489 0.886625i \(-0.653044\pi\)
0.0902750 + 0.995917i \(0.471225\pi\)
\(200\) 0 0
\(201\) 10.7130 + 9.28285i 0.755635 + 0.654762i
\(202\) 0 0
\(203\) −0.916675 + 12.8168i −0.0643380 + 0.899563i
\(204\) 0 0
\(205\) −9.02812 + 7.76852i −0.630551 + 0.542577i
\(206\) 0 0
\(207\) 1.84194 + 4.26034i 0.128024 + 0.296114i
\(208\) 0 0
\(209\) 2.98801 + 1.36458i 0.206685 + 0.0943897i
\(210\) 0 0
\(211\) −0.175427 0.202454i −0.0120769 0.0139375i 0.749679 0.661802i \(-0.230208\pi\)
−0.761756 + 0.647864i \(0.775662\pi\)
\(212\) 0 0
\(213\) 0.875218 + 12.2371i 0.0599689 + 0.838475i
\(214\) 0 0
\(215\) 12.5280 + 16.8564i 0.854403 + 1.14960i
\(216\) 0 0
\(217\) −5.09694 3.81553i −0.346003 0.259015i
\(218\) 0 0
\(219\) 11.9857 5.47368i 0.809917 0.369877i
\(220\) 0 0
\(221\) 4.17287 6.49311i 0.280697 0.436774i
\(222\) 0 0
\(223\) −8.90492 11.8956i −0.596318 0.796587i 0.396268 0.918135i \(-0.370305\pi\)
−0.992586 + 0.121548i \(0.961214\pi\)
\(224\) 0 0
\(225\) −1.39534 + 4.63353i −0.0930227 + 0.308902i
\(226\) 0 0
\(227\) 0.406569 0.222004i 0.0269849 0.0147349i −0.465700 0.884943i \(-0.654197\pi\)
0.492685 + 0.870208i \(0.336016\pi\)
\(228\) 0 0
\(229\) −20.8758 −1.37951 −0.689754 0.724043i \(-0.742282\pi\)
−0.689754 + 0.724043i \(0.742282\pi\)
\(230\) 0 0
\(231\) 2.36720 0.155750
\(232\) 0 0
\(233\) 0.590738 0.322567i 0.0387005 0.0211321i −0.459782 0.888032i \(-0.652073\pi\)
0.498483 + 0.866900i \(0.333891\pi\)
\(234\) 0 0
\(235\) 19.5665 + 14.7530i 1.27638 + 0.962377i
\(236\) 0 0
\(237\) −1.16719 1.55918i −0.0758169 0.101279i
\(238\) 0 0
\(239\) −3.09736 + 4.81959i −0.200352 + 0.311753i −0.926862 0.375402i \(-0.877505\pi\)
0.726510 + 0.687156i \(0.241141\pi\)
\(240\) 0 0
\(241\) −8.90636 + 4.06740i −0.573709 + 0.262004i −0.681073 0.732216i \(-0.738486\pi\)
0.107364 + 0.994220i \(0.465759\pi\)
\(242\) 0 0
\(243\) 7.69580 + 5.76101i 0.493686 + 0.369569i
\(244\) 0 0
\(245\) −1.22259 + 8.29981i −0.0781081 + 0.530256i
\(246\) 0 0
\(247\) 0.812884 + 11.3656i 0.0517226 + 0.723176i
\(248\) 0 0
\(249\) −3.34020 3.85480i −0.211677 0.244288i
\(250\) 0 0
\(251\) −7.11609 3.24981i −0.449164 0.205126i 0.177973 0.984035i \(-0.443046\pi\)
−0.627137 + 0.778909i \(0.715773\pi\)
\(252\) 0 0
\(253\) −0.717601 + 4.36009i −0.0451152 + 0.274116i
\(254\) 0 0
\(255\) 5.02095 + 5.83505i 0.314424 + 0.365405i
\(256\) 0 0
\(257\) 1.38235 19.3278i 0.0862289 1.20564i −0.751568 0.659655i \(-0.770702\pi\)
0.837797 0.545982i \(-0.183843\pi\)
\(258\) 0 0
\(259\) −7.85307 6.80472i −0.487966 0.422825i
\(260\) 0 0
\(261\) −6.62068 + 1.94401i −0.409810 + 0.120331i
\(262\) 0 0
\(263\) −7.79069 + 10.4071i −0.480394 + 0.641732i −0.973622 0.228169i \(-0.926726\pi\)
0.493227 + 0.869901i \(0.335817\pi\)
\(264\) 0 0
\(265\) 1.73166 1.71975i 0.106375 0.105644i
\(266\) 0 0
\(267\) −9.23250 + 2.00841i −0.565020 + 0.122912i
\(268\) 0 0
\(269\) 15.0088 + 2.15793i 0.915100 + 0.131572i 0.583747 0.811935i \(-0.301586\pi\)
0.331353 + 0.943507i \(0.392495\pi\)
\(270\) 0 0
\(271\) 17.9864 11.5591i 1.09259 0.702168i 0.135162 0.990824i \(-0.456845\pi\)
0.957433 + 0.288655i \(0.0932082\pi\)
\(272\) 0 0
\(273\) 3.93533 + 7.20702i 0.238177 + 0.436189i
\(274\) 0 0
\(275\) −3.50237 + 2.99275i −0.211201 + 0.180469i
\(276\) 0 0
\(277\) 7.89093 + 7.89093i 0.474120 + 0.474120i 0.903245 0.429125i \(-0.141178\pi\)
−0.429125 + 0.903245i \(0.641178\pi\)
\(278\) 0 0
\(279\) 0.963245 3.28051i 0.0576680 0.196399i
\(280\) 0 0
\(281\) 8.22119 + 12.7924i 0.490435 + 0.763132i 0.994961 0.100265i \(-0.0319689\pi\)
−0.504526 + 0.863397i \(0.668333\pi\)
\(282\) 0 0
\(283\) 15.0376 11.2570i 0.893890 0.669158i −0.0502376 0.998737i \(-0.515998\pi\)
0.944128 + 0.329579i \(0.106907\pi\)
\(284\) 0 0
\(285\) −11.0963 2.45399i −0.657289 0.145362i
\(286\) 0 0
\(287\) 8.99446 + 3.35476i 0.530926 + 0.198025i
\(288\) 0 0
\(289\) 11.0544 1.58938i 0.650259 0.0934931i
\(290\) 0 0
\(291\) −7.47641 25.4623i −0.438275 1.49263i
\(292\) 0 0
\(293\) 5.04255 0.360650i 0.294589 0.0210694i 0.0767374 0.997051i \(-0.475550\pi\)
0.217851 + 0.975982i \(0.430095\pi\)
\(294\) 0 0
\(295\) −12.4132 + 3.59834i −0.722722 + 0.209504i
\(296\) 0 0
\(297\) 1.82126 + 4.88297i 0.105680 + 0.283339i
\(298\) 0 0
\(299\) −14.4674 + 5.06362i −0.836670 + 0.292837i
\(300\) 0 0
\(301\) 7.03201 15.3979i 0.405318 0.887523i
\(302\) 0 0
\(303\) −1.27762 0.0913774i −0.0733976 0.00524950i
\(304\) 0 0
\(305\) 8.08685 + 17.8707i 0.463052 + 1.02327i
\(306\) 0 0
\(307\) −12.5117 6.83191i −0.714081 0.389918i 0.0807618 0.996733i \(-0.474265\pi\)
−0.794842 + 0.606816i \(0.792447\pi\)
\(308\) 0 0
\(309\) 1.03839 + 7.22216i 0.0590720 + 0.410855i
\(310\) 0 0
\(311\) −14.0200 30.6994i −0.794999 1.74081i −0.661752 0.749723i \(-0.730187\pi\)
−0.133248 0.991083i \(-0.542541\pi\)
\(312\) 0 0
\(313\) −1.76838 8.12910i −0.0999546 0.459484i −0.999732 0.0231354i \(-0.992635\pi\)
0.899778 0.436349i \(-0.143729\pi\)
\(314\) 0 0
\(315\) 3.81398 0.815905i 0.214894 0.0459710i
\(316\) 0 0
\(317\) −3.89967 0.848321i −0.219027 0.0476465i 0.101712 0.994814i \(-0.467568\pi\)
−0.320740 + 0.947167i \(0.603931\pi\)
\(318\) 0 0
\(319\) −6.30298 1.85072i −0.352899 0.103620i
\(320\) 0 0
\(321\) 13.1722i 0.735198i
\(322\) 0 0
\(323\) 6.08796 6.08796i 0.338743 0.338743i
\(324\) 0 0
\(325\) −14.9340 5.68782i −0.828389 0.315504i
\(326\) 0 0
\(327\) 1.40830 6.47385i 0.0778792 0.358005i
\(328\) 0 0
\(329\) 2.81086 19.5500i 0.154968 1.07783i
\(330\) 0 0
\(331\) 30.5478 + 19.6319i 1.67906 + 1.07906i 0.874131 + 0.485691i \(0.161432\pi\)
0.804927 + 0.593374i \(0.202205\pi\)
\(332\) 0 0
\(333\) 1.95001 5.22819i 0.106860 0.286503i
\(334\) 0 0
\(335\) 10.5886 + 19.5518i 0.578520 + 1.06823i
\(336\) 0 0
\(337\) 0.815261 1.49304i 0.0444101 0.0813310i −0.854531 0.519400i \(-0.826156\pi\)
0.898941 + 0.438069i \(0.144337\pi\)
\(338\) 0 0
\(339\) −16.3925 + 18.9180i −0.890319 + 1.02748i
\(340\) 0 0
\(341\) 2.45992 2.13153i 0.133212 0.115429i
\(342\) 0 0
\(343\) 18.1559 6.77180i 0.980326 0.365643i
\(344\) 0 0
\(345\) −0.727803 15.2700i −0.0391836 0.822107i
\(346\) 0 0
\(347\) 16.4586 6.13875i 0.883545 0.329545i 0.133592 0.991036i \(-0.457349\pi\)
0.749953 + 0.661491i \(0.230076\pi\)
\(348\) 0 0
\(349\) −3.14997 + 2.72947i −0.168614 + 0.146105i −0.735080 0.677980i \(-0.762856\pi\)
0.566466 + 0.824085i \(0.308310\pi\)
\(350\) 0 0
\(351\) −11.8386 + 13.6625i −0.631900 + 0.729251i
\(352\) 0 0
\(353\) −7.15925 + 13.1112i −0.381048 + 0.697838i −0.995866 0.0908311i \(-0.971048\pi\)
0.614818 + 0.788669i \(0.289229\pi\)
\(354\) 0 0
\(355\) −5.48530 + 18.4455i −0.291130 + 0.978985i
\(356\) 0 0
\(357\) 2.16825 5.81330i 0.114756 0.307672i
\(358\) 0 0
\(359\) −16.3017 10.4765i −0.860371 0.552927i 0.0344223 0.999407i \(-0.489041\pi\)
−0.894793 + 0.446480i \(0.852677\pi\)
\(360\) 0 0
\(361\) 0.895094 6.22552i 0.0471102 0.327659i
\(362\) 0 0
\(363\) 3.07600 14.1401i 0.161448 0.742165i
\(364\) 0 0
\(365\) 20.6204 1.40328i 1.07932 0.0734513i
\(366\) 0 0
\(367\) 12.4880 12.4880i 0.651867 0.651867i −0.301575 0.953442i \(-0.597512\pi\)
0.953442 + 0.301575i \(0.0975125\pi\)
\(368\) 0 0
\(369\) 5.15504i 0.268361i
\(370\) 0 0
\(371\) −1.88738 0.554186i −0.0979881 0.0287719i
\(372\) 0 0
\(373\) −29.7955 6.48162i −1.54275 0.335606i −0.640893 0.767631i \(-0.721436\pi\)
−0.901862 + 0.432025i \(0.857799\pi\)
\(374\) 0 0
\(375\) 9.68295 12.6595i 0.500025 0.653736i
\(376\) 0 0
\(377\) −4.84374 22.2663i −0.249465 1.14677i
\(378\) 0 0
\(379\) 8.36153 + 18.3092i 0.429503 + 0.940480i 0.993407 + 0.114640i \(0.0365715\pi\)
−0.563904 + 0.825840i \(0.690701\pi\)
\(380\) 0 0
\(381\) −1.19538 8.31406i −0.0612412 0.425942i
\(382\) 0 0
\(383\) −30.0261 16.3955i −1.53426 0.837772i −0.534293 0.845299i \(-0.679422\pi\)
−0.999972 + 0.00752762i \(0.997604\pi\)
\(384\) 0 0
\(385\) 3.47450 + 1.30960i 0.177077 + 0.0667434i
\(386\) 0 0
\(387\) 9.06698 + 0.648483i 0.460900 + 0.0329642i
\(388\) 0 0
\(389\) 3.98230 8.72001i 0.201910 0.442122i −0.781407 0.624022i \(-0.785497\pi\)
0.983317 + 0.181900i \(0.0582247\pi\)
\(390\) 0 0
\(391\) 10.0501 + 5.75590i 0.508254 + 0.291088i
\(392\) 0 0
\(393\) −4.96122 13.3015i −0.250261 0.670974i
\(394\) 0 0
\(395\) −0.850579 2.93423i −0.0427973 0.147637i
\(396\) 0 0
\(397\) 0.833700 0.0596274i 0.0418422 0.00299261i −0.0504024 0.998729i \(-0.516050\pi\)
0.0922446 + 0.995736i \(0.470596\pi\)
\(398\) 0 0
\(399\) 2.58058 + 8.78866i 0.129191 + 0.439983i
\(400\) 0 0
\(401\) −34.6591 + 4.98323i −1.73079 + 0.248851i −0.934476 0.356027i \(-0.884131\pi\)
−0.796319 + 0.604877i \(0.793222\pi\)
\(402\) 0 0
\(403\) 10.5790 + 3.94575i 0.526976 + 0.196552i
\(404\) 0 0
\(405\) −6.20431 9.72775i −0.308295 0.483376i
\(406\) 0 0
\(407\) 4.25267 3.18351i 0.210797 0.157801i
\(408\) 0 0
\(409\) −12.6757 19.7237i −0.626772 0.975276i −0.998891 0.0470909i \(-0.985005\pi\)
0.372119 0.928185i \(-0.378631\pi\)
\(410\) 0 0
\(411\) 6.35073 21.6286i 0.313258 1.06686i
\(412\) 0 0
\(413\) 7.36583 + 7.36583i 0.362449 + 0.362449i
\(414\) 0 0
\(415\) −2.77006 7.50585i −0.135977 0.368448i
\(416\) 0 0
\(417\) −5.42290 9.93130i −0.265561 0.486338i
\(418\) 0 0
\(419\) −17.0307 + 10.9449i −0.832003 + 0.534696i −0.885914 0.463850i \(-0.846468\pi\)
0.0539111 + 0.998546i \(0.482831\pi\)
\(420\) 0 0
\(421\) −30.3729 4.36697i −1.48029 0.212833i −0.645650 0.763634i \(-0.723413\pi\)
−0.834637 + 0.550801i \(0.814322\pi\)
\(422\) 0 0
\(423\) 10.3639 2.25453i 0.503910 0.109619i
\(424\) 0 0
\(425\) 4.14148 + 11.3422i 0.200891 + 0.550179i
\(426\) 0 0
\(427\) 9.47449 12.6564i 0.458503 0.612488i
\(428\) 0 0
\(429\) −4.02790 + 1.18270i −0.194469 + 0.0571011i
\(430\) 0 0
\(431\) −15.4078 13.3510i −0.742169 0.643093i 0.199398 0.979919i \(-0.436101\pi\)
−0.941567 + 0.336826i \(0.890647\pi\)
\(432\) 0 0
\(433\) 1.29937 18.1676i 0.0624438 0.873078i −0.865631 0.500683i \(-0.833082\pi\)
0.928074 0.372395i \(-0.121463\pi\)
\(434\) 0 0
\(435\) 22.6630 + 1.69953i 1.08661 + 0.0814862i
\(436\) 0 0
\(437\) −16.9699 + 2.08889i −0.811780 + 0.0999250i
\(438\) 0 0
\(439\) −31.7035 14.4785i −1.51312 0.691021i −0.525928 0.850529i \(-0.676282\pi\)
−0.987197 + 0.159509i \(0.949009\pi\)
\(440\) 0 0
\(441\) 2.37786 + 2.74419i 0.113231 + 0.130676i
\(442\) 0 0
\(443\) 0.241664 + 3.37890i 0.0114818 + 0.160536i 0.999958 + 0.00916038i \(0.00291588\pi\)
−0.988476 + 0.151376i \(0.951630\pi\)
\(444\) 0 0
\(445\) −14.6623 2.15979i −0.695058 0.102384i
\(446\) 0 0
\(447\) 1.48082 + 1.10852i 0.0700402 + 0.0524314i
\(448\) 0 0
\(449\) 31.2167 14.2562i 1.47320 0.672790i 0.492865 0.870106i \(-0.335950\pi\)
0.980340 + 0.197316i \(0.0632224\pi\)
\(450\) 0 0
\(451\) −2.65329 + 4.12859i −0.124938 + 0.194408i
\(452\) 0 0
\(453\) −7.64419 10.2114i −0.359155 0.479775i
\(454\) 0 0
\(455\) 1.78903 + 12.7554i 0.0838712 + 0.597981i
\(456\) 0 0
\(457\) −29.5264 + 16.1227i −1.38119 + 0.754186i −0.986365 0.164571i \(-0.947376\pi\)
−0.394823 + 0.918757i \(0.629194\pi\)
\(458\) 0 0
\(459\) 13.6596 0.637577
\(460\) 0 0
\(461\) 23.4006 1.08988 0.544938 0.838477i \(-0.316553\pi\)
0.544938 + 0.838477i \(0.316553\pi\)
\(462\) 0 0
\(463\) −9.19881 + 5.02293i −0.427505 + 0.233435i −0.678571 0.734534i \(-0.737401\pi\)
0.251066 + 0.967970i \(0.419219\pi\)
\(464\) 0 0
\(465\) −6.77950 + 8.99150i −0.314392 + 0.416971i
\(466\) 0 0
\(467\) 14.7991 + 19.7693i 0.684820 + 0.914813i 0.999408 0.0344157i \(-0.0109570\pi\)
−0.314587 + 0.949229i \(0.601866\pi\)
\(468\) 0 0
\(469\) 9.68898 15.0763i 0.447395 0.696161i
\(470\) 0 0
\(471\) 17.9539 8.19929i 0.827274 0.377803i
\(472\) 0 0
\(473\) 6.92783 + 5.18611i 0.318542 + 0.238458i
\(474\) 0 0
\(475\) −14.9292 9.74068i −0.684998 0.446933i
\(476\) 0 0
\(477\) −0.0753564 1.05362i −0.00345033 0.0482419i
\(478\) 0 0
\(479\) 22.0621 + 25.4610i 1.00804 + 1.16334i 0.986531 + 0.163573i \(0.0523019\pi\)
0.0215100 + 0.999769i \(0.493153\pi\)
\(480\) 0 0
\(481\) 16.7621 + 7.65499i 0.764286 + 0.349038i
\(482\) 0 0
\(483\) −10.4987 + 6.44951i −0.477710 + 0.293463i
\(484\) 0 0
\(485\) 3.11281 41.5090i 0.141345 1.88482i
\(486\) 0 0
\(487\) −0.478308 + 6.68762i −0.0216742 + 0.303045i 0.975039 + 0.222034i \(0.0712695\pi\)
−0.996713 + 0.0810113i \(0.974185\pi\)
\(488\) 0 0
\(489\) 16.3706 + 14.1852i 0.740306 + 0.641479i
\(490\) 0 0
\(491\) −2.66596 + 0.782795i −0.120313 + 0.0353271i −0.341335 0.939942i \(-0.610879\pi\)
0.221022 + 0.975269i \(0.429061\pi\)
\(492\) 0 0
\(493\) −10.3182 + 13.7835i −0.464707 + 0.620776i
\(494\) 0 0
\(495\) −0.00688178 + 1.99393i −0.000309313 + 0.0896204i
\(496\) 0 0
\(497\) 15.1560 3.29699i 0.679840 0.147890i
\(498\) 0 0
\(499\) −27.0099 3.88343i −1.20913 0.173846i −0.491879 0.870664i \(-0.663690\pi\)
−0.717249 + 0.696817i \(0.754599\pi\)
\(500\) 0 0
\(501\) 23.8615 15.3349i 1.06606 0.685112i
\(502\) 0 0
\(503\) 2.09915 + 3.84430i 0.0935963 + 0.171409i 0.920283 0.391254i \(-0.127959\pi\)
−0.826686 + 0.562663i \(0.809777\pi\)
\(504\) 0 0
\(505\) −1.82470 0.840937i −0.0811982 0.0374212i
\(506\) 0 0
\(507\) 2.80730 + 2.80730i 0.124676 + 0.124676i
\(508\) 0 0
\(509\) 0.0825841 0.281256i 0.00366048 0.0124664i −0.957642 0.287960i \(-0.907023\pi\)
0.961303 + 0.275493i \(0.0888412\pi\)
\(510\) 0 0
\(511\) −9.00622 14.0140i −0.398412 0.619941i
\(512\) 0 0
\(513\) −16.1435 + 12.0849i −0.712753 + 0.533560i
\(514\) 0 0
\(515\) −2.47138 + 11.1749i −0.108902 + 0.492426i
\(516\) 0 0
\(517\) 9.46068 + 3.52865i 0.416080 + 0.155190i
\(518\) 0 0
\(519\) 27.3662 3.93467i 1.20124 0.172713i
\(520\) 0 0
\(521\) −0.569516 1.93959i −0.0249510 0.0849752i 0.946076 0.323944i \(-0.105009\pi\)
−0.971027 + 0.238969i \(0.923191\pi\)
\(522\) 0 0
\(523\) 4.77067 0.341205i 0.208607 0.0149199i 0.0333553 0.999444i \(-0.489381\pi\)
0.175251 + 0.984524i \(0.443926\pi\)
\(524\) 0 0
\(525\) −12.7024 1.91591i −0.554378 0.0836173i
\(526\) 0 0
\(527\) −2.98137 7.99337i −0.129871 0.348197i
\(528\) 0 0
\(529\) −8.69655 21.2925i −0.378111 0.925760i
\(530\) 0 0
\(531\) −2.32377 + 5.08834i −0.100843 + 0.220815i
\(532\) 0 0
\(533\) −16.9805 1.21447i −0.735509 0.0526047i
\(534\) 0 0
\(535\) −7.28720 + 19.3337i −0.315053 + 0.835868i
\(536\) 0 0
\(537\) 0.194757 + 0.106346i 0.00840440 + 0.00458915i
\(538\) 0 0
\(539\) 0.491960 + 3.42166i 0.0211902 + 0.147381i
\(540\) 0 0
\(541\) −3.02631 6.62670i −0.130111 0.284904i 0.833353 0.552741i \(-0.186418\pi\)
−0.963464 + 0.267837i \(0.913691\pi\)
\(542\) 0 0
\(543\) 3.00960 + 13.8349i 0.129154 + 0.593713i
\(544\) 0 0
\(545\) 5.64857 8.72300i 0.241958 0.373652i
\(546\) 0 0
\(547\) −3.59252 0.781505i −0.153605 0.0334147i 0.135105 0.990831i \(-0.456863\pi\)
−0.288710 + 0.957417i \(0.593226\pi\)
\(548\) 0 0
\(549\) 8.14598 + 2.39187i 0.347662 + 0.102083i
\(550\) 0 0
\(551\) 25.4185i 1.08286i
\(552\) 0 0
\(553\) −1.74114 + 1.74114i −0.0740408 + 0.0740408i
\(554\) 0 0
\(555\) −12.0832 + 13.8479i −0.512904 + 0.587811i
\(556\) 0 0
\(557\) −1.31361 + 6.03856i −0.0556593 + 0.255862i −0.996566 0.0828047i \(-0.973612\pi\)
0.940906 + 0.338667i \(0.109976\pi\)
\(558\) 0 0
\(559\) −4.27217 + 29.7136i −0.180693 + 1.25675i
\(560\) 0 0
\(561\) 2.66839 + 1.71487i 0.112660 + 0.0724019i
\(562\) 0 0
\(563\) −7.58760 + 20.3431i −0.319779 + 0.857361i 0.673242 + 0.739422i \(0.264901\pi\)
−0.993021 + 0.117939i \(0.962371\pi\)
\(564\) 0 0
\(565\) −34.5264 + 18.6984i −1.45253 + 0.786648i
\(566\) 0 0
\(567\) −4.45677 + 8.16197i −0.187167 + 0.342771i
\(568\) 0 0
\(569\) 16.4652 19.0019i 0.690259 0.796601i −0.297143 0.954833i \(-0.596034\pi\)
0.987402 + 0.158232i \(0.0505794\pi\)
\(570\) 0 0
\(571\) −5.92243 + 5.13181i −0.247846 + 0.214760i −0.769920 0.638140i \(-0.779704\pi\)
0.522074 + 0.852900i \(0.325158\pi\)
\(572\) 0 0
\(573\) −0.437312 + 0.163109i −0.0182690 + 0.00681397i
\(574\) 0 0
\(575\) 7.37951 22.8154i 0.307747 0.951468i
\(576\) 0 0
\(577\) 27.2661 10.1697i 1.13510 0.423371i 0.289495 0.957179i \(-0.406512\pi\)
0.845605 + 0.533809i \(0.179240\pi\)
\(578\) 0 0
\(579\) −22.6607 + 19.6356i −0.941747 + 0.816028i
\(580\) 0 0
\(581\) −4.22289 + 4.87348i −0.175195 + 0.202186i
\(582\) 0 0
\(583\) 0.481944 0.882614i 0.0199601 0.0365541i
\(584\) 0 0
\(585\) −6.08201 + 3.29383i −0.251460 + 0.136183i
\(586\) 0 0
\(587\) 0.101574 0.272330i 0.00419240 0.0112403i −0.934837 0.355078i \(-0.884454\pi\)
0.939029 + 0.343838i \(0.111727\pi\)
\(588\) 0 0
\(589\) 10.5953 + 6.80922i 0.436574 + 0.280569i
\(590\) 0 0
\(591\) 2.71523 18.8848i 0.111690 0.776819i
\(592\) 0 0
\(593\) 8.52880 39.2063i 0.350236 1.61001i −0.378764 0.925493i \(-0.623651\pi\)
0.728999 0.684514i \(-0.239986\pi\)
\(594\) 0 0
\(595\) 6.39856 7.33304i 0.262315 0.300625i
\(596\) 0 0
\(597\) 5.51626 5.51626i 0.225765 0.225765i
\(598\) 0 0
\(599\) 7.63499i 0.311957i −0.987760 0.155979i \(-0.950147\pi\)
0.987760 0.155979i \(-0.0498531\pi\)
\(600\) 0 0
\(601\) 14.6692 + 4.30727i 0.598369 + 0.175697i 0.566871 0.823807i \(-0.308154\pi\)
0.0314984 + 0.999504i \(0.489972\pi\)
\(602\) 0 0
\(603\) 9.40378 + 2.04567i 0.382951 + 0.0833060i
\(604\) 0 0
\(605\) 12.3376 19.0527i 0.501593 0.774603i
\(606\) 0 0
\(607\) −1.89539 8.71298i −0.0769316 0.353649i 0.922549 0.385880i \(-0.126102\pi\)
−0.999480 + 0.0322315i \(0.989739\pi\)
\(608\) 0 0
\(609\) −7.60941 16.6623i −0.308349 0.675190i
\(610\) 0 0
\(611\) 4.98472 + 34.6695i 0.201660 + 1.40258i
\(612\) 0 0
\(613\) −18.8179 10.2753i −0.760046 0.415017i 0.0519722 0.998649i \(-0.483449\pi\)
−0.812018 + 0.583632i \(0.801631\pi\)
\(614\) 0 0
\(615\) 5.98835 15.8877i 0.241474 0.640654i
\(616\) 0 0
\(617\) 10.8897 + 0.778846i 0.438403 + 0.0313552i 0.288797 0.957391i \(-0.406745\pi\)
0.149606 + 0.988746i \(0.452199\pi\)
\(618\) 0 0
\(619\) 11.6839 25.5841i 0.469614 1.02831i −0.515575 0.856844i \(-0.672422\pi\)
0.985190 0.171468i \(-0.0548509\pi\)
\(620\) 0 0
\(621\) −21.3812 16.6944i −0.857999 0.669921i
\(622\) 0 0
\(623\) 4.17445 + 11.1921i 0.167246 + 0.448403i
\(624\) 0 0
\(625\) 21.2159 13.2244i 0.848637 0.528976i
\(626\) 0 0
\(627\) −4.67078 + 0.334061i −0.186533 + 0.0133411i
\(628\) 0 0
\(629\) −3.92271 13.3595i −0.156409 0.532679i
\(630\) 0 0
\(631\) −22.3845 + 3.21840i −0.891112 + 0.128123i −0.572637 0.819809i \(-0.694080\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 0.357805 + 0.133454i 0.0142215 + 0.00530434i
\(634\) 0 0
\(635\) 2.84502 12.8644i 0.112901 0.510509i
\(636\) 0 0
\(637\) −9.59948 + 7.18608i −0.380345 + 0.284723i
\(638\) 0 0
\(639\) 4.50305 + 7.00689i 0.178138 + 0.277188i
\(640\) 0 0
\(641\) −12.2560 + 41.7402i −0.484084 + 1.64864i 0.249003 + 0.968503i \(0.419897\pi\)
−0.733087 + 0.680135i \(0.761921\pi\)
\(642\) 0 0
\(643\) 7.08203 + 7.08203i 0.279288 + 0.279288i 0.832825 0.553537i \(-0.186722\pi\)
−0.553537 + 0.832825i \(0.686722\pi\)
\(644\) 0 0
\(645\) −27.1909 12.5313i −1.07064 0.493418i
\(646\) 0 0
\(647\) −2.34065 4.28658i −0.0920204 0.168523i 0.827615 0.561297i \(-0.189697\pi\)
−0.919635 + 0.392774i \(0.871516\pi\)
\(648\) 0 0
\(649\) −4.48002 + 2.87914i −0.175856 + 0.113016i
\(650\) 0 0
\(651\) 8.98390 + 1.29169i 0.352107 + 0.0506253i
\(652\) 0 0
\(653\) 12.1846 2.65060i 0.476822 0.103726i 0.0322695 0.999479i \(-0.489727\pi\)
0.444552 + 0.895753i \(0.353363\pi\)
\(654\) 0 0
\(655\) 0.0768560 22.2683i 0.00300301 0.870094i
\(656\) 0 0
\(657\) 5.36087 7.16128i 0.209147 0.279388i
\(658\) 0 0
\(659\) −0.527434 + 0.154868i −0.0205459 + 0.00603282i −0.291989 0.956422i \(-0.594317\pi\)
0.271443 + 0.962454i \(0.412499\pi\)
\(660\) 0 0
\(661\) −10.8643 9.41395i −0.422572 0.366160i 0.417462 0.908694i \(-0.362920\pi\)
−0.840034 + 0.542534i \(0.817465\pi\)
\(662\) 0 0
\(663\) −0.784938 + 10.9749i −0.0304845 + 0.426229i
\(664\) 0 0
\(665\) −1.07443 + 14.3274i −0.0416645 + 0.555592i
\(666\) 0 0
\(667\) 32.9966 8.96452i 1.27763 0.347108i
\(668\) 0 0
\(669\) 19.2686 + 8.79966i 0.744966 + 0.340215i
\(670\) 0 0
\(671\) 5.29290 + 6.10833i 0.204330 + 0.235809i
\(672\) 0 0
\(673\) −1.42407 19.9110i −0.0548937 0.767514i −0.948121 0.317909i \(-0.897019\pi\)
0.893227 0.449605i \(-0.148435\pi\)
\(674\) 0 0
\(675\) −5.82077 27.6761i −0.224042 1.06525i
\(676\) 0 0
\(677\) −20.6787 15.4799i −0.794748 0.594941i 0.122861 0.992424i \(-0.460793\pi\)
−0.917610 + 0.397483i \(0.869884\pi\)
\(678\) 0 0
\(679\) −30.5182 + 13.9372i −1.17118 + 0.534860i
\(680\) 0 0
\(681\) −0.357017 + 0.555530i −0.0136809 + 0.0212880i
\(682\) 0 0
\(683\) 16.0019 + 21.3760i 0.612294 + 0.817929i 0.994343 0.106213i \(-0.0338726\pi\)
−0.382050 + 0.924142i \(0.624782\pi\)
\(684\) 0 0
\(685\) 21.2869 28.2324i 0.813332 1.07870i
\(686\) 0 0
\(687\) 26.1192 14.2622i 0.996509 0.544135i
\(688\) 0 0
\(689\) 3.48835 0.132895
\(690\) 0 0
\(691\) −35.7365 −1.35948 −0.679739 0.733454i \(-0.737907\pi\)
−0.679739 + 0.733454i \(0.737907\pi\)
\(692\) 0 0
\(693\) 1.41053 0.770206i 0.0535815 0.0292577i
\(694\) 0 0
\(695\) −2.46529 17.5769i −0.0935140 0.666731i
\(696\) 0 0
\(697\) 7.70857 + 10.2974i 0.291983 + 0.390044i
\(698\) 0 0
\(699\) −0.518740 + 0.807175i −0.0196206 + 0.0305302i
\(700\) 0 0
\(701\) −9.89360 + 4.51825i −0.373676 + 0.170652i −0.593396 0.804911i \(-0.702213\pi\)
0.219720 + 0.975563i \(0.429486\pi\)
\(702\) 0 0
\(703\) 16.4554 + 12.3183i 0.620626 + 0.464594i
\(704\) 0 0
\(705\) −34.5602 5.09082i −1.30161 0.191731i
\(706\) 0 0
\(707\) 0.115525 + 1.61525i 0.00434476 + 0.0607477i
\(708\) 0 0
\(709\) 31.3359 + 36.1635i 1.17684 + 1.35815i 0.920107 + 0.391667i \(0.128102\pi\)
0.256736 + 0.966482i \(0.417353\pi\)
\(710\) 0 0
\(711\) −1.20278 0.549293i −0.0451079 0.0206001i
\(712\) 0 0
\(713\) −5.10254 + 16.1556i −0.191091 + 0.605033i
\(714\) 0 0
\(715\) −6.56632 0.492417i −0.245566 0.0184153i
\(716\) 0 0
\(717\) 0.582630 8.14624i 0.0217587 0.304227i
\(718\) 0 0
\(719\) −0.100895 0.0874262i −0.00376276 0.00326045i 0.652977 0.757377i \(-0.273520\pi\)
−0.656740 + 0.754117i \(0.728065\pi\)
\(720\) 0 0
\(721\) 8.85093 2.59887i 0.329626 0.0967869i
\(722\) 0 0
\(723\) 8.36458 11.1738i 0.311082 0.415557i
\(724\) 0 0
\(725\) 32.3238 + 15.0323i 1.20048 + 0.558286i
\(726\) 0 0
\(727\) −24.8184 + 5.39891i −0.920463 + 0.200234i −0.647743 0.761859i \(-0.724287\pi\)
−0.272720 + 0.962093i \(0.587923\pi\)
\(728\) 0 0
\(729\) −28.8868 4.15329i −1.06988 0.153826i
\(730\) 0 0
\(731\) 19.0815 12.2629i 0.705753 0.453560i
\(732\) 0 0
\(733\) 11.6817 + 21.3934i 0.431473 + 0.790183i 0.999460 0.0328541i \(-0.0104597\pi\)
−0.567988 + 0.823037i \(0.692278\pi\)
\(734\) 0 0
\(735\) −4.14070 11.2198i −0.152732 0.413847i
\(736\) 0 0
\(737\) 6.47844 + 6.47844i 0.238637 + 0.238637i
\(738\) 0 0
\(739\) 7.40865 25.2316i 0.272532 0.928158i −0.703530 0.710665i \(-0.748394\pi\)
0.976062 0.217493i \(-0.0697878\pi\)
\(740\) 0 0
\(741\) −8.78195 13.6650i −0.322613 0.501996i
\(742\) 0 0
\(743\) −14.3916 + 10.7734i −0.527976 + 0.395238i −0.829745 0.558143i \(-0.811514\pi\)
0.301768 + 0.953381i \(0.402423\pi\)
\(744\) 0 0
\(745\) 1.56023 + 2.44629i 0.0571624 + 0.0896250i
\(746\) 0 0
\(747\) −3.24452 1.21014i −0.118711 0.0442768i
\(748\) 0 0
\(749\) 16.4835 2.36998i 0.602296 0.0865970i
\(750\) 0 0
\(751\) −3.99362 13.6010i −0.145729 0.496309i 0.853983 0.520301i \(-0.174180\pi\)
−0.999712 + 0.0239927i \(0.992362\pi\)
\(752\) 0 0
\(753\) 11.1237 0.795583i 0.405371 0.0289927i
\(754\) 0 0
\(755\) −5.57065 19.2170i −0.202737 0.699378i
\(756\) 0 0
\(757\) 8.54567 + 22.9118i 0.310598 + 0.832745i 0.994649 + 0.103311i \(0.0329436\pi\)
−0.684051 + 0.729434i \(0.739784\pi\)
\(758\) 0 0
\(759\) −2.08093 5.94548i −0.0755331 0.215807i
\(760\) 0 0
\(761\) −17.1072 + 37.4595i −0.620135 + 1.35791i 0.295286 + 0.955409i \(0.404585\pi\)
−0.915421 + 0.402497i \(0.868142\pi\)
\(762\) 0 0
\(763\) −8.35472 0.597541i −0.302461 0.0216324i
\(764\) 0 0
\(765\) 4.89032 + 1.84325i 0.176810 + 0.0666427i
\(766\) 0 0
\(767\) −16.2134 8.85317i −0.585431 0.319670i
\(768\) 0 0
\(769\) 5.26278 + 36.6034i 0.189781 + 1.31995i 0.832574 + 0.553913i \(0.186866\pi\)
−0.642794 + 0.766039i \(0.722225\pi\)
\(770\) 0 0
\(771\) 11.4751 + 25.1269i 0.413264 + 0.904922i
\(772\) 0 0
\(773\) 4.96366 + 22.8176i 0.178531 + 0.820692i 0.976075 + 0.217432i \(0.0697681\pi\)
−0.797545 + 0.603260i \(0.793868\pi\)
\(774\) 0 0
\(775\) −14.9251 + 9.44683i −0.536125 + 0.339340i
\(776\) 0 0
\(777\) 14.4745 + 3.14873i 0.519269 + 0.112960i
\(778\) 0 0
\(779\) −18.2206 5.35005i −0.652821 0.191685i
\(780\) 0 0
\(781\) 7.92942i 0.283737i
\(782\) 0 0
\(783\) 28.5159 28.5159i 1.01907 1.01907i
\(784\) 0 0
\(785\) 30.8883 2.10205i 1.10245 0.0750253i
\(786\) 0 0
\(787\) 0.220900 1.01546i 0.00787423 0.0361973i −0.973042 0.230627i \(-0.925922\pi\)
0.980916 + 0.194430i \(0.0622858\pi\)
\(788\) 0 0
\(789\) 2.63742 18.3437i 0.0938947 0.653052i
\(790\) 0 0
\(791\) 26.6232 + 17.1097i 0.946612 + 0.608351i
\(792\) 0 0
\(793\) −9.79787 + 26.2691i −0.347933 + 0.932843i
\(794\) 0 0
\(795\) −0.991691 + 3.33477i −0.0351716 + 0.118272i
\(796\) 0 0
\(797\) −20.7982 + 38.0890i −0.736708 + 1.34918i 0.193115 + 0.981176i \(0.438141\pi\)
−0.929824 + 0.368005i \(0.880041\pi\)
\(798\) 0 0
\(799\) 17.3311 20.0011i 0.613130 0.707590i
\(800\) 0 0
\(801\) −4.84783 + 4.20067i −0.171290 + 0.148423i
\(802\) 0 0
\(803\) 7.97933 2.97614i 0.281585 0.105026i
\(804\) 0 0
\(805\) −18.9778 + 3.65819i −0.668879 + 0.128934i
\(806\) 0 0
\(807\) −20.2528 + 7.55392i −0.712934 + 0.265911i
\(808\) 0 0
\(809\) −6.55456 + 5.67956i −0.230446 + 0.199683i −0.762428 0.647073i \(-0.775993\pi\)
0.531982 + 0.846756i \(0.321447\pi\)
\(810\) 0 0
\(811\) −35.3251 + 40.7674i −1.24043 + 1.43154i −0.377661 + 0.925944i \(0.623272\pi\)
−0.862772 + 0.505593i \(0.831274\pi\)
\(812\) 0 0
\(813\) −14.6070 + 26.7507i −0.512288 + 0.938186i
\(814\) 0 0
\(815\) 16.1807 + 29.8773i 0.566783 + 1.04656i
\(816\) 0 0
\(817\) −11.7021 + 31.3744i −0.409403 + 1.09765i
\(818\) 0 0
\(819\) 4.68983 + 3.01397i 0.163876 + 0.105317i
\(820\) 0 0
\(821\) −4.70891 + 32.7512i −0.164342 + 1.14303i 0.725987 + 0.687708i \(0.241383\pi\)
−0.890329 + 0.455317i \(0.849526\pi\)
\(822\) 0 0
\(823\) 7.72968 35.5327i 0.269440 1.23859i −0.621116 0.783719i \(-0.713320\pi\)
0.890555 0.454875i \(-0.150316\pi\)
\(824\) 0 0
\(825\) 2.33745 6.13724i 0.0813797 0.213671i
\(826\) 0 0
\(827\) 36.2765 36.2765i 1.26146 1.26146i 0.311069 0.950387i \(-0.399313\pi\)
0.950387 0.311069i \(-0.100687\pi\)
\(828\) 0 0
\(829\) 17.9104i 0.622054i −0.950401 0.311027i \(-0.899327\pi\)
0.950401 0.311027i \(-0.100673\pi\)
\(830\) 0 0
\(831\) −15.2639 4.48190i −0.529500 0.155475i
\(832\) 0 0
\(833\) 8.85340 + 1.92594i 0.306752 + 0.0667299i
\(834\) 0 0
\(835\) 43.5069 9.30720i 1.50562 0.322089i
\(836\) 0 0
\(837\) 4.24750 + 19.5254i 0.146815 + 0.674898i
\(838\) 0 0
\(839\) −6.77228 14.8292i −0.233805 0.511961i 0.755969 0.654608i \(-0.227166\pi\)
−0.989774 + 0.142646i \(0.954439\pi\)
\(840\) 0 0
\(841\) 3.10702 + 21.6098i 0.107139 + 0.745166i
\(842\) 0 0
\(843\) −19.0258 10.3889i −0.655284 0.357812i
\(844\) 0 0
\(845\) 2.56739 + 5.67354i 0.0883209 + 0.195176i
\(846\) 0 0
\(847\) −18.2483 1.30514i −0.627019 0.0448453i
\(848\) 0 0
\(849\) −11.1239 + 24.3580i −0.381772 + 0.835964i
\(850\) 0 0
\(851\) −10.1874 + 25.7056i −0.349220 + 0.881178i
\(852\) 0 0
\(853\) −10.7179 28.7359i −0.366975 0.983898i −0.980896 0.194531i \(-0.937682\pi\)
0.613921 0.789367i \(-0.289591\pi\)
\(854\) 0 0
\(855\) −7.41032 + 2.14811i −0.253427 + 0.0734639i
\(856\) 0 0
\(857\) 23.7225 1.69667i 0.810345 0.0579570i 0.339984 0.940431i \(-0.389578\pi\)
0.470361 + 0.882474i \(0.344124\pi\)
\(858\) 0 0
\(859\) 2.73970 + 9.33055i 0.0934773 + 0.318354i 0.992936 0.118651i \(-0.0378571\pi\)
−0.899459 + 0.437006i \(0.856039\pi\)
\(860\) 0 0
\(861\) −13.5456 + 1.94756i −0.461632 + 0.0663726i
\(862\) 0 0
\(863\) 17.0522 + 6.36014i 0.580463 + 0.216502i 0.622507 0.782614i \(-0.286114\pi\)
−0.0420437 + 0.999116i \(0.513387\pi\)
\(864\) 0 0
\(865\) 42.3440 + 9.36455i 1.43974 + 0.318404i
\(866\) 0 0
\(867\) −12.7451 + 9.54088i −0.432847 + 0.324025i
\(868\) 0 0
\(869\) −0.680572 1.05899i −0.0230868 0.0359238i
\(870\) 0 0
\(871\) −8.95380 + 30.4938i −0.303388 + 1.03324i
\(872\) 0 0
\(873\) −12.7395 12.7395i −0.431166 0.431166i
\(874\) 0 0
\(875\) −17.5842 9.83943i −0.594456 0.332633i
\(876\) 0 0
\(877\) −8.17785 14.9766i −0.276146 0.505724i 0.702392 0.711791i \(-0.252116\pi\)
−0.978538 + 0.206066i \(0.933934\pi\)
\(878\) 0 0
\(879\) −6.06271 + 3.89627i −0.204490 + 0.131418i
\(880\) 0 0
\(881\) 58.4975 + 8.41068i 1.97083 + 0.283363i 0.998828 + 0.0483984i \(0.0154117\pi\)
0.972004 + 0.234965i \(0.0754974\pi\)
\(882\) 0 0
\(883\) 34.7706 7.56388i 1.17012 0.254545i 0.414810 0.909908i \(-0.363848\pi\)
0.755314 + 0.655363i \(0.227484\pi\)
\(884\) 0 0
\(885\) 13.0727 12.9827i 0.439432 0.436410i
\(886\) 0 0
\(887\) −26.9058 + 35.9419i −0.903408 + 1.20681i 0.0743831 + 0.997230i \(0.476301\pi\)
−0.977791 + 0.209582i \(0.932790\pi\)
\(888\) 0 0
\(889\) −10.1891 + 2.99178i −0.341731 + 0.100341i
\(890\) 0 0
\(891\) −3.59297 3.11333i −0.120369 0.104300i
\(892\) 0 0
\(893\) −2.78728 + 38.9712i −0.0932726 + 1.30412i
\(894\) 0 0
\(895\) 0.227025 + 0.263836i 0.00758862 + 0.00881905i
\(896\) 0 0
\(897\) 14.6418 16.2195i 0.488875 0.541552i
\(898\) 0 0
\(899\) −22.9109 10.4631i −0.764121 0.348963i
\(900\) 0 0
\(901\) −1.72606 1.99197i −0.0575033 0.0663623i
\(902\) 0 0
\(903\) 1.72150 + 24.0697i 0.0572879 + 0.800990i
\(904\) 0 0
\(905\) −3.23645 + 21.9714i −0.107583 + 0.730355i
\(906\) 0 0
\(907\) 8.73618 + 6.53982i 0.290080 + 0.217151i 0.734400 0.678717i \(-0.237464\pi\)
−0.444320 + 0.895868i \(0.646555\pi\)
\(908\) 0 0
\(909\) −0.791019 + 0.361246i −0.0262364 + 0.0119818i
\(910\) 0 0
\(911\) 0.603802 0.939534i 0.0200049 0.0311282i −0.831107 0.556112i \(-0.812292\pi\)
0.851112 + 0.524984i \(0.175929\pi\)
\(912\) 0 0
\(913\) −1.97563 2.63913i −0.0653838 0.0873425i
\(914\) 0 0
\(915\) −22.3272 16.8345i −0.738114 0.556530i
\(916\) 0 0
\(917\) −15.7528 + 8.60169i −0.520204 + 0.284053i
\(918\) 0 0
\(919\) 5.65057 0.186395 0.0931976 0.995648i \(-0.470291\pi\)
0.0931976 + 0.995648i \(0.470291\pi\)
\(920\) 0 0
\(921\) 20.3218 0.669627
\(922\) 0 0
\(923\) −24.1414 + 13.1822i −0.794622 + 0.433897i
\(924\) 0 0
\(925\) −25.3964 + 13.6408i −0.835028 + 0.448505i
\(926\) 0 0
\(927\) 2.96858 + 3.96556i 0.0975010 + 0.130246i
\(928\) 0 0
\(929\) −11.1843 + 17.4032i −0.366946 + 0.570980i −0.974803 0.223067i \(-0.928393\pi\)
0.607857 + 0.794047i \(0.292029\pi\)
\(930\) 0 0
\(931\) −12.1672 + 5.55658i −0.398764 + 0.182110i
\(932\) 0 0
\(933\) 38.5150 + 28.8320i 1.26093 + 0.943917i
\(934\) 0 0
\(935\) 2.96787 + 3.99326i 0.0970597 + 0.130594i
\(936\) 0 0
\(937\) 1.39733 + 19.5372i 0.0456487 + 0.638252i 0.967848 + 0.251536i \(0.0809358\pi\)
−0.922199 + 0.386715i \(0.873610\pi\)
\(938\) 0 0
\(939\) 7.76629 + 8.96277i 0.253443 + 0.292489i
\(940\) 0 0
\(941\) 42.0234 + 19.1915i 1.36992 + 0.625624i 0.958309 0.285734i \(-0.0922374\pi\)
0.411616 + 0.911358i \(0.364965\pi\)
\(942\) 0 0
\(943\) 0.519090 25.5396i 0.0169039 0.831684i
\(944\) 0 0
\(945\) −17.2786 + 14.8679i −0.562073 + 0.483653i
\(946\) 0 0
\(947\) 0.708908 9.91183i 0.0230364 0.322091i −0.972847 0.231449i \(-0.925653\pi\)
0.995883 0.0906425i \(-0.0288920\pi\)
\(948\) 0 0
\(949\) 22.3261 + 19.3457i 0.724736 + 0.627987i
\(950\) 0 0
\(951\) 5.45873 1.60283i 0.177011 0.0519752i
\(952\) 0 0
\(953\) −16.5785 + 22.1462i −0.537029 + 0.717387i −0.984200 0.177062i \(-0.943341\pi\)
0.447171 + 0.894449i \(0.352432\pi\)
\(954\) 0 0
\(955\) −0.732108 0.00252678i −0.0236905 8.17646e-5i
\(956\) 0 0
\(957\) 9.15051 1.99057i 0.295794 0.0643461i
\(958\) 0 0
\(959\) −28.2085 4.05577i −0.910900 0.130968i
\(960\) 0 0
\(961\) −15.5800 + 10.0127i −0.502581 + 0.322989i
\(962\) 0 0
\(963\) 4.28576 + 7.84879i 0.138107 + 0.252924i
\(964\) 0 0
\(965\) −44.1236 + 16.2840i −1.42039 + 0.524201i
\(966\) 0 0
\(967\) 17.8258 + 17.8258i 0.573238 + 0.573238i 0.933032 0.359794i \(-0.117153\pi\)
−0.359794 + 0.933032i \(0.617153\pi\)
\(968\) 0 0
\(969\) −3.45784 + 11.7763i −0.111082 + 0.378310i
\(970\) 0 0
\(971\) −30.3226 47.1828i −0.973098 1.51417i −0.853332 0.521367i \(-0.825422\pi\)
−0.119765 0.992802i \(-0.538214\pi\)
\(972\) 0 0
\(973\) −11.4523 + 8.57305i −0.367142 + 0.274839i
\(974\) 0 0
\(975\) 22.5709 3.08634i 0.722847 0.0988419i
\(976\) 0 0
\(977\) 42.3640 + 15.8009i 1.35534 + 0.505517i 0.918998 0.394263i \(-0.129000\pi\)
0.436345 + 0.899779i \(0.356273\pi\)
\(978\) 0 0
\(979\) −6.04463 + 0.869086i −0.193187 + 0.0277761i
\(980\) 0 0
\(981\) −1.26721 4.31574i −0.0404590 0.137791i
\(982\) 0 0
\(983\) −8.42607 + 0.602644i −0.268750 + 0.0192214i −0.205064 0.978749i \(-0.565740\pi\)
−0.0636860 + 0.997970i \(0.520286\pi\)
\(984\) 0 0
\(985\) 14.4329 26.2164i 0.459872 0.835325i
\(986\) 0 0
\(987\) 9.83952 + 26.3808i 0.313195 + 0.839709i
\(988\) 0 0
\(989\) −44.8552 4.12578i −1.42631 0.131192i
\(990\) 0 0
\(991\) −22.8764 + 50.0922i −0.726692 + 1.59123i 0.0775907 + 0.996985i \(0.475277\pi\)
−0.804282 + 0.594247i \(0.797450\pi\)
\(992\) 0 0
\(993\) −51.6329 3.69286i −1.63852 0.117189i
\(994\) 0 0
\(995\) 11.1483 5.04484i 0.353426 0.159932i
\(996\) 0 0
\(997\) 8.15055 + 4.45054i 0.258130 + 0.140950i 0.603104 0.797662i \(-0.293930\pi\)
−0.344974 + 0.938612i \(0.612112\pi\)
\(998\) 0 0
\(999\) 4.64116 + 32.2799i 0.146840 + 1.02129i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.17.11 720
5.3 odd 4 inner 920.2.bv.a.753.11 yes 720
23.19 odd 22 inner 920.2.bv.a.617.11 yes 720
115.88 even 44 inner 920.2.bv.a.433.11 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.11 720 1.1 even 1 trivial
920.2.bv.a.433.11 yes 720 115.88 even 44 inner
920.2.bv.a.617.11 yes 720 23.19 odd 22 inner
920.2.bv.a.753.11 yes 720 5.3 odd 4 inner