Properties

Label 920.2.bv.a.17.1
Level $920$
Weight $2$
Character 920.17
Analytic conductor $7.346$
Analytic rank $0$
Dimension $720$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(17,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([0, 0, 11, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bv (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(720\)
Relative dimension: \(36\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 17.1
Character \(\chi\) \(=\) 920.17
Dual form 920.2.bv.a.433.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.89859 + 1.58275i) q^{3} +(-2.21695 + 0.291804i) q^{5} +(0.277250 + 0.370363i) q^{7} +(4.27482 - 6.65174i) q^{9} +(1.52773 - 0.697690i) q^{11} +(5.64247 + 4.22390i) q^{13} +(5.96417 - 4.35469i) q^{15} +(-0.394803 - 5.52007i) q^{17} +(0.267286 + 0.308464i) q^{19} +(-1.38983 - 0.634712i) q^{21} +(-0.247460 + 4.78944i) q^{23} +(4.82970 - 1.29383i) q^{25} +(-1.15609 + 16.1642i) q^{27} +(-2.52681 - 2.18949i) q^{29} +(-5.05084 + 1.48306i) q^{31} +(-3.32399 + 4.44033i) q^{33} +(-0.722721 - 0.740171i) q^{35} +(3.55355 - 0.773028i) q^{37} +(-23.0406 - 3.31274i) q^{39} +(-1.01912 + 0.654949i) q^{41} +(2.68125 + 4.91033i) q^{43} +(-7.53603 + 15.9940i) q^{45} +(3.98168 + 3.98168i) q^{47} +(1.91183 - 6.51108i) q^{49} +(9.88127 + 15.3756i) q^{51} +(-9.74431 + 7.29450i) q^{53} +(-3.18330 + 1.99254i) q^{55} +(-1.26297 - 0.471065i) q^{57} +(-4.26171 + 0.612742i) q^{59} +(2.08404 + 7.09759i) q^{61} +(3.64875 - 0.260964i) q^{63} +(-13.7416 - 7.71767i) q^{65} +(-1.39754 - 3.74696i) q^{67} +(-6.86321 - 14.2743i) q^{69} +(4.57599 - 10.0200i) q^{71} +(-3.29574 - 0.235716i) q^{73} +(-11.9515 + 11.3945i) q^{75} +(0.681961 + 0.372379i) q^{77} +(1.81922 + 12.6530i) q^{79} +(-12.3789 - 27.1060i) q^{81} +(0.865786 + 3.97995i) q^{83} +(2.48603 + 12.1225i) q^{85} +(10.7896 + 2.34714i) q^{87} +(11.9121 + 3.49772i) q^{89} +3.26084i q^{91} +(12.2930 - 12.2930i) q^{93} +(-0.682569 - 0.605854i) q^{95} +(-3.69805 + 16.9997i) q^{97} +(1.88990 - 13.1445i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 720 q - 20 q^{23} + 16 q^{25} - 24 q^{27} - 16 q^{31} + 88 q^{37} - 32 q^{41} + 56 q^{47} - 40 q^{55} + 88 q^{57} + 16 q^{73} - 140 q^{75} - 48 q^{77} + 40 q^{81} - 92 q^{85} - 88 q^{87} + 72 q^{93} - 248 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/920\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(281\) \(461\) \(737\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.89859 + 1.58275i −1.67350 + 0.913802i −0.692111 + 0.721792i \(0.743319\pi\)
−0.981393 + 0.192010i \(0.938499\pi\)
\(4\) 0 0
\(5\) −2.21695 + 0.291804i −0.991448 + 0.130499i
\(6\) 0 0
\(7\) 0.277250 + 0.370363i 0.104791 + 0.139984i 0.849871 0.526991i \(-0.176680\pi\)
−0.745080 + 0.666975i \(0.767589\pi\)
\(8\) 0 0
\(9\) 4.27482 6.65174i 1.42494 2.21725i
\(10\) 0 0
\(11\) 1.52773 0.697690i 0.460627 0.210361i −0.171565 0.985173i \(-0.554882\pi\)
0.632193 + 0.774811i \(0.282155\pi\)
\(12\) 0 0
\(13\) 5.64247 + 4.22390i 1.56494 + 1.17150i 0.909084 + 0.416613i \(0.136783\pi\)
0.655856 + 0.754886i \(0.272308\pi\)
\(14\) 0 0
\(15\) 5.96417 4.35469i 1.53994 1.12438i
\(16\) 0 0
\(17\) −0.394803 5.52007i −0.0957538 1.33881i −0.787340 0.616519i \(-0.788542\pi\)
0.691586 0.722294i \(-0.256912\pi\)
\(18\) 0 0
\(19\) 0.267286 + 0.308464i 0.0613196 + 0.0707665i 0.785581 0.618759i \(-0.212364\pi\)
−0.724261 + 0.689526i \(0.757819\pi\)
\(20\) 0 0
\(21\) −1.38983 0.634712i −0.303285 0.138506i
\(22\) 0 0
\(23\) −0.247460 + 4.78944i −0.0515990 + 0.998668i
\(24\) 0 0
\(25\) 4.82970 1.29383i 0.965940 0.258765i
\(26\) 0 0
\(27\) −1.15609 + 16.1642i −0.222489 + 3.11080i
\(28\) 0 0
\(29\) −2.52681 2.18949i −0.469216 0.406578i 0.387900 0.921702i \(-0.373201\pi\)
−0.857116 + 0.515123i \(0.827746\pi\)
\(30\) 0 0
\(31\) −5.05084 + 1.48306i −0.907157 + 0.266365i −0.701844 0.712331i \(-0.747640\pi\)
−0.205313 + 0.978696i \(0.565821\pi\)
\(32\) 0 0
\(33\) −3.32399 + 4.44033i −0.578633 + 0.772963i
\(34\) 0 0
\(35\) −0.722721 0.740171i −0.122162 0.125112i
\(36\) 0 0
\(37\) 3.55355 0.773028i 0.584200 0.127085i 0.0892545 0.996009i \(-0.471552\pi\)
0.494946 + 0.868924i \(0.335188\pi\)
\(38\) 0 0
\(39\) −23.0406 3.31274i −3.68945 0.530463i
\(40\) 0 0
\(41\) −1.01912 + 0.654949i −0.159160 + 0.102286i −0.617796 0.786338i \(-0.711974\pi\)
0.458636 + 0.888624i \(0.348338\pi\)
\(42\) 0 0
\(43\) 2.68125 + 4.91033i 0.408886 + 0.748819i 0.998255 0.0590448i \(-0.0188055\pi\)
−0.589369 + 0.807864i \(0.700624\pi\)
\(44\) 0 0
\(45\) −7.53603 + 15.9940i −1.12341 + 2.38424i
\(46\) 0 0
\(47\) 3.98168 + 3.98168i 0.580787 + 0.580787i 0.935120 0.354332i \(-0.115292\pi\)
−0.354332 + 0.935120i \(0.615292\pi\)
\(48\) 0 0
\(49\) 1.91183 6.51108i 0.273118 0.930155i
\(50\) 0 0
\(51\) 9.88127 + 15.3756i 1.38365 + 2.15301i
\(52\) 0 0
\(53\) −9.74431 + 7.29450i −1.33848 + 1.00198i −0.340388 + 0.940285i \(0.610559\pi\)
−0.998095 + 0.0616914i \(0.980351\pi\)
\(54\) 0 0
\(55\) −3.18330 + 1.99254i −0.429236 + 0.268674i
\(56\) 0 0
\(57\) −1.26297 0.471065i −0.167285 0.0623941i
\(58\) 0 0
\(59\) −4.26171 + 0.612742i −0.554828 + 0.0797722i −0.414025 0.910265i \(-0.635877\pi\)
−0.140803 + 0.990038i \(0.544968\pi\)
\(60\) 0 0
\(61\) 2.08404 + 7.09759i 0.266834 + 0.908753i 0.978502 + 0.206237i \(0.0661218\pi\)
−0.711668 + 0.702516i \(0.752060\pi\)
\(62\) 0 0
\(63\) 3.64875 0.260964i 0.459699 0.0328783i
\(64\) 0 0
\(65\) −13.7416 7.71767i −1.70444 0.957259i
\(66\) 0 0
\(67\) −1.39754 3.74696i −0.170737 0.457764i 0.823195 0.567759i \(-0.192189\pi\)
−0.993932 + 0.109995i \(0.964917\pi\)
\(68\) 0 0
\(69\) −6.86321 14.2743i −0.826234 1.71843i
\(70\) 0 0
\(71\) 4.57599 10.0200i 0.543070 1.18916i −0.416874 0.908964i \(-0.636874\pi\)
0.959944 0.280192i \(-0.0903983\pi\)
\(72\) 0 0
\(73\) −3.29574 0.235716i −0.385737 0.0275884i −0.122875 0.992422i \(-0.539212\pi\)
−0.262861 + 0.964834i \(0.584666\pi\)
\(74\) 0 0
\(75\) −11.9515 + 11.3945i −1.38004 + 1.31572i
\(76\) 0 0
\(77\) 0.681961 + 0.372379i 0.0777166 + 0.0424365i
\(78\) 0 0
\(79\) 1.81922 + 12.6530i 0.204678 + 1.42357i 0.790169 + 0.612889i \(0.209993\pi\)
−0.585490 + 0.810679i \(0.699098\pi\)
\(80\) 0 0
\(81\) −12.3789 27.1060i −1.37544 3.01178i
\(82\) 0 0
\(83\) 0.865786 + 3.97995i 0.0950323 + 0.436857i 0.999937 + 0.0112419i \(0.00357848\pi\)
−0.904904 + 0.425615i \(0.860058\pi\)
\(84\) 0 0
\(85\) 2.48603 + 12.1225i 0.269648 + 1.31487i
\(86\) 0 0
\(87\) 10.7896 + 2.34714i 1.15677 + 0.251639i
\(88\) 0 0
\(89\) 11.9121 + 3.49772i 1.26268 + 0.370757i 0.843493 0.537141i \(-0.180496\pi\)
0.419191 + 0.907898i \(0.362314\pi\)
\(90\) 0 0
\(91\) 3.26084i 0.341828i
\(92\) 0 0
\(93\) 12.2930 12.2930i 1.27473 1.27473i
\(94\) 0 0
\(95\) −0.682569 0.605854i −0.0700301 0.0621593i
\(96\) 0 0
\(97\) −3.69805 + 16.9997i −0.375480 + 1.72605i 0.270518 + 0.962715i \(0.412805\pi\)
−0.645998 + 0.763339i \(0.723558\pi\)
\(98\) 0 0
\(99\) 1.88990 13.1445i 0.189942 1.32108i
\(100\) 0 0
\(101\) 11.6452 + 7.48394i 1.15874 + 0.744680i 0.971361 0.237607i \(-0.0763630\pi\)
0.187383 + 0.982287i \(0.439999\pi\)
\(102\) 0 0
\(103\) −3.58274 + 9.60570i −0.353018 + 0.946478i 0.632144 + 0.774851i \(0.282175\pi\)
−0.985162 + 0.171627i \(0.945098\pi\)
\(104\) 0 0
\(105\) 3.26638 + 1.00157i 0.318766 + 0.0977429i
\(106\) 0 0
\(107\) −0.259542 + 0.475316i −0.0250909 + 0.0459505i −0.889924 0.456110i \(-0.849243\pi\)
0.864833 + 0.502060i \(0.167424\pi\)
\(108\) 0 0
\(109\) 1.20330 1.38868i 0.115255 0.133012i −0.695190 0.718826i \(-0.744680\pi\)
0.810445 + 0.585814i \(0.199225\pi\)
\(110\) 0 0
\(111\) −9.07679 + 7.86508i −0.861531 + 0.746521i
\(112\) 0 0
\(113\) 2.48103 0.925377i 0.233396 0.0870521i −0.230045 0.973180i \(-0.573887\pi\)
0.463441 + 0.886128i \(0.346615\pi\)
\(114\) 0 0
\(115\) −0.848971 10.6901i −0.0791670 0.996861i
\(116\) 0 0
\(117\) 52.2168 19.4759i 4.82745 1.80054i
\(118\) 0 0
\(119\) 1.93497 1.67666i 0.177378 0.153699i
\(120\) 0 0
\(121\) −5.35629 + 6.18149i −0.486935 + 0.561953i
\(122\) 0 0
\(123\) 1.91739 3.51145i 0.172886 0.316616i
\(124\) 0 0
\(125\) −10.3296 + 4.27767i −0.923912 + 0.382606i
\(126\) 0 0
\(127\) 3.40426 9.12718i 0.302079 0.809906i −0.693879 0.720092i \(-0.744100\pi\)
0.995958 0.0898147i \(-0.0286275\pi\)
\(128\) 0 0
\(129\) −15.5437 9.98931i −1.36854 0.879510i
\(130\) 0 0
\(131\) −0.0463141 + 0.322122i −0.00404648 + 0.0281439i −0.991745 0.128229i \(-0.959071\pi\)
0.987698 + 0.156372i \(0.0499800\pi\)
\(132\) 0 0
\(133\) −0.0401386 + 0.184514i −0.00348046 + 0.0159994i
\(134\) 0 0
\(135\) −2.15379 36.1725i −0.185369 3.11324i
\(136\) 0 0
\(137\) 0.300700 0.300700i 0.0256905 0.0256905i −0.694145 0.719835i \(-0.744217\pi\)
0.719835 + 0.694145i \(0.244217\pi\)
\(138\) 0 0
\(139\) 13.5410i 1.14853i 0.818669 + 0.574265i \(0.194712\pi\)
−0.818669 + 0.574265i \(0.805288\pi\)
\(140\) 0 0
\(141\) −17.8433 5.23926i −1.50267 0.441225i
\(142\) 0 0
\(143\) 11.5671 + 2.51628i 0.967292 + 0.210422i
\(144\) 0 0
\(145\) 6.24070 + 4.11665i 0.518262 + 0.341869i
\(146\) 0 0
\(147\) 4.76382 + 21.8989i 0.392913 + 1.80619i
\(148\) 0 0
\(149\) 0.0819658 + 0.179480i 0.00671490 + 0.0147036i 0.912960 0.408050i \(-0.133791\pi\)
−0.906245 + 0.422753i \(0.861064\pi\)
\(150\) 0 0
\(151\) −2.03922 14.1831i −0.165949 1.15420i −0.887152 0.461477i \(-0.847320\pi\)
0.721203 0.692724i \(-0.243589\pi\)
\(152\) 0 0
\(153\) −38.4058 20.9711i −3.10492 1.69542i
\(154\) 0 0
\(155\) 10.7647 4.76172i 0.864639 0.382470i
\(156\) 0 0
\(157\) 14.7872 + 1.05760i 1.18015 + 0.0844057i 0.647590 0.761989i \(-0.275777\pi\)
0.532556 + 0.846395i \(0.321232\pi\)
\(158\) 0 0
\(159\) 16.6994 36.5666i 1.32435 2.89992i
\(160\) 0 0
\(161\) −1.84244 + 1.23622i −0.145204 + 0.0974280i
\(162\) 0 0
\(163\) −5.05059 13.5411i −0.395593 1.06062i −0.970223 0.242212i \(-0.922127\pi\)
0.574631 0.818413i \(-0.305146\pi\)
\(164\) 0 0
\(165\) 6.07340 10.8139i 0.472814 0.841863i
\(166\) 0 0
\(167\) −9.53339 + 0.681842i −0.737716 + 0.0527625i −0.435140 0.900363i \(-0.643301\pi\)
−0.302576 + 0.953125i \(0.597847\pi\)
\(168\) 0 0
\(169\) 10.3336 + 35.1931i 0.794893 + 2.70716i
\(170\) 0 0
\(171\) 3.19442 0.459289i 0.244284 0.0351227i
\(172\) 0 0
\(173\) −3.82272 1.42580i −0.290636 0.108402i 0.199917 0.979813i \(-0.435933\pi\)
−0.490554 + 0.871411i \(0.663205\pi\)
\(174\) 0 0
\(175\) 1.81822 + 1.43003i 0.137444 + 0.108100i
\(176\) 0 0
\(177\) 11.3832 8.52133i 0.855611 0.640502i
\(178\) 0 0
\(179\) 1.33214 + 2.07285i 0.0995686 + 0.154932i 0.887464 0.460878i \(-0.152465\pi\)
−0.787895 + 0.615810i \(0.788829\pi\)
\(180\) 0 0
\(181\) −6.01702 + 20.4921i −0.447242 + 1.52316i 0.360005 + 0.932950i \(0.382775\pi\)
−0.807247 + 0.590214i \(0.799043\pi\)
\(182\) 0 0
\(183\) −17.2745 17.2745i −1.27697 1.27697i
\(184\) 0 0
\(185\) −7.65246 + 2.75070i −0.562620 + 0.202236i
\(186\) 0 0
\(187\) −4.45445 8.15771i −0.325741 0.596551i
\(188\) 0 0
\(189\) −6.30714 + 4.05336i −0.458777 + 0.294838i
\(190\) 0 0
\(191\) −10.4741 1.50595i −0.757879 0.108967i −0.247467 0.968896i \(-0.579598\pi\)
−0.510412 + 0.859930i \(0.670507\pi\)
\(192\) 0 0
\(193\) −17.1874 + 3.73889i −1.23718 + 0.269131i −0.783136 0.621851i \(-0.786381\pi\)
−0.454039 + 0.890982i \(0.650017\pi\)
\(194\) 0 0
\(195\) 52.0465 + 0.620831i 3.72712 + 0.0444586i
\(196\) 0 0
\(197\) 2.16977 2.89848i 0.154590 0.206508i −0.716559 0.697526i \(-0.754284\pi\)
0.871149 + 0.491018i \(0.163375\pi\)
\(198\) 0 0
\(199\) 13.8175 4.05719i 0.979498 0.287607i 0.247481 0.968893i \(-0.420397\pi\)
0.732017 + 0.681286i \(0.238579\pi\)
\(200\) 0 0
\(201\) 9.98142 + 8.64895i 0.704035 + 0.610050i
\(202\) 0 0
\(203\) 0.110348 1.54287i 0.00774493 0.108288i
\(204\) 0 0
\(205\) 2.06822 1.74937i 0.144451 0.122181i
\(206\) 0 0
\(207\) 30.8003 + 22.1200i 2.14077 + 1.53745i
\(208\) 0 0
\(209\) 0.623552 + 0.284767i 0.0431320 + 0.0196977i
\(210\) 0 0
\(211\) −7.64202 8.81936i −0.526098 0.607150i 0.429049 0.903281i \(-0.358849\pi\)
−0.955147 + 0.296131i \(0.904303\pi\)
\(212\) 0 0
\(213\) 2.59527 + 36.2866i 0.177825 + 2.48632i
\(214\) 0 0
\(215\) −7.37703 10.1035i −0.503109 0.689056i
\(216\) 0 0
\(217\) −1.94961 1.45946i −0.132348 0.0990748i
\(218\) 0 0
\(219\) 9.92608 4.53309i 0.670742 0.306318i
\(220\) 0 0
\(221\) 21.0885 32.8144i 1.41857 2.20734i
\(222\) 0 0
\(223\) 15.7028 + 20.9765i 1.05154 + 1.40469i 0.909926 + 0.414770i \(0.136138\pi\)
0.141613 + 0.989922i \(0.454771\pi\)
\(224\) 0 0
\(225\) 12.0399 37.6568i 0.802659 2.51045i
\(226\) 0 0
\(227\) −17.6816 + 9.65490i −1.17357 + 0.640818i −0.943181 0.332280i \(-0.892182\pi\)
−0.230391 + 0.973098i \(0.574000\pi\)
\(228\) 0 0
\(229\) 3.00254 0.198414 0.0992068 0.995067i \(-0.468369\pi\)
0.0992068 + 0.995067i \(0.468369\pi\)
\(230\) 0 0
\(231\) −2.56611 −0.168838
\(232\) 0 0
\(233\) 18.1642 9.91842i 1.18998 0.649777i 0.242672 0.970108i \(-0.421976\pi\)
0.947306 + 0.320331i \(0.103794\pi\)
\(234\) 0 0
\(235\) −9.98903 7.66530i −0.651613 0.500029i
\(236\) 0 0
\(237\) −25.2997 33.7964i −1.64339 2.19531i
\(238\) 0 0
\(239\) 9.33935 14.5323i 0.604112 0.940017i −0.395654 0.918400i \(-0.629482\pi\)
0.999766 0.0216176i \(-0.00688162\pi\)
\(240\) 0 0
\(241\) 7.76277 3.54514i 0.500044 0.228362i −0.149393 0.988778i \(-0.547732\pi\)
0.649437 + 0.760415i \(0.275005\pi\)
\(242\) 0 0
\(243\) 39.8641 + 29.8419i 2.55728 + 1.91436i
\(244\) 0 0
\(245\) −2.33846 + 14.9926i −0.149399 + 0.957842i
\(246\) 0 0
\(247\) 0.205230 + 2.86949i 0.0130585 + 0.182581i
\(248\) 0 0
\(249\) −8.80884 10.1659i −0.558237 0.644240i
\(250\) 0 0
\(251\) −14.5282 6.63480i −0.917011 0.418785i −0.0997235 0.995015i \(-0.531796\pi\)
−0.817287 + 0.576230i \(0.804523\pi\)
\(252\) 0 0
\(253\) 2.96349 + 7.48961i 0.186313 + 0.470868i
\(254\) 0 0
\(255\) −26.3929 31.2034i −1.65279 1.95403i
\(256\) 0 0
\(257\) −1.12394 + 15.7147i −0.0701093 + 0.980256i 0.833671 + 0.552261i \(0.186235\pi\)
−0.903781 + 0.427996i \(0.859220\pi\)
\(258\) 0 0
\(259\) 1.27152 + 1.10178i 0.0790086 + 0.0684613i
\(260\) 0 0
\(261\) −25.3656 + 7.44801i −1.57009 + 0.461020i
\(262\) 0 0
\(263\) −6.22865 + 8.32050i −0.384075 + 0.513064i −0.950363 0.311144i \(-0.899288\pi\)
0.566288 + 0.824207i \(0.308379\pi\)
\(264\) 0 0
\(265\) 19.4740 19.0149i 1.19628 1.16808i
\(266\) 0 0
\(267\) −40.0644 + 8.71548i −2.45190 + 0.533379i
\(268\) 0 0
\(269\) −14.1387 2.03284i −0.862055 0.123945i −0.302914 0.953018i \(-0.597960\pi\)
−0.559140 + 0.829073i \(0.688869\pi\)
\(270\) 0 0
\(271\) 3.35136 2.15379i 0.203581 0.130833i −0.434878 0.900489i \(-0.643209\pi\)
0.638459 + 0.769656i \(0.279572\pi\)
\(272\) 0 0
\(273\) −5.16109 9.45183i −0.312364 0.572051i
\(274\) 0 0
\(275\) 6.47578 5.34625i 0.390504 0.322391i
\(276\) 0 0
\(277\) 7.14537 + 7.14537i 0.429324 + 0.429324i 0.888398 0.459074i \(-0.151819\pi\)
−0.459074 + 0.888398i \(0.651819\pi\)
\(278\) 0 0
\(279\) −11.7265 + 39.9367i −0.702045 + 2.39095i
\(280\) 0 0
\(281\) 14.5611 + 22.6575i 0.868643 + 1.35163i 0.935299 + 0.353858i \(0.115131\pi\)
−0.0666563 + 0.997776i \(0.521233\pi\)
\(282\) 0 0
\(283\) −11.6045 + 8.68704i −0.689817 + 0.516391i −0.885713 0.464234i \(-0.846330\pi\)
0.195895 + 0.980625i \(0.437239\pi\)
\(284\) 0 0
\(285\) 2.93741 + 0.675786i 0.173997 + 0.0400301i
\(286\) 0 0
\(287\) −0.525120 0.195860i −0.0309968 0.0115612i
\(288\) 0 0
\(289\) −13.4883 + 1.93933i −0.793430 + 0.114078i
\(290\) 0 0
\(291\) −16.1871 55.1282i −0.948905 3.23167i
\(292\) 0 0
\(293\) −7.61826 + 0.544869i −0.445064 + 0.0318316i −0.292073 0.956396i \(-0.594345\pi\)
−0.152991 + 0.988228i \(0.548890\pi\)
\(294\) 0 0
\(295\) 9.26919 2.60200i 0.539673 0.151494i
\(296\) 0 0
\(297\) 9.51142 + 25.5011i 0.551909 + 1.47972i
\(298\) 0 0
\(299\) −21.6264 + 25.9790i −1.25069 + 1.50241i
\(300\) 0 0
\(301\) −1.07523 + 2.35442i −0.0619751 + 0.135707i
\(302\) 0 0
\(303\) −45.6000 3.26138i −2.61965 0.187361i
\(304\) 0 0
\(305\) −6.69131 15.1268i −0.383143 0.866160i
\(306\) 0 0
\(307\) −26.7632 14.6138i −1.52745 0.834053i −0.527574 0.849509i \(-0.676898\pi\)
−0.999881 + 0.0154562i \(0.995080\pi\)
\(308\) 0 0
\(309\) −4.81853 33.5136i −0.274117 1.90652i
\(310\) 0 0
\(311\) 1.99242 + 4.36280i 0.112980 + 0.247392i 0.957672 0.287860i \(-0.0929439\pi\)
−0.844692 + 0.535252i \(0.820217\pi\)
\(312\) 0 0
\(313\) 3.44103 + 15.8182i 0.194498 + 0.894095i 0.966136 + 0.258033i \(0.0830742\pi\)
−0.771638 + 0.636062i \(0.780562\pi\)
\(314\) 0 0
\(315\) −8.01293 + 1.64326i −0.451477 + 0.0925873i
\(316\) 0 0
\(317\) −10.5697 2.29930i −0.593655 0.129142i −0.0943069 0.995543i \(-0.530063\pi\)
−0.499348 + 0.866401i \(0.666427\pi\)
\(318\) 0 0
\(319\) −5.38786 1.58202i −0.301662 0.0885760i
\(320\) 0 0
\(321\) 1.78854i 0.0998264i
\(322\) 0 0
\(323\) 1.59722 1.59722i 0.0888716 0.0888716i
\(324\) 0 0
\(325\) 32.7164 + 13.0998i 1.81478 + 0.726646i
\(326\) 0 0
\(327\) −1.28994 + 5.92975i −0.0713337 + 0.327916i
\(328\) 0 0
\(329\) −0.370744 + 2.57858i −0.0204398 + 0.142162i
\(330\) 0 0
\(331\) 28.8726 + 18.5553i 1.58698 + 1.01989i 0.973069 + 0.230514i \(0.0740406\pi\)
0.613910 + 0.789376i \(0.289596\pi\)
\(332\) 0 0
\(333\) 10.0488 26.9419i 0.550671 1.47641i
\(334\) 0 0
\(335\) 4.19166 + 7.89901i 0.229015 + 0.431569i
\(336\) 0 0
\(337\) −3.03384 + 5.55606i −0.165264 + 0.302658i −0.947166 0.320743i \(-0.896068\pi\)
0.781903 + 0.623400i \(0.214249\pi\)
\(338\) 0 0
\(339\) −5.72686 + 6.60915i −0.311040 + 0.358960i
\(340\) 0 0
\(341\) −6.68159 + 5.78963i −0.361828 + 0.313526i
\(342\) 0 0
\(343\) 5.97581 2.22886i 0.322663 0.120347i
\(344\) 0 0
\(345\) 19.3807 + 29.6427i 1.04342 + 1.59591i
\(346\) 0 0
\(347\) −4.04574 + 1.50898i −0.217187 + 0.0810064i −0.455702 0.890132i \(-0.650612\pi\)
0.238516 + 0.971139i \(0.423339\pi\)
\(348\) 0 0
\(349\) 20.6251 17.8717i 1.10403 0.956651i 0.104751 0.994498i \(-0.466595\pi\)
0.999284 + 0.0378470i \(0.0120499\pi\)
\(350\) 0 0
\(351\) −74.7992 + 86.3229i −3.99249 + 4.60758i
\(352\) 0 0
\(353\) 2.23763 4.09791i 0.119097 0.218110i −0.811329 0.584590i \(-0.801255\pi\)
0.930426 + 0.366480i \(0.119437\pi\)
\(354\) 0 0
\(355\) −7.22084 + 23.5491i −0.383242 + 1.24986i
\(356\) 0 0
\(357\) −2.95495 + 7.92252i −0.156392 + 0.419304i
\(358\) 0 0
\(359\) 25.5307 + 16.4076i 1.34746 + 0.865960i 0.997491 0.0708003i \(-0.0225553\pi\)
0.349970 + 0.936761i \(0.386192\pi\)
\(360\) 0 0
\(361\) 2.68027 18.6417i 0.141067 0.981143i
\(362\) 0 0
\(363\) 5.74194 26.3953i 0.301374 1.38539i
\(364\) 0 0
\(365\) 7.37525 0.439139i 0.386038 0.0229856i
\(366\) 0 0
\(367\) 21.2601 21.2601i 1.10977 1.10977i 0.116587 0.993180i \(-0.462805\pi\)
0.993180 0.116587i \(-0.0371954\pi\)
\(368\) 0 0
\(369\) 9.57872i 0.498648i
\(370\) 0 0
\(371\) −5.40322 1.58653i −0.280521 0.0823684i
\(372\) 0 0
\(373\) 14.5843 + 3.17261i 0.755145 + 0.164272i 0.573628 0.819116i \(-0.305536\pi\)
0.181517 + 0.983388i \(0.441899\pi\)
\(374\) 0 0
\(375\) 23.1710 28.7485i 1.19654 1.48456i
\(376\) 0 0
\(377\) −5.00924 23.0271i −0.257989 1.18596i
\(378\) 0 0
\(379\) 5.71756 + 12.5197i 0.293691 + 0.643094i 0.997750 0.0670480i \(-0.0213581\pi\)
−0.704059 + 0.710142i \(0.748631\pi\)
\(380\) 0 0
\(381\) 4.57849 + 31.8441i 0.234563 + 1.63142i
\(382\) 0 0
\(383\) 6.89706 + 3.76608i 0.352423 + 0.192438i 0.645702 0.763589i \(-0.276565\pi\)
−0.293279 + 0.956027i \(0.594746\pi\)
\(384\) 0 0
\(385\) −1.62053 0.626545i −0.0825899 0.0319317i
\(386\) 0 0
\(387\) 44.1241 + 3.15582i 2.24295 + 0.160419i
\(388\) 0 0
\(389\) −15.0698 + 32.9982i −0.764068 + 1.67307i −0.0247723 + 0.999693i \(0.507886\pi\)
−0.739295 + 0.673381i \(0.764841\pi\)
\(390\) 0 0
\(391\) 26.5357 0.524889i 1.34197 0.0265448i
\(392\) 0 0
\(393\) −0.375593 1.00700i −0.0189462 0.0507966i
\(394\) 0 0
\(395\) −7.72529 27.5201i −0.388702 1.38468i
\(396\) 0 0
\(397\) −8.90774 + 0.637094i −0.447067 + 0.0319748i −0.293058 0.956095i \(-0.594673\pi\)
−0.154009 + 0.988069i \(0.549218\pi\)
\(398\) 0 0
\(399\) −0.175695 0.598361i −0.00879574 0.0299555i
\(400\) 0 0
\(401\) −19.8982 + 2.86092i −0.993666 + 0.142868i −0.619921 0.784664i \(-0.712836\pi\)
−0.373745 + 0.927532i \(0.621926\pi\)
\(402\) 0 0
\(403\) −34.7635 12.9661i −1.73169 0.645888i
\(404\) 0 0
\(405\) 35.3530 + 56.4804i 1.75671 + 2.80654i
\(406\) 0 0
\(407\) 4.88953 3.66025i 0.242365 0.181432i
\(408\) 0 0
\(409\) 0.0605970 + 0.0942907i 0.00299633 + 0.00466238i 0.842748 0.538308i \(-0.180936\pi\)
−0.839752 + 0.542970i \(0.817300\pi\)
\(410\) 0 0
\(411\) −0.395673 + 1.34754i −0.0195171 + 0.0664692i
\(412\) 0 0
\(413\) −1.40850 1.40850i −0.0693076 0.0693076i
\(414\) 0 0
\(415\) −3.08077 8.57070i −0.151229 0.420719i
\(416\) 0 0
\(417\) −21.4320 39.2498i −1.04953 1.92207i
\(418\) 0 0
\(419\) 21.8072 14.0146i 1.06535 0.684659i 0.114223 0.993455i \(-0.463562\pi\)
0.951128 + 0.308796i \(0.0999259\pi\)
\(420\) 0 0
\(421\) −17.7205 2.54783i −0.863645 0.124173i −0.303765 0.952747i \(-0.598244\pi\)
−0.559880 + 0.828574i \(0.689153\pi\)
\(422\) 0 0
\(423\) 43.5060 9.46416i 2.11534 0.460163i
\(424\) 0 0
\(425\) −9.04879 26.1495i −0.438931 1.26844i
\(426\) 0 0
\(427\) −2.05088 + 2.73966i −0.0992491 + 0.132581i
\(428\) 0 0
\(429\) −37.5110 + 11.0142i −1.81105 + 0.531772i
\(430\) 0 0
\(431\) 19.8060 + 17.1620i 0.954021 + 0.826664i 0.984947 0.172858i \(-0.0553001\pi\)
−0.0309257 + 0.999522i \(0.509846\pi\)
\(432\) 0 0
\(433\) −0.0959101 + 1.34100i −0.00460914 + 0.0644443i −0.999236 0.0390798i \(-0.987557\pi\)
0.994627 + 0.103524i \(0.0330119\pi\)
\(434\) 0 0
\(435\) −24.6049 2.05503i −1.17971 0.0985310i
\(436\) 0 0
\(437\) −1.54351 + 1.20382i −0.0738363 + 0.0575864i
\(438\) 0 0
\(439\) 4.37253 + 1.99687i 0.208689 + 0.0953052i 0.517017 0.855975i \(-0.327042\pi\)
−0.308328 + 0.951280i \(0.599769\pi\)
\(440\) 0 0
\(441\) −35.1374 40.5507i −1.67321 1.93098i
\(442\) 0 0
\(443\) −2.60677 36.4474i −0.123851 1.73167i −0.557145 0.830415i \(-0.688103\pi\)
0.433294 0.901253i \(-0.357351\pi\)
\(444\) 0 0
\(445\) −27.4292 4.27825i −1.30027 0.202808i
\(446\) 0 0
\(447\) −0.521658 0.390508i −0.0246736 0.0184704i
\(448\) 0 0
\(449\) −6.57829 + 3.00421i −0.310449 + 0.141777i −0.564546 0.825401i \(-0.690949\pi\)
0.254097 + 0.967179i \(0.418222\pi\)
\(450\) 0 0
\(451\) −1.09999 + 1.71161i −0.0517964 + 0.0805968i
\(452\) 0 0
\(453\) 28.3591 + 37.8833i 1.33243 + 1.77991i
\(454\) 0 0
\(455\) −0.951524 7.22910i −0.0446081 0.338905i
\(456\) 0 0
\(457\) 24.1152 13.1679i 1.12806 0.615968i 0.196845 0.980435i \(-0.436931\pi\)
0.931216 + 0.364467i \(0.118749\pi\)
\(458\) 0 0
\(459\) 89.6840 4.18609
\(460\) 0 0
\(461\) 3.96880 0.184845 0.0924227 0.995720i \(-0.470539\pi\)
0.0924227 + 0.995720i \(0.470539\pi\)
\(462\) 0 0
\(463\) −7.99762 + 4.36703i −0.371681 + 0.202953i −0.654223 0.756302i \(-0.727004\pi\)
0.282542 + 0.959255i \(0.408822\pi\)
\(464\) 0 0
\(465\) −23.6658 + 30.8401i −1.09747 + 1.43017i
\(466\) 0 0
\(467\) 5.85317 + 7.81892i 0.270853 + 0.361817i 0.915259 0.402867i \(-0.131986\pi\)
−0.644406 + 0.764684i \(0.722895\pi\)
\(468\) 0 0
\(469\) 1.00027 1.55644i 0.0461880 0.0718699i
\(470\) 0 0
\(471\) −44.5359 + 20.3389i −2.05211 + 0.937166i
\(472\) 0 0
\(473\) 7.52210 + 5.63098i 0.345867 + 0.258913i
\(474\) 0 0
\(475\) 1.69001 + 1.14397i 0.0775429 + 0.0524889i
\(476\) 0 0
\(477\) 6.86600 + 95.9993i 0.314373 + 4.39551i
\(478\) 0 0
\(479\) −12.9637 14.9609i −0.592326 0.683581i 0.377882 0.925854i \(-0.376653\pi\)
−0.970208 + 0.242273i \(0.922107\pi\)
\(480\) 0 0
\(481\) 23.3160 + 10.6481i 1.06312 + 0.485510i
\(482\) 0 0
\(483\) 3.38385 6.49943i 0.153970 0.295734i
\(484\) 0 0
\(485\) 3.23781 38.7664i 0.147022 1.76029i
\(486\) 0 0
\(487\) −0.144496 + 2.02032i −0.00654773 + 0.0915493i −0.999675 0.0254894i \(-0.991886\pi\)
0.993127 + 0.117039i \(0.0373401\pi\)
\(488\) 0 0
\(489\) 36.0719 + 31.2565i 1.63123 + 1.41347i
\(490\) 0 0
\(491\) 12.6632 3.71824i 0.571481 0.167802i 0.0167910 0.999859i \(-0.494655\pi\)
0.554690 + 0.832057i \(0.312837\pi\)
\(492\) 0 0
\(493\) −11.0885 + 14.8126i −0.499403 + 0.667125i
\(494\) 0 0
\(495\) −0.354181 + 29.6922i −0.0159192 + 1.33457i
\(496\) 0 0
\(497\) 4.97973 1.08327i 0.223371 0.0485915i
\(498\) 0 0
\(499\) −7.75124 1.11446i −0.346993 0.0498901i −0.0333849 0.999443i \(-0.510629\pi\)
−0.313608 + 0.949552i \(0.601538\pi\)
\(500\) 0 0
\(501\) 26.5542 17.0654i 1.18636 0.762425i
\(502\) 0 0
\(503\) 9.96367 + 18.2471i 0.444258 + 0.813598i 0.999840 0.0178636i \(-0.00568646\pi\)
−0.555582 + 0.831462i \(0.687505\pi\)
\(504\) 0 0
\(505\) −28.0007 13.1934i −1.24602 0.587097i
\(506\) 0 0
\(507\) −85.6548 85.6548i −3.80406 3.80406i
\(508\) 0 0
\(509\) −4.38366 + 14.9294i −0.194303 + 0.661734i 0.803490 + 0.595319i \(0.202974\pi\)
−0.997792 + 0.0664148i \(0.978844\pi\)
\(510\) 0 0
\(511\) −0.826442 1.28597i −0.0365596 0.0568879i
\(512\) 0 0
\(513\) −5.29509 + 3.96385i −0.233784 + 0.175008i
\(514\) 0 0
\(515\) 5.13977 22.3408i 0.226485 0.984452i
\(516\) 0 0
\(517\) 8.86090 + 3.30494i 0.389702 + 0.145351i
\(518\) 0 0
\(519\) 13.3372 1.91760i 0.585439 0.0841734i
\(520\) 0 0
\(521\) −6.24355 21.2636i −0.273535 0.931575i −0.975617 0.219479i \(-0.929564\pi\)
0.702082 0.712096i \(-0.252254\pi\)
\(522\) 0 0
\(523\) −32.9241 + 2.35478i −1.43967 + 0.102967i −0.769218 0.638986i \(-0.779354\pi\)
−0.670452 + 0.741953i \(0.733900\pi\)
\(524\) 0 0
\(525\) −7.53365 1.26728i −0.328796 0.0553085i
\(526\) 0 0
\(527\) 10.1807 + 27.2954i 0.443477 + 1.18901i
\(528\) 0 0
\(529\) −22.8775 2.37039i −0.994675 0.103061i
\(530\) 0 0
\(531\) −14.1422 + 30.9672i −0.613721 + 1.34386i
\(532\) 0 0
\(533\) −8.51680 0.609134i −0.368904 0.0263845i
\(534\) 0 0
\(535\) 0.436692 1.12948i 0.0188798 0.0488319i
\(536\) 0 0
\(537\) −7.14213 3.89990i −0.308205 0.168293i
\(538\) 0 0
\(539\) −1.62197 11.2810i −0.0698631 0.485908i
\(540\) 0 0
\(541\) 4.43053 + 9.70151i 0.190483 + 0.417100i 0.980644 0.195800i \(-0.0627302\pi\)
−0.790161 + 0.612900i \(0.790003\pi\)
\(542\) 0 0
\(543\) −14.9930 68.9217i −0.643411 2.95771i
\(544\) 0 0
\(545\) −2.26243 + 3.42976i −0.0969118 + 0.146915i
\(546\) 0 0
\(547\) 16.9673 + 3.69102i 0.725471 + 0.157817i 0.560112 0.828417i \(-0.310758\pi\)
0.165359 + 0.986233i \(0.447122\pi\)
\(548\) 0 0
\(549\) 56.1202 + 16.4784i 2.39515 + 0.703280i
\(550\) 0 0
\(551\) 1.36465i 0.0581360i
\(552\) 0 0
\(553\) −4.18180 + 4.18180i −0.177828 + 0.177828i
\(554\) 0 0
\(555\) 17.8277 20.0851i 0.756744 0.852565i
\(556\) 0 0
\(557\) −4.08098 + 18.7600i −0.172917 + 0.794885i 0.806209 + 0.591630i \(0.201516\pi\)
−0.979126 + 0.203255i \(0.934848\pi\)
\(558\) 0 0
\(559\) −5.61192 + 39.0317i −0.237359 + 1.65087i
\(560\) 0 0
\(561\) 25.8233 + 16.5956i 1.09026 + 0.700667i
\(562\) 0 0
\(563\) 12.0415 32.2846i 0.507489 1.36063i −0.390495 0.920605i \(-0.627696\pi\)
0.897985 0.440027i \(-0.145031\pi\)
\(564\) 0 0
\(565\) −5.23028 + 2.77548i −0.220040 + 0.116766i
\(566\) 0 0
\(567\) 6.60701 12.0998i 0.277468 0.508145i
\(568\) 0 0
\(569\) 6.01483 6.94148i 0.252155 0.291002i −0.615534 0.788111i \(-0.711059\pi\)
0.867688 + 0.497109i \(0.165605\pi\)
\(570\) 0 0
\(571\) 22.6676 19.6416i 0.948608 0.821974i −0.0355314 0.999369i \(-0.511312\pi\)
0.984140 + 0.177395i \(0.0567669\pi\)
\(572\) 0 0
\(573\) 32.7437 12.2128i 1.36789 0.510196i
\(574\) 0 0
\(575\) 5.00155 + 23.4517i 0.208579 + 0.978006i
\(576\) 0 0
\(577\) −15.0896 + 5.62813i −0.628188 + 0.234302i −0.643337 0.765583i \(-0.722451\pi\)
0.0151488 + 0.999885i \(0.495178\pi\)
\(578\) 0 0
\(579\) 43.9015 38.0409i 1.82448 1.58092i
\(580\) 0 0
\(581\) −1.23399 + 1.42410i −0.0511944 + 0.0590815i
\(582\) 0 0
\(583\) −9.79735 + 17.9425i −0.405765 + 0.743103i
\(584\) 0 0
\(585\) −110.079 + 58.4140i −4.55120 + 2.41512i
\(586\) 0 0
\(587\) 1.05036 2.81612i 0.0433529 0.116234i −0.913469 0.406908i \(-0.866607\pi\)
0.956822 + 0.290674i \(0.0938797\pi\)
\(588\) 0 0
\(589\) −1.80749 1.16160i −0.0744762 0.0478630i
\(590\) 0 0
\(591\) −1.70172 + 11.8357i −0.0699994 + 0.486856i
\(592\) 0 0
\(593\) −2.42121 + 11.1301i −0.0994274 + 0.457060i 0.900334 + 0.435200i \(0.143322\pi\)
−0.999761 + 0.0218599i \(0.993041\pi\)
\(594\) 0 0
\(595\) −3.80046 + 4.28169i −0.155804 + 0.175532i
\(596\) 0 0
\(597\) −33.6299 + 33.6299i −1.37638 + 1.37638i
\(598\) 0 0
\(599\) 16.2052i 0.662128i −0.943608 0.331064i \(-0.892592\pi\)
0.943608 0.331064i \(-0.107408\pi\)
\(600\) 0 0
\(601\) 15.8031 + 4.64021i 0.644623 + 0.189278i 0.587673 0.809099i \(-0.300044\pi\)
0.0569499 + 0.998377i \(0.481862\pi\)
\(602\) 0 0
\(603\) −30.8981 6.72147i −1.25827 0.273719i
\(604\) 0 0
\(605\) 10.0708 15.2670i 0.409437 0.620692i
\(606\) 0 0
\(607\) 2.12376 + 9.76277i 0.0862008 + 0.396259i 0.999950 0.0100205i \(-0.00318966\pi\)
−0.913749 + 0.406279i \(0.866826\pi\)
\(608\) 0 0
\(609\) 2.12213 + 4.64681i 0.0859929 + 0.188298i
\(610\) 0 0
\(611\) 5.64829 + 39.2847i 0.228505 + 1.58929i
\(612\) 0 0
\(613\) 8.32878 + 4.54786i 0.336396 + 0.183686i 0.638564 0.769568i \(-0.279529\pi\)
−0.302168 + 0.953255i \(0.597710\pi\)
\(614\) 0 0
\(615\) −3.22611 + 8.34419i −0.130089 + 0.336470i
\(616\) 0 0
\(617\) 32.6728 + 2.33681i 1.31536 + 0.0940763i 0.711314 0.702874i \(-0.248100\pi\)
0.604045 + 0.796950i \(0.293555\pi\)
\(618\) 0 0
\(619\) 13.9654 30.5800i 0.561318 1.22912i −0.389974 0.920826i \(-0.627516\pi\)
0.951292 0.308290i \(-0.0997567\pi\)
\(620\) 0 0
\(621\) −77.1315 9.53701i −3.09518 0.382707i
\(622\) 0 0
\(623\) 2.00721 + 5.38155i 0.0804173 + 0.215607i
\(624\) 0 0
\(625\) 21.6520 12.4976i 0.866081 0.499903i
\(626\) 0 0
\(627\) −2.25814 + 0.161505i −0.0901814 + 0.00644990i
\(628\) 0 0
\(629\) −5.67012 19.3107i −0.226082 0.769966i
\(630\) 0 0
\(631\) 20.8438 2.99689i 0.829780 0.119304i 0.285680 0.958325i \(-0.407780\pi\)
0.544100 + 0.839021i \(0.316871\pi\)
\(632\) 0 0
\(633\) 36.1100 + 13.4683i 1.43524 + 0.535318i
\(634\) 0 0
\(635\) −4.88372 + 21.2278i −0.193805 + 0.842401i
\(636\) 0 0
\(637\) 38.2896 28.6632i 1.51709 1.13568i
\(638\) 0 0
\(639\) −47.0890 73.2720i −1.86281 2.89860i
\(640\) 0 0
\(641\) 0.357796 1.21854i 0.0141321 0.0481295i −0.952125 0.305709i \(-0.901107\pi\)
0.966257 + 0.257579i \(0.0829248\pi\)
\(642\) 0 0
\(643\) −12.8113 12.8113i −0.505229 0.505229i 0.407830 0.913058i \(-0.366286\pi\)
−0.913058 + 0.407830i \(0.866286\pi\)
\(644\) 0 0
\(645\) 37.3744 + 17.6101i 1.47162 + 0.693396i
\(646\) 0 0
\(647\) −9.51355 17.4228i −0.374016 0.684960i 0.621093 0.783737i \(-0.286689\pi\)
−0.995110 + 0.0987769i \(0.968507\pi\)
\(648\) 0 0
\(649\) −6.08324 + 3.90946i −0.238788 + 0.153460i
\(650\) 0 0
\(651\) 7.96110 + 1.14463i 0.312020 + 0.0448617i
\(652\) 0 0
\(653\) 16.1892 3.52174i 0.633532 0.137817i 0.115680 0.993287i \(-0.463095\pi\)
0.517852 + 0.855470i \(0.326732\pi\)
\(654\) 0 0
\(655\) 0.00867959 0.727641i 0.000339140 0.0284313i
\(656\) 0 0
\(657\) −15.6566 + 20.9147i −0.610822 + 0.815962i
\(658\) 0 0
\(659\) −19.8916 + 5.84070i −0.774866 + 0.227521i −0.645177 0.764033i \(-0.723216\pi\)
−0.129690 + 0.991555i \(0.541398\pi\)
\(660\) 0 0
\(661\) −7.02406 6.08639i −0.273204 0.236733i 0.507472 0.861668i \(-0.330580\pi\)
−0.780677 + 0.624935i \(0.785125\pi\)
\(662\) 0 0
\(663\) −9.19004 + 128.494i −0.356912 + 4.99028i
\(664\) 0 0
\(665\) 0.0351432 0.420771i 0.00136280 0.0163168i
\(666\) 0 0
\(667\) 11.1117 11.5602i 0.430248 0.447612i
\(668\) 0 0
\(669\) −78.7168 35.9487i −3.04337 1.38986i
\(670\) 0 0
\(671\) 8.13576 + 9.38917i 0.314077 + 0.362465i
\(672\) 0 0
\(673\) 1.35894 + 19.0005i 0.0523834 + 0.732416i 0.953986 + 0.299851i \(0.0969370\pi\)
−0.901603 + 0.432565i \(0.857608\pi\)
\(674\) 0 0
\(675\) 15.3301 + 79.5641i 0.590057 + 3.06242i
\(676\) 0 0
\(677\) −12.5147 9.36836i −0.480977 0.360055i 0.331109 0.943593i \(-0.392577\pi\)
−0.812086 + 0.583537i \(0.801668\pi\)
\(678\) 0 0
\(679\) −7.32132 + 3.34354i −0.280967 + 0.128313i
\(680\) 0 0
\(681\) 35.9706 55.9713i 1.37839 2.14482i
\(682\) 0 0
\(683\) −19.8992 26.5822i −0.761420 1.01714i −0.998953 0.0457589i \(-0.985429\pi\)
0.237532 0.971380i \(-0.423662\pi\)
\(684\) 0 0
\(685\) −0.578890 + 0.754381i −0.0221183 + 0.0288234i
\(686\) 0 0
\(687\) −8.70315 + 4.75228i −0.332046 + 0.181311i
\(688\) 0 0
\(689\) −85.7932 −3.26846
\(690\) 0 0
\(691\) 8.81520 0.335346 0.167673 0.985843i \(-0.446375\pi\)
0.167673 + 0.985843i \(0.446375\pi\)
\(692\) 0 0
\(693\) 5.39222 2.94438i 0.204834 0.111848i
\(694\) 0 0
\(695\) −3.95131 30.0196i −0.149882 1.13871i
\(696\) 0 0
\(697\) 4.01772 + 5.36704i 0.152182 + 0.203291i
\(698\) 0 0
\(699\) −36.9523 + 57.4989i −1.39766 + 2.17481i
\(700\) 0 0
\(701\) −6.58573 + 3.00760i −0.248739 + 0.113596i −0.535884 0.844292i \(-0.680021\pi\)
0.287144 + 0.957887i \(0.407294\pi\)
\(702\) 0 0
\(703\) 1.18827 + 0.889524i 0.0448163 + 0.0335490i
\(704\) 0 0
\(705\) 41.0864 + 6.40842i 1.54740 + 0.241355i
\(706\) 0 0
\(707\) 0.456870 + 6.38788i 0.0171824 + 0.240241i
\(708\) 0 0
\(709\) 25.8366 + 29.8170i 0.970313 + 1.11980i 0.992767 + 0.120053i \(0.0383066\pi\)
−0.0224540 + 0.999748i \(0.507148\pi\)
\(710\) 0 0
\(711\) 91.9410 + 41.9881i 3.44806 + 1.57468i
\(712\) 0 0
\(713\) −5.85315 24.5577i −0.219202 0.919693i
\(714\) 0 0
\(715\) −26.3780 2.20312i −0.986480 0.0823919i
\(716\) 0 0
\(717\) −4.06994 + 56.9051i −0.151995 + 2.12516i
\(718\) 0 0
\(719\) 1.54995 + 1.34304i 0.0578032 + 0.0500868i 0.683283 0.730153i \(-0.260551\pi\)
−0.625480 + 0.780240i \(0.715097\pi\)
\(720\) 0 0
\(721\) −4.55091 + 1.33627i −0.169485 + 0.0497652i
\(722\) 0 0
\(723\) −16.8900 + 22.5624i −0.628147 + 0.839107i
\(724\) 0 0
\(725\) −15.0365 7.30534i −0.558443 0.271314i
\(726\) 0 0
\(727\) −35.2315 + 7.66413i −1.30666 + 0.284247i −0.811397 0.584495i \(-0.801293\pi\)
−0.495265 + 0.868742i \(0.664929\pi\)
\(728\) 0 0
\(729\) −74.2951 10.6820i −2.75167 0.395631i
\(730\) 0 0
\(731\) 26.0468 16.7393i 0.963376 0.619124i
\(732\) 0 0
\(733\) −12.3672 22.6488i −0.456792 0.836553i 0.543203 0.839601i \(-0.317211\pi\)
−0.999995 + 0.00304868i \(0.999030\pi\)
\(734\) 0 0
\(735\) −16.9513 47.1587i −0.625259 1.73947i
\(736\) 0 0
\(737\) −4.74929 4.74929i −0.174942 0.174942i
\(738\) 0 0
\(739\) −6.61217 + 22.5190i −0.243233 + 0.828375i 0.743875 + 0.668319i \(0.232986\pi\)
−0.987108 + 0.160056i \(0.948832\pi\)
\(740\) 0 0
\(741\) −5.13656 7.99265i −0.188696 0.293617i
\(742\) 0 0
\(743\) 24.5162 18.3526i 0.899412 0.673292i −0.0460795 0.998938i \(-0.514673\pi\)
0.945492 + 0.325646i \(0.105582\pi\)
\(744\) 0 0
\(745\) −0.234087 0.373980i −0.00857627 0.0137016i
\(746\) 0 0
\(747\) 30.1747 + 11.2546i 1.10403 + 0.411784i
\(748\) 0 0
\(749\) −0.247997 + 0.0356566i −0.00906162 + 0.00130286i
\(750\) 0 0
\(751\) −10.1918 34.7101i −0.371905 1.26659i −0.906760 0.421647i \(-0.861452\pi\)
0.534855 0.844944i \(-0.320366\pi\)
\(752\) 0 0
\(753\) 52.6125 3.76292i 1.91731 0.137129i
\(754\) 0 0
\(755\) 8.65950 + 30.8480i 0.315151 + 1.12267i
\(756\) 0 0
\(757\) −11.1414 29.8711i −0.404940 1.08569i −0.966143 0.258007i \(-0.916934\pi\)
0.561203 0.827678i \(-0.310339\pi\)
\(758\) 0 0
\(759\) −20.4442 17.0189i −0.742076 0.617746i
\(760\) 0 0
\(761\) 0.0561323 0.122913i 0.00203479 0.00445558i −0.908612 0.417642i \(-0.862857\pi\)
0.910647 + 0.413186i \(0.135584\pi\)
\(762\) 0 0
\(763\) 0.847930 + 0.0606452i 0.0306971 + 0.00219550i
\(764\) 0 0
\(765\) 91.2630 + 35.2850i 3.29962 + 1.27573i
\(766\) 0 0
\(767\) −26.6348 14.5437i −0.961726 0.525142i
\(768\) 0 0
\(769\) −6.30778 43.8716i −0.227464 1.58205i −0.708733 0.705476i \(-0.750733\pi\)
0.481269 0.876573i \(-0.340176\pi\)
\(770\) 0 0
\(771\) −21.6146 47.3295i −0.778432 1.70453i
\(772\) 0 0
\(773\) −2.06653 9.49970i −0.0743281 0.341681i 0.924932 0.380132i \(-0.124121\pi\)
−0.999260 + 0.0384510i \(0.987758\pi\)
\(774\) 0 0
\(775\) −22.4752 + 13.6976i −0.807333 + 0.492034i
\(776\) 0 0
\(777\) −5.42947 1.18111i −0.194781 0.0423721i
\(778\) 0 0
\(779\) −0.474425 0.139304i −0.0169980 0.00499107i
\(780\) 0 0
\(781\) 18.5005i 0.661999i
\(782\) 0 0
\(783\) 38.3126 38.3126i 1.36918 1.36918i
\(784\) 0 0
\(785\) −33.0910 + 1.97031i −1.18107 + 0.0703234i
\(786\) 0 0
\(787\) −3.98499 + 18.3187i −0.142050 + 0.652991i 0.849962 + 0.526844i \(0.176625\pi\)
−0.992012 + 0.126147i \(0.959739\pi\)
\(788\) 0 0
\(789\) 4.88503 33.9761i 0.173912 1.20958i
\(790\) 0 0
\(791\) 1.03059 + 0.662320i 0.0366436 + 0.0235494i
\(792\) 0 0
\(793\) −18.2204 + 48.8507i −0.647024 + 1.73474i
\(794\) 0 0
\(795\) −26.3514 + 85.9391i −0.934588 + 3.04795i
\(796\) 0 0
\(797\) 11.8989 21.7912i 0.421481 0.771884i −0.577529 0.816370i \(-0.695983\pi\)
0.999010 + 0.0444856i \(0.0141649\pi\)
\(798\) 0 0
\(799\) 20.4072 23.5511i 0.721953 0.833178i
\(800\) 0 0
\(801\) 74.1881 64.2843i 2.62131 2.27138i
\(802\) 0 0
\(803\) −5.19944 + 1.93929i −0.183484 + 0.0684361i
\(804\) 0 0
\(805\) 3.72385 3.27827i 0.131249 0.115544i
\(806\) 0 0
\(807\) 44.2000 16.4857i 1.55591 0.580325i
\(808\) 0 0
\(809\) −32.0821 + 27.7993i −1.12795 + 0.977373i −0.999896 0.0143950i \(-0.995418\pi\)
−0.128052 + 0.991768i \(0.540872\pi\)
\(810\) 0 0
\(811\) 25.3838 29.2945i 0.891347 1.02867i −0.108056 0.994145i \(-0.534463\pi\)
0.999404 0.0345250i \(-0.0109918\pi\)
\(812\) 0 0
\(813\) −6.30532 + 11.5473i −0.221137 + 0.404982i
\(814\) 0 0
\(815\) 15.1482 + 28.5462i 0.530620 + 0.999930i
\(816\) 0 0
\(817\) −0.798004 + 2.13953i −0.0279186 + 0.0748527i
\(818\) 0 0
\(819\) 21.6902 + 13.9395i 0.757918 + 0.487085i
\(820\) 0 0
\(821\) 4.10869 28.5766i 0.143394 0.997329i −0.783335 0.621599i \(-0.786483\pi\)
0.926730 0.375729i \(-0.122608\pi\)
\(822\) 0 0
\(823\) −9.23296 + 42.4433i −0.321841 + 1.47948i 0.477516 + 0.878623i \(0.341537\pi\)
−0.799357 + 0.600856i \(0.794827\pi\)
\(824\) 0 0
\(825\) −10.3089 + 25.7461i −0.358909 + 0.896366i
\(826\) 0 0
\(827\) −17.4874 + 17.4874i −0.608095 + 0.608095i −0.942448 0.334353i \(-0.891482\pi\)
0.334353 + 0.942448i \(0.391482\pi\)
\(828\) 0 0
\(829\) 5.11731i 0.177731i −0.996044 0.0888657i \(-0.971676\pi\)
0.996044 0.0888657i \(-0.0283242\pi\)
\(830\) 0 0
\(831\) −32.0209 9.40218i −1.11079 0.326158i
\(832\) 0 0
\(833\) −36.6964 7.98282i −1.27146 0.276588i
\(834\) 0 0
\(835\) 20.9361 4.29348i 0.724522 0.148582i
\(836\) 0 0
\(837\) −18.1333 83.3573i −0.626778 2.88125i
\(838\) 0 0
\(839\) 18.2019 + 39.8567i 0.628401 + 1.37601i 0.909248 + 0.416254i \(0.136657\pi\)
−0.280847 + 0.959752i \(0.590615\pi\)
\(840\) 0 0
\(841\) −2.53625 17.6400i −0.0874567 0.608275i
\(842\) 0 0
\(843\) −78.0679 42.6283i −2.68880 1.46820i
\(844\) 0 0
\(845\) −33.1785 75.0057i −1.14138 2.58028i
\(846\) 0 0
\(847\) −3.77442 0.269952i −0.129691 0.00927566i
\(848\) 0 0
\(849\) 19.8874 43.5473i 0.682533 1.49454i
\(850\) 0 0
\(851\) 2.82301 + 17.2108i 0.0967716 + 0.589980i
\(852\) 0 0
\(853\) −6.89012 18.4731i −0.235913 0.632508i 0.764006 0.645209i \(-0.223230\pi\)
−0.999919 + 0.0127012i \(0.995957\pi\)
\(854\) 0 0
\(855\) −6.94784 + 1.95036i −0.237611 + 0.0667010i
\(856\) 0 0
\(857\) 31.1811 2.23011i 1.06512 0.0761792i 0.472243 0.881469i \(-0.343445\pi\)
0.592882 + 0.805289i \(0.297990\pi\)
\(858\) 0 0
\(859\) 1.38318 + 4.71066i 0.0471933 + 0.160726i 0.979718 0.200380i \(-0.0642176\pi\)
−0.932525 + 0.361106i \(0.882399\pi\)
\(860\) 0 0
\(861\) 1.83211 0.263417i 0.0624380 0.00897723i
\(862\) 0 0
\(863\) −42.2704 15.7660i −1.43890 0.536682i −0.495579 0.868563i \(-0.665044\pi\)
−0.943321 + 0.331881i \(0.892317\pi\)
\(864\) 0 0
\(865\) 8.89083 + 2.04544i 0.302297 + 0.0695471i
\(866\) 0 0
\(867\) 36.0276 26.9700i 1.22356 0.915948i
\(868\) 0 0
\(869\) 11.6071 + 18.0610i 0.393744 + 0.612678i
\(870\) 0 0
\(871\) 7.94119 27.0452i 0.269077 0.916392i
\(872\) 0 0
\(873\) 97.2689 + 97.2689i 3.29205 + 3.29205i
\(874\) 0 0
\(875\) −4.44818 2.63973i −0.150376 0.0892392i
\(876\) 0 0
\(877\) −9.42341 17.2577i −0.318206 0.582751i 0.668798 0.743444i \(-0.266809\pi\)
−0.987004 + 0.160693i \(0.948627\pi\)
\(878\) 0 0
\(879\) 21.2199 13.6372i 0.715728 0.459970i
\(880\) 0 0
\(881\) −12.4402 1.78863i −0.419121 0.0602604i −0.0704715 0.997514i \(-0.522450\pi\)
−0.348649 + 0.937253i \(0.613359\pi\)
\(882\) 0 0
\(883\) 54.6432 11.8869i 1.83889 0.400026i 0.847481 0.530826i \(-0.178118\pi\)
0.991409 + 0.130800i \(0.0417545\pi\)
\(884\) 0 0
\(885\) −22.7493 + 22.2130i −0.764709 + 0.746681i
\(886\) 0 0
\(887\) 33.3122 44.4999i 1.11852 1.49416i 0.271618 0.962405i \(-0.412441\pi\)
0.846897 0.531757i \(-0.178468\pi\)
\(888\) 0 0
\(889\) 4.32420 1.26970i 0.145029 0.0425843i
\(890\) 0 0
\(891\) −37.8232 32.7740i −1.26713 1.09797i
\(892\) 0 0
\(893\) −0.163959 + 2.29245i −0.00548669 + 0.0767139i
\(894\) 0 0
\(895\) −3.55814 4.20667i −0.118936 0.140613i
\(896\) 0 0
\(897\) 21.5678 109.532i 0.720128 3.65716i
\(898\) 0 0
\(899\) 16.0096 + 7.31136i 0.533951 + 0.243847i
\(900\) 0 0
\(901\) 44.1132 + 50.9093i 1.46962 + 1.69604i
\(902\) 0 0
\(903\) −0.609815 8.52633i −0.0202934 0.283739i
\(904\) 0 0
\(905\) 7.35974 47.1856i 0.244646 1.56850i
\(906\) 0 0
\(907\) −13.9616 10.4515i −0.463587 0.347037i 0.341813 0.939768i \(-0.388959\pi\)
−0.805401 + 0.592731i \(0.798050\pi\)
\(908\) 0 0
\(909\) 99.5625 45.4687i 3.30228 1.50810i
\(910\) 0 0
\(911\) 8.95227 13.9300i 0.296602 0.461522i −0.660684 0.750664i \(-0.729734\pi\)
0.957286 + 0.289142i \(0.0933701\pi\)
\(912\) 0 0
\(913\) 4.09946 + 5.47624i 0.135672 + 0.181237i
\(914\) 0 0
\(915\) 43.3374 + 33.2559i 1.43269 + 1.09941i
\(916\) 0 0
\(917\) −0.132142 + 0.0721552i −0.00436373 + 0.00238277i
\(918\) 0 0
\(919\) 22.4074 0.739151 0.369576 0.929201i \(-0.379503\pi\)
0.369576 + 0.929201i \(0.379503\pi\)
\(920\) 0 0
\(921\) 100.706 3.31836
\(922\) 0 0
\(923\) 68.1434 37.2091i 2.24297 1.22475i
\(924\) 0 0
\(925\) 16.1624 8.33117i 0.531417 0.273927i
\(926\) 0 0
\(927\) 48.5791 + 64.8941i 1.59555 + 2.13140i
\(928\) 0 0
\(929\) 14.4349 22.4612i 0.473595 0.736929i −0.519471 0.854488i \(-0.673871\pi\)
0.993066 + 0.117560i \(0.0375072\pi\)
\(930\) 0 0
\(931\) 2.51944 1.15059i 0.0825713 0.0377091i
\(932\) 0 0
\(933\) −12.6805 9.49247i −0.415139 0.310769i
\(934\) 0 0
\(935\) 12.2557 + 16.7854i 0.400805 + 0.548941i
\(936\) 0 0
\(937\) −0.630782 8.81948i −0.0206067 0.288120i −0.997298 0.0734687i \(-0.976593\pi\)
0.976691 0.214651i \(-0.0688615\pi\)
\(938\) 0 0
\(939\) −35.0103 40.4041i −1.14252 1.31854i
\(940\) 0 0
\(941\) −11.1980 5.11397i −0.365046 0.166711i 0.224443 0.974487i \(-0.427944\pi\)
−0.589489 + 0.807776i \(0.700671\pi\)
\(942\) 0 0
\(943\) −2.88465 5.04310i −0.0939371 0.164226i
\(944\) 0 0
\(945\) 12.7998 10.8265i 0.416378 0.352187i
\(946\) 0 0
\(947\) −0.124143 + 1.73575i −0.00403411 + 0.0564043i −0.999070 0.0431085i \(-0.986274\pi\)
0.995036 + 0.0995128i \(0.0317284\pi\)
\(948\) 0 0
\(949\) −17.6005 15.2509i −0.571335 0.495064i
\(950\) 0 0
\(951\) 34.2766 10.0645i 1.11149 0.326364i
\(952\) 0 0
\(953\) −6.68032 + 8.92387i −0.216397 + 0.289072i −0.895584 0.444893i \(-0.853242\pi\)
0.679187 + 0.733965i \(0.262333\pi\)
\(954\) 0 0
\(955\) 23.6600 + 0.282225i 0.765618 + 0.00913260i
\(956\) 0 0
\(957\) 18.1212 3.94202i 0.585774 0.127427i
\(958\) 0 0
\(959\) 0.194737 + 0.0279990i 0.00628839 + 0.000904133i
\(960\) 0 0
\(961\) −2.76738 + 1.77849i −0.0892703 + 0.0573705i
\(962\) 0 0
\(963\) 2.05218 + 3.75829i 0.0661307 + 0.121109i
\(964\) 0 0
\(965\) 37.0125 13.3043i 1.19147 0.428279i
\(966\) 0 0
\(967\) 16.3626 + 16.3626i 0.526185 + 0.526185i 0.919433 0.393248i \(-0.128649\pi\)
−0.393248 + 0.919433i \(0.628649\pi\)
\(968\) 0 0
\(969\) −2.10169 + 7.15768i −0.0675159 + 0.229938i
\(970\) 0 0
\(971\) −11.3645 17.6835i −0.364704 0.567491i 0.609605 0.792705i \(-0.291328\pi\)
−0.974309 + 0.225214i \(0.927692\pi\)
\(972\) 0 0
\(973\) −5.01507 + 3.75423i −0.160776 + 0.120355i
\(974\) 0 0
\(975\) −115.565 + 13.8110i −3.70105 + 0.442306i
\(976\) 0 0
\(977\) 1.80691 + 0.673941i 0.0578081 + 0.0215613i 0.378202 0.925723i \(-0.376543\pi\)
−0.320394 + 0.947284i \(0.603815\pi\)
\(978\) 0 0
\(979\) 20.6388 2.96741i 0.659619 0.0948389i
\(980\) 0 0
\(981\) −4.09327 13.9404i −0.130688 0.445083i
\(982\) 0 0
\(983\) −26.8295 + 1.91888i −0.855728 + 0.0612029i −0.492306 0.870422i \(-0.663846\pi\)
−0.363421 + 0.931625i \(0.618392\pi\)
\(984\) 0 0
\(985\) −3.96448 + 7.05892i −0.126319 + 0.224916i
\(986\) 0 0
\(987\) −3.00662 8.06106i −0.0957018 0.256586i
\(988\) 0 0
\(989\) −24.1813 + 11.6266i −0.768920 + 0.369703i
\(990\) 0 0
\(991\) −5.82973 + 12.7653i −0.185187 + 0.405504i −0.979342 0.202212i \(-0.935187\pi\)
0.794154 + 0.607716i \(0.207914\pi\)
\(992\) 0 0
\(993\) −113.058 8.08608i −3.58779 0.256604i
\(994\) 0 0
\(995\) −29.4488 + 13.0266i −0.933590 + 0.412970i
\(996\) 0 0
\(997\) −19.7974 10.8102i −0.626990 0.342362i 0.134140 0.990962i \(-0.457173\pi\)
−0.761129 + 0.648600i \(0.775355\pi\)
\(998\) 0 0
\(999\) 8.38717 + 58.3341i 0.265358 + 1.84561i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.bv.a.17.1 720
5.3 odd 4 inner 920.2.bv.a.753.1 yes 720
23.19 odd 22 inner 920.2.bv.a.617.1 yes 720
115.88 even 44 inner 920.2.bv.a.433.1 yes 720
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.bv.a.17.1 720 1.1 even 1 trivial
920.2.bv.a.433.1 yes 720 115.88 even 44 inner
920.2.bv.a.617.1 yes 720 23.19 odd 22 inner
920.2.bv.a.753.1 yes 720 5.3 odd 4 inner