Properties

Label 920.2.bj
Level $920$
Weight $2$
Character orbit 920.bj
Rep. character $\chi_{920}(101,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $960$
Newform subspaces $1$
Sturm bound $288$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bj (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 184 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 1 \)
Sturm bound: \(288\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(920, [\chi])\).

Total New Old
Modular forms 1480 960 520
Cusp forms 1400 960 440
Eisenstein series 80 0 80

Trace form

\( 960 q + 4 q^{2} - 2 q^{6} + 8 q^{7} + 10 q^{8} + 96 q^{9} - 4 q^{10} - 6 q^{12} - 4 q^{14} - 8 q^{15} - 24 q^{16} - 14 q^{18} + 16 q^{22} - 8 q^{23} - 4 q^{24} + 96 q^{25} + 26 q^{26} + 16 q^{31} + 24 q^{32}+ \cdots - 228 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(920, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
920.2.bj.a 920.bj 184.p $960$ $7.346$ None 920.2.bj.a \(4\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{22}]$

Decomposition of \(S_{2}^{\mathrm{old}}(920, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(920, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 2}\)