Properties

Label 920.2.bb.b
Level $920$
Weight $2$
Character orbit 920.bb
Analytic conductor $7.346$
Analytic rank $0$
Dimension $480$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(11,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 11, 0, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.11");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.bb (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(480\)
Relative dimension: \(48\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 480 q + 2 q^{2} - 4 q^{4} + 48 q^{5} + 5 q^{6} - q^{8} - 48 q^{9} - 2 q^{10} + 3 q^{12} - 56 q^{16} + 7 q^{18} + 4 q^{20} - 8 q^{21} - 4 q^{23} + 2 q^{24} - 48 q^{25} + 7 q^{26} + 12 q^{27} - 5 q^{30}+ \cdots - 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1 −1.41174 + 0.0836654i 0.121688 0.846359i 1.98600 0.236227i 0.959493 0.281733i −0.100980 + 1.20502i −2.94177 3.39498i −2.78395 + 0.499650i 2.17696 + 0.639214i −1.33098 + 0.478009i
11.2 −1.40789 + 0.133626i −0.160633 + 1.11722i 1.96429 0.376262i 0.959493 0.281733i 0.0768617 1.59439i 0.521871 + 0.602271i −2.71522 + 0.792215i 1.65609 + 0.486272i −1.31321 + 0.524861i
11.3 −1.38096 0.304856i 0.323664 2.25113i 1.81413 + 0.841990i 0.959493 0.281733i −1.13324 + 3.01006i 2.70611 + 3.12302i −2.24856 1.71581i −2.08435 0.612020i −1.41091 + 0.0965556i
11.4 −1.36219 0.380051i −0.153094 + 1.06479i 1.71112 + 1.03540i 0.959493 0.281733i 0.613217 1.39226i −1.39398 1.60874i −1.93737 2.06073i 1.76814 + 0.519172i −1.41408 + 0.0191169i
11.5 −1.33311 0.472024i −0.455373 + 3.16719i 1.55439 + 1.25852i 0.959493 0.281733i 2.10205 4.00728i −0.916786 1.05803i −1.47812 2.41146i −6.94523 2.03930i −1.41210 0.0773216i
11.6 −1.29683 + 0.564130i −0.267940 + 1.86356i 1.36351 1.46316i 0.959493 0.281733i −0.703821 2.56787i −0.138935 0.160340i −0.942829 + 2.66666i −0.522600 0.153449i −1.08536 + 0.906637i
11.7 −1.29234 + 0.574339i 0.272959 1.89847i 1.34027 1.48448i 0.959493 0.281733i 0.737611 + 2.61024i 0.510137 + 0.588729i −0.879486 + 2.68822i −0.651210 0.191212i −1.07818 + 0.915168i
11.8 −1.24320 0.674124i −0.0409527 + 0.284833i 1.09111 + 1.67615i 0.959493 0.281733i 0.242925 0.326498i 2.38484 + 2.75225i −0.226548 2.81934i 2.79903 + 0.821868i −1.38277 0.296566i
11.9 −1.23113 0.695923i 0.456110 3.17232i 1.03138 + 1.71355i 0.959493 0.281733i −2.76922 + 3.58813i −1.56836 1.80998i −0.0772700 2.82737i −6.97707 2.04865i −1.37733 0.320883i
11.10 −1.11148 0.874421i 0.170502 1.18587i 0.470777 + 1.94380i 0.959493 0.281733i −1.22646 + 1.16898i −0.668695 0.771715i 1.17644 2.57216i 1.50126 + 0.440811i −1.31281 0.525860i
11.11 −1.04366 + 0.954340i 0.0871014 0.605803i 0.178470 1.99202i 0.959493 0.281733i 0.487238 + 0.715380i 2.73423 + 3.15547i 1.71480 + 2.24932i 2.51907 + 0.739665i −0.732520 + 1.20972i
11.12 −1.01670 + 0.983012i 0.0200411 0.139389i 0.0673734 1.99886i 0.959493 0.281733i 0.116645 + 0.161418i 0.0496235 + 0.0572686i 1.89641 + 2.09848i 2.85945 + 0.839611i −0.698574 + 1.22963i
11.13 −0.970683 1.02848i −0.450578 + 3.13384i −0.115550 + 1.99666i 0.959493 0.281733i 3.66047 2.57855i 2.21630 + 2.55775i 2.16569 1.81928i −6.73946 1.97888i −1.22112 0.713348i
11.14 −0.953750 + 1.04420i −0.132869 + 0.924126i −0.180721 1.99182i 0.959493 0.281733i −0.838252 1.02013i −2.80604 3.23834i 2.25223 + 1.71099i 2.04212 + 0.599622i −0.620931 + 1.27061i
11.15 −0.775667 1.18251i 0.348911 2.42673i −0.796681 + 1.83448i 0.959493 0.281733i −3.14028 + 1.46974i −0.622475 0.718374i 2.78725 0.480855i −2.88879 0.848224i −1.07740 0.916084i
11.16 −0.754441 1.19617i −0.277292 + 1.92861i −0.861638 + 1.80488i 0.959493 0.281733i 2.51614 1.12333i −2.85977 3.30035i 2.80899 0.331008i −0.764149 0.224375i −1.06088 0.935165i
11.17 −0.677154 + 1.24156i 0.472161 3.28395i −1.08292 1.68145i 0.959493 0.281733i 3.75749 + 2.80996i 2.50066 + 2.88591i 2.82092 0.205909i −7.68293 2.25591i −0.299938 + 1.38204i
11.18 −0.623358 1.26942i −0.0457082 + 0.317908i −1.22285 + 1.58261i 0.959493 0.281733i 0.432051 0.140148i −0.450544 0.519956i 2.77126 + 0.565777i 2.77950 + 0.816136i −0.955745 1.04238i
11.19 −0.575706 + 1.29173i −0.364921 + 2.53808i −1.33713 1.48731i 0.959493 0.281733i −3.06842 1.93257i 1.38081 + 1.59354i 2.69099 0.870951i −3.43020 1.00720i −0.188463 + 1.40160i
11.20 −0.567911 + 1.29517i −0.417492 + 2.90372i −1.35496 1.47109i 0.959493 0.281733i −3.52373 2.18978i −2.59694 2.99703i 2.67481 0.919458i −5.37883 1.57937i −0.180013 + 1.40271i
See next 80 embeddings (of 480 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 11.48
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
184.j even 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 920.2.bb.b yes 480
8.d odd 2 1 920.2.bb.a 480
23.d odd 22 1 920.2.bb.a 480
184.j even 22 1 inner 920.2.bb.b yes 480
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
920.2.bb.a 480 8.d odd 2 1
920.2.bb.a 480 23.d odd 22 1
920.2.bb.b yes 480 1.a even 1 1 trivial
920.2.bb.b yes 480 184.j even 22 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{480} + 192 T_{7}^{478} + 8 T_{7}^{477} + 19807 T_{7}^{476} + 2532 T_{7}^{475} + \cdots + 24\!\cdots\!69 \) acting on \(S_{2}^{\mathrm{new}}(920, [\chi])\). Copy content Toggle raw display