Newspace parameters
Level: | \( N \) | \(=\) | \( 920 = 2^{3} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 920.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(7.34623698596\) |
Analytic rank: | \(0\) |
Dimension: | \(5\) |
Coefficient field: | 5.5.13955077.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{5} - 14x^{3} - x^{2} + 32x + 16 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{5} - 14x^{3} - x^{2} + 32x + 16 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{4} - 10\nu^{2} + 3\nu + 4 ) / 4 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -\nu^{4} + 4\nu^{3} + 14\nu^{2} - 39\nu - 28 ) / 8 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -\nu^{4} + 14\nu^{2} - 3\nu - 24 ) / 4 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{4} + \beta_{2} + 5 \)
|
\(\nu^{3}\) | \(=\) |
\( -\beta_{4} + 2\beta_{3} + 9\beta _1 + 1 \)
|
\(\nu^{4}\) | \(=\) |
\( 10\beta_{4} + 14\beta_{2} - 3\beta _1 + 46 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −3.36002 | 0 | −1.00000 | 0 | −1.90754 | 0 | 8.28974 | 0 | |||||||||||||||||||||||||||||||||
1.2 | 0 | −1.31091 | 0 | −1.00000 | 0 | −4.66212 | 0 | −1.28151 | 0 | ||||||||||||||||||||||||||||||||||
1.3 | 0 | −0.568386 | 0 | −1.00000 | 0 | 4.73770 | 0 | −2.67694 | 0 | ||||||||||||||||||||||||||||||||||
1.4 | 0 | 1.93283 | 0 | −1.00000 | 0 | 2.38236 | 0 | 0.735829 | 0 | ||||||||||||||||||||||||||||||||||
1.5 | 0 | 3.30649 | 0 | −1.00000 | 0 | −2.55040 | 0 | 7.93288 | 0 | ||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(5\) | \(1\) |
\(23\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 920.2.a.j | ✓ | 5 |
3.b | odd | 2 | 1 | 8280.2.a.bs | 5 | ||
4.b | odd | 2 | 1 | 1840.2.a.v | 5 | ||
5.b | even | 2 | 1 | 4600.2.a.be | 5 | ||
5.c | odd | 4 | 2 | 4600.2.e.u | 10 | ||
8.b | even | 2 | 1 | 7360.2.a.co | 5 | ||
8.d | odd | 2 | 1 | 7360.2.a.cp | 5 | ||
20.d | odd | 2 | 1 | 9200.2.a.cu | 5 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
920.2.a.j | ✓ | 5 | 1.a | even | 1 | 1 | trivial |
1840.2.a.v | 5 | 4.b | odd | 2 | 1 | ||
4600.2.a.be | 5 | 5.b | even | 2 | 1 | ||
4600.2.e.u | 10 | 5.c | odd | 4 | 2 | ||
7360.2.a.co | 5 | 8.b | even | 2 | 1 | ||
7360.2.a.cp | 5 | 8.d | odd | 2 | 1 | ||
8280.2.a.bs | 5 | 3.b | odd | 2 | 1 | ||
9200.2.a.cu | 5 | 20.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{5} - 14T_{3}^{3} - T_{3}^{2} + 32T_{3} + 16 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(920))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{5} \)
$3$
\( T^{5} - 14 T^{3} - T^{2} + 32 T + 16 \)
$5$
\( (T + 1)^{5} \)
$7$
\( T^{5} + 2 T^{4} - 28 T^{3} - 57 T^{2} + \cdots + 256 \)
$11$
\( T^{5} + T^{4} - 35 T^{3} - 28 T^{2} + \cdots + 64 \)
$13$
\( T^{5} - 4 T^{4} - 46 T^{3} + 75 T^{2} + \cdots + 500 \)
$17$
\( T^{5} - 4 T^{4} - 46 T^{3} + 157 T^{2} + \cdots + 32 \)
$19$
\( T^{5} - 7 T^{4} - 41 T^{3} + 180 T^{2} + \cdots + 512 \)
$23$
\( (T + 1)^{5} \)
$29$
\( T^{5} - 4 T^{4} - 41 T^{3} - 36 T^{2} + \cdots + 8 \)
$31$
\( T^{5} - 19 T^{4} + 72 T^{3} + \cdots - 128 \)
$37$
\( T^{5} - 15 T^{4} + 64 T^{3} - 36 T^{2} + \cdots + 64 \)
$41$
\( T^{5} - 25 T^{4} + 212 T^{3} + \cdots + 2182 \)
$43$
\( T^{5} \)
$47$
\( T^{5} + 11 T^{4} - 110 T^{3} + \cdots + 512 \)
$53$
\( T^{5} - 3 T^{4} - 160 T^{3} + \cdots - 20272 \)
$59$
\( T^{5} + T^{4} - 142 T^{3} + \cdots + 13568 \)
$61$
\( T^{5} + 5 T^{4} - 115 T^{3} + \cdots + 7664 \)
$67$
\( T^{5} - 9 T^{4} - 126 T^{3} + \cdots + 8192 \)
$71$
\( T^{5} - T^{4} - 214 T^{3} + 407 T^{2} + \cdots - 3968 \)
$73$
\( T^{5} + T^{4} - 158 T^{3} - 272 T^{2} + \cdots - 1328 \)
$79$
\( T^{5} + 2 T^{4} - 128 T^{3} + \cdots - 1024 \)
$83$
\( T^{5} + 45 T^{4} + 784 T^{3} + \cdots + 41216 \)
$89$
\( T^{5} - 6 T^{4} - 136 T^{3} + \cdots - 8192 \)
$97$
\( T^{5} - 25 T^{4} - 39 T^{3} + \cdots - 49616 \)
show more
show less