Newspace parameters
Level: | \( N \) | \(=\) | \( 920 = 2^{3} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 920.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(7.34623698596\) |
Analytic rank: | \(0\) |
Dimension: | \(3\) |
Coefficient field: | 3.3.621.1 |
Defining polynomial: |
\( x^{3} - 6x - 3 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{3} - 6x - 3 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} - \nu - 4 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} + \beta _1 + 4 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −2.14510 | 0 | −1.00000 | 0 | −1.14510 | 0 | 1.60147 | 0 | |||||||||||||||||||||||||||
1.2 | 0 | −0.523976 | 0 | −1.00000 | 0 | 0.476024 | 0 | −2.72545 | 0 | ||||||||||||||||||||||||||||
1.3 | 0 | 2.66908 | 0 | −1.00000 | 0 | 3.66908 | 0 | 4.12398 | 0 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(5\) | \(1\) |
\(23\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 920.2.a.g | ✓ | 3 |
3.b | odd | 2 | 1 | 8280.2.a.bo | 3 | ||
4.b | odd | 2 | 1 | 1840.2.a.t | 3 | ||
5.b | even | 2 | 1 | 4600.2.a.y | 3 | ||
5.c | odd | 4 | 2 | 4600.2.e.r | 6 | ||
8.b | even | 2 | 1 | 7360.2.a.cb | 3 | ||
8.d | odd | 2 | 1 | 7360.2.a.ca | 3 | ||
20.d | odd | 2 | 1 | 9200.2.a.cd | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
920.2.a.g | ✓ | 3 | 1.a | even | 1 | 1 | trivial |
1840.2.a.t | 3 | 4.b | odd | 2 | 1 | ||
4600.2.a.y | 3 | 5.b | even | 2 | 1 | ||
4600.2.e.r | 6 | 5.c | odd | 4 | 2 | ||
7360.2.a.ca | 3 | 8.d | odd | 2 | 1 | ||
7360.2.a.cb | 3 | 8.b | even | 2 | 1 | ||
8280.2.a.bo | 3 | 3.b | odd | 2 | 1 | ||
9200.2.a.cd | 3 | 20.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{3} - 6T_{3} - 3 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(920))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{3} \)
$3$
\( T^{3} - 6T - 3 \)
$5$
\( (T + 1)^{3} \)
$7$
\( T^{3} - 3 T^{2} - 3 T + 2 \)
$11$
\( T^{3} - 3 T^{2} - 15 T - 12 \)
$13$
\( T^{3} - 18T + 29 \)
$17$
\( T^{3} + 3 T^{2} - 15 T + 12 \)
$19$
\( T^{3} - 3 T^{2} - 33 T - 48 \)
$23$
\( (T - 1)^{3} \)
$29$
\( T^{3} - 3 T^{2} - 6 T + 12 \)
$31$
\( T^{3} - 6 T^{2} - 42 T + 249 \)
$37$
\( (T - 4)^{3} \)
$41$
\( T^{3} + 6 T^{2} - 60 T - 69 \)
$43$
\( T^{3} - 18 T^{2} + 72 T + 32 \)
$47$
\( T^{3} - 15 T^{2} + 66 T - 76 \)
$53$
\( T^{3} - 6 T^{2} - 132 T + 536 \)
$59$
\( T^{3} - 6 T^{2} - 36 T + 32 \)
$61$
\( T^{3} - 27 T^{2} + 225 T - 596 \)
$67$
\( T^{3} - 12 T^{2} - 240 T + 2944 \)
$71$
\( T^{3} - 6 T^{2} - 60 T + 203 \)
$73$
\( T^{3} + 15 T^{2} - 42 T - 588 \)
$79$
\( T^{3} \)
$83$
\( T^{3} + 12 T^{2} - 60 T - 64 \)
$89$
\( T^{3} + 30 T^{2} + 264 T + 608 \)
$97$
\( T^{3} - 9 T^{2} - 69 T + 138 \)
show more
show less