Properties

Label 920.2.a.g
Level $920$
Weight $2$
Character orbit 920.a
Self dual yes
Analytic conductor $7.346$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(1,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.34623698596\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} - q^{5} + (\beta_1 + 1) q^{7} + (\beta_{2} + \beta_1 + 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} - q^{5} + (\beta_1 + 1) q^{7} + (\beta_{2} + \beta_1 + 1) q^{9} + (\beta_{2} - \beta_1 + 1) q^{11} + ( - \beta_{2} + \beta_1) q^{13} - \beta_1 q^{15} + ( - \beta_{2} + \beta_1 - 1) q^{17} + ( - 2 \beta_{2} - \beta_1 + 1) q^{19} + (\beta_{2} + 2 \beta_1 + 4) q^{21} + q^{23} + q^{25} + 3 q^{27} + (\beta_{2} + 1) q^{29} + ( - \beta_{2} - 3 \beta_1 + 2) q^{31} + ( - 2 \beta_{2} + \beta_1 - 5) q^{33} + ( - \beta_1 - 1) q^{35} + 4 q^{37} + (2 \beta_{2} + 5) q^{39} + ( - 2 \beta_{2} - 3 \beta_1 - 2) q^{41} + (2 \beta_{2} + 6) q^{43} + ( - \beta_{2} - \beta_1 - 1) q^{45} + (\beta_{2} + 5) q^{47} + (\beta_{2} + 3 \beta_1 - 2) q^{49} + (2 \beta_{2} - \beta_1 + 5) q^{51} + (4 \beta_{2} + 2) q^{53} + ( - \beta_{2} + \beta_1 - 1) q^{55} + (\beta_{2} - 2 \beta_1 - 2) q^{57} + ( - 2 \beta_{2} - 2 \beta_1 + 2) q^{59} + (\beta_{2} - \beta_1 + 9) q^{61} + (\beta_{2} + 4 \beta_1 + 4) q^{63} + (\beta_{2} - \beta_1) q^{65} + ( - 4 \beta_{2} + 4 \beta_1 + 4) q^{67} + \beta_1 q^{69} + ( - 2 \beta_{2} - 3 \beta_1 + 2) q^{71} + (\beta_{2} - 4 \beta_1 - 5) q^{73} + \beta_1 q^{75} + ( - \beta_{2} - 4) q^{77} + ( - 3 \beta_{2} - 3) q^{81} + ( - 2 \beta_{2} - 4 \beta_1 - 4) q^{83} + (\beta_{2} - \beta_1 + 1) q^{85} + ( - \beta_{2} + 2 \beta_1 - 1) q^{87} + ( - 2 \beta_{2} - 10) q^{89} + (\beta_{2} + \beta_1 + 5) q^{91} + ( - 2 \beta_{2} - 2 \beta_1 - 11) q^{93} + (2 \beta_{2} + \beta_1 - 1) q^{95} + (3 \beta_{2} - \beta_1 + 3) q^{97} + ( - 3 \beta_1 + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} + 3 q^{7} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{5} + 3 q^{7} + 3 q^{9} + 3 q^{11} - 3 q^{17} + 3 q^{19} + 12 q^{21} + 3 q^{23} + 3 q^{25} + 9 q^{27} + 3 q^{29} + 6 q^{31} - 15 q^{33} - 3 q^{35} + 12 q^{37} + 15 q^{39} - 6 q^{41} + 18 q^{43} - 3 q^{45} + 15 q^{47} - 6 q^{49} + 15 q^{51} + 6 q^{53} - 3 q^{55} - 6 q^{57} + 6 q^{59} + 27 q^{61} + 12 q^{63} + 12 q^{67} + 6 q^{71} - 15 q^{73} - 12 q^{77} - 9 q^{81} - 12 q^{83} + 3 q^{85} - 3 q^{87} - 30 q^{89} + 15 q^{91} - 33 q^{93} - 3 q^{95} + 9 q^{97} + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 6x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.14510
−0.523976
2.66908
0 −2.14510 0 −1.00000 0 −1.14510 0 1.60147 0
1.2 0 −0.523976 0 −1.00000 0 0.476024 0 −2.72545 0
1.3 0 2.66908 0 −1.00000 0 3.66908 0 4.12398 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 920.2.a.g 3
3.b odd 2 1 8280.2.a.bo 3
4.b odd 2 1 1840.2.a.t 3
5.b even 2 1 4600.2.a.y 3
5.c odd 4 2 4600.2.e.r 6
8.b even 2 1 7360.2.a.cb 3
8.d odd 2 1 7360.2.a.ca 3
20.d odd 2 1 9200.2.a.cd 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
920.2.a.g 3 1.a even 1 1 trivial
1840.2.a.t 3 4.b odd 2 1
4600.2.a.y 3 5.b even 2 1
4600.2.e.r 6 5.c odd 4 2
7360.2.a.ca 3 8.d odd 2 1
7360.2.a.cb 3 8.b even 2 1
8280.2.a.bo 3 3.b odd 2 1
9200.2.a.cd 3 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 6T_{3} - 3 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(920))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 6T - 3 \) Copy content Toggle raw display
$5$ \( (T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 3 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$11$ \( T^{3} - 3 T^{2} + \cdots - 12 \) Copy content Toggle raw display
$13$ \( T^{3} - 18T + 29 \) Copy content Toggle raw display
$17$ \( T^{3} + 3 T^{2} + \cdots + 12 \) Copy content Toggle raw display
$19$ \( T^{3} - 3 T^{2} + \cdots - 48 \) Copy content Toggle raw display
$23$ \( (T - 1)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} - 3 T^{2} + \cdots + 12 \) Copy content Toggle raw display
$31$ \( T^{3} - 6 T^{2} + \cdots + 249 \) Copy content Toggle raw display
$37$ \( (T - 4)^{3} \) Copy content Toggle raw display
$41$ \( T^{3} + 6 T^{2} + \cdots - 69 \) Copy content Toggle raw display
$43$ \( T^{3} - 18 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$47$ \( T^{3} - 15 T^{2} + \cdots - 76 \) Copy content Toggle raw display
$53$ \( T^{3} - 6 T^{2} + \cdots + 536 \) Copy content Toggle raw display
$59$ \( T^{3} - 6 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$61$ \( T^{3} - 27 T^{2} + \cdots - 596 \) Copy content Toggle raw display
$67$ \( T^{3} - 12 T^{2} + \cdots + 2944 \) Copy content Toggle raw display
$71$ \( T^{3} - 6 T^{2} + \cdots + 203 \) Copy content Toggle raw display
$73$ \( T^{3} + 15 T^{2} + \cdots - 588 \) Copy content Toggle raw display
$79$ \( T^{3} \) Copy content Toggle raw display
$83$ \( T^{3} + 12 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$89$ \( T^{3} + 30 T^{2} + \cdots + 608 \) Copy content Toggle raw display
$97$ \( T^{3} - 9 T^{2} + \cdots + 138 \) Copy content Toggle raw display
show more
show less