Properties

Label 920.2
Level 920
Weight 2
Dimension 12766
Nonzero newspaces 18
Newform subspaces 41
Sturm bound 101376
Trace bound 4

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 18 \)
Newform subspaces: \( 41 \)
Sturm bound: \(101376\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(920))\).

Total New Old
Modular forms 26400 13270 13130
Cusp forms 24289 12766 11523
Eisenstein series 2111 504 1607

Trace form

\( 12766q - 36q^{2} - 36q^{3} - 36q^{4} + 2q^{5} - 116q^{6} - 28q^{7} - 36q^{8} - 62q^{9} + O(q^{10}) \) \( 12766q - 36q^{2} - 36q^{3} - 36q^{4} + 2q^{5} - 116q^{6} - 28q^{7} - 36q^{8} - 62q^{9} - 58q^{10} - 108q^{11} - 60q^{12} + 4q^{13} - 60q^{14} - 74q^{15} - 148q^{16} - 76q^{17} - 92q^{18} - 68q^{19} - 98q^{20} - 16q^{21} - 76q^{22} - 44q^{23} - 136q^{24} - 106q^{25} - 148q^{26} - 60q^{27} - 28q^{28} + 12q^{29} - 66q^{30} - 132q^{31} + 4q^{32} - 72q^{33} + 28q^{34} - 60q^{35} - 52q^{36} + 76q^{37} + 4q^{38} + 28q^{39} + 22q^{40} - 184q^{41} + 4q^{42} + 4q^{43} - 12q^{44} + 68q^{45} - 100q^{46} - 48q^{47} - 28q^{48} + 30q^{49} - 98q^{50} - 60q^{51} - 84q^{52} + 32q^{53} - 92q^{54} - 78q^{55} - 228q^{56} - 32q^{57} - 132q^{58} - 40q^{59} - 146q^{60} + 44q^{61} - 156q^{62} - 28q^{63} - 108q^{64} - 160q^{65} - 296q^{66} - 4q^{67} - 84q^{68} - 8q^{69} - 132q^{70} - 84q^{71} - 20q^{72} - 140q^{73} - 48q^{74} + 20q^{75} - 352q^{76} + 32q^{77} - 356q^{78} - 16q^{79} - 216q^{80} - 534q^{81} - 236q^{82} - 56q^{83} - 596q^{84} - 70q^{85} - 588q^{86} - 344q^{87} - 396q^{88} - 248q^{89} - 476q^{90} - 408q^{91} - 424q^{92} - 504q^{94} - 174q^{95} - 1064q^{96} - 192q^{97} - 420q^{98} - 432q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(920))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
920.2.a \(\chi_{920}(1, \cdot)\) 920.2.a.a 1 1
920.2.a.b 1
920.2.a.c 1
920.2.a.d 1
920.2.a.e 2
920.2.a.f 2
920.2.a.g 3
920.2.a.h 3
920.2.a.i 3
920.2.a.j 5
920.2.b \(\chi_{920}(459, \cdot)\) 920.2.b.a 4 1
920.2.b.b 136
920.2.e \(\chi_{920}(369, \cdot)\) 920.2.e.a 2 1
920.2.e.b 14
920.2.e.c 16
920.2.f \(\chi_{920}(461, \cdot)\) 920.2.f.a 2 1
920.2.f.b 8
920.2.f.c 30
920.2.f.d 48
920.2.i \(\chi_{920}(551, \cdot)\) None 0 1
920.2.j \(\chi_{920}(829, \cdot)\) 920.2.j.a 132 1
920.2.m \(\chi_{920}(919, \cdot)\) None 0 1
920.2.n \(\chi_{920}(91, \cdot)\) 920.2.n.a 48 1
920.2.n.b 48
920.2.q \(\chi_{920}(137, \cdot)\) 920.2.q.a 72 2
920.2.s \(\chi_{920}(47, \cdot)\) None 0 2
920.2.v \(\chi_{920}(323, \cdot)\) 920.2.v.a 264 2
920.2.x \(\chi_{920}(413, \cdot)\) 920.2.x.a 8 2
920.2.x.b 8
920.2.x.c 264
920.2.y \(\chi_{920}(41, \cdot)\) 920.2.y.a 50 10
920.2.y.b 60
920.2.y.c 60
920.2.y.d 70
920.2.bb \(\chi_{920}(11, \cdot)\) 920.2.bb.a 480 10
920.2.bb.b 480
920.2.bc \(\chi_{920}(79, \cdot)\) None 0 10
920.2.bf \(\chi_{920}(29, \cdot)\) 920.2.bf.a 1400 10
920.2.bg \(\chi_{920}(111, \cdot)\) None 0 10
920.2.bj \(\chi_{920}(101, \cdot)\) 920.2.bj.a 960 10
920.2.bk \(\chi_{920}(9, \cdot)\) 920.2.bk.a 360 10
920.2.bn \(\chi_{920}(19, \cdot)\) 920.2.bn.a 40 10
920.2.bn.b 1360
920.2.bo \(\chi_{920}(37, \cdot)\) 920.2.bo.a 2800 20
920.2.bq \(\chi_{920}(3, \cdot)\) 920.2.bq.a 2800 20
920.2.bt \(\chi_{920}(87, \cdot)\) None 0 20
920.2.bv \(\chi_{920}(17, \cdot)\) 920.2.bv.a 720 20

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(920))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(920)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(115))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(184))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(230))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(460))\)\(^{\oplus 2}\)