Properties

Label 92.4.a.b
Level $92$
Weight $4$
Character orbit 92.a
Self dual yes
Analytic conductor $5.428$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [92,4,Mod(1,92)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(92, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("92.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 92.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.42817572053\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.28669.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 34x - 69 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 3) q^{3} + \beta_1 q^{5} + ( - \beta_1 + 14) q^{7} + (3 \beta_{2} - 3 \beta_1 + 28) q^{9} + ( - 6 \beta_{2} + 3 \beta_1) q^{11} + ( - \beta_{2} - 3 \beta_1 + 33) q^{13} + ( - 6 \beta_{2} + 5 \beta_1) q^{15}+ \cdots + ( - 312 \beta_{2} + 138 \beta_1 - 1656) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 8 q^{3} + 42 q^{7} + 81 q^{9} + 6 q^{11} + 100 q^{13} + 6 q^{15} - 28 q^{17} + 120 q^{19} + 106 q^{21} + 69 q^{23} - 103 q^{25} + 404 q^{27} - 128 q^{29} - 76 q^{31} - 810 q^{33} - 272 q^{35} - 212 q^{37}+ \cdots - 4656 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 34x - 69 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3\nu - 23 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{2} + 3\beta _1 + 46 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.47570
6.66032
−4.18462
0 −6.44381 0 −4.95140 0 18.9514 0 14.5228 0
1.2 0 4.37890 0 13.3206 0 0.679360 0 −7.82521 0
1.3 0 10.0649 0 −8.36924 0 22.3692 0 74.3025 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 92.4.a.b 3
3.b odd 2 1 828.4.a.e 3
4.b odd 2 1 368.4.a.h 3
5.b even 2 1 2300.4.a.a 3
5.c odd 4 2 2300.4.c.a 6
8.b even 2 1 1472.4.a.o 3
8.d odd 2 1 1472.4.a.x 3
23.b odd 2 1 2116.4.a.b 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
92.4.a.b 3 1.a even 1 1 trivial
368.4.a.h 3 4.b odd 2 1
828.4.a.e 3 3.b odd 2 1
1472.4.a.o 3 8.b even 2 1
1472.4.a.x 3 8.d odd 2 1
2116.4.a.b 3 23.b odd 2 1
2300.4.a.a 3 5.b even 2 1
2300.4.c.a 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 8T_{3}^{2} - 49T_{3} + 284 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(92))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 8 T^{2} + \cdots + 284 \) Copy content Toggle raw display
$5$ \( T^{3} - 136T - 552 \) Copy content Toggle raw display
$7$ \( T^{3} - 42 T^{2} + \cdots - 288 \) Copy content Toggle raw display
$11$ \( T^{3} - 6 T^{2} + \cdots + 89424 \) Copy content Toggle raw display
$13$ \( T^{3} - 100 T^{2} + \cdots + 24394 \) Copy content Toggle raw display
$17$ \( T^{3} + 28 T^{2} + \cdots - 56376 \) Copy content Toggle raw display
$19$ \( T^{3} - 120 T^{2} + \cdots - 3984 \) Copy content Toggle raw display
$23$ \( (T - 23)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} + 128 T^{2} + \cdots - 231174 \) Copy content Toggle raw display
$31$ \( T^{3} + 76 T^{2} + \cdots + 382208 \) Copy content Toggle raw display
$37$ \( T^{3} + 212 T^{2} + \cdots + 64536 \) Copy content Toggle raw display
$41$ \( T^{3} + 580 T^{2} + \cdots - 509682 \) Copy content Toggle raw display
$43$ \( T^{3} + 20 T^{2} + \cdots - 25961472 \) Copy content Toggle raw display
$47$ \( T^{3} + 396 T^{2} + \cdots - 5642304 \) Copy content Toggle raw display
$53$ \( T^{3} + 122 T^{2} + \cdots + 28384056 \) Copy content Toggle raw display
$59$ \( T^{3} - 632 T^{2} + \cdots + 9077184 \) Copy content Toggle raw display
$61$ \( T^{3} - 338 T^{2} + \cdots + 2020904 \) Copy content Toggle raw display
$67$ \( T^{3} - 442 T^{2} + \cdots + 105984432 \) Copy content Toggle raw display
$71$ \( T^{3} - 888 T^{2} + \cdots + 150510312 \) Copy content Toggle raw display
$73$ \( T^{3} - 376 T^{2} + \cdots + 431656494 \) Copy content Toggle raw display
$79$ \( T^{3} - 1540 T^{2} + \cdots - 66491136 \) Copy content Toggle raw display
$83$ \( T^{3} - 454 T^{2} + \cdots + 241050384 \) Copy content Toggle raw display
$89$ \( T^{3} + 810 T^{2} + \cdots - 178848 \) Copy content Toggle raw display
$97$ \( T^{3} - 1284 T^{2} + \cdots - 22204008 \) Copy content Toggle raw display
show more
show less