Properties

Label 92.4.a
Level $92$
Weight $4$
Character orbit 92.a
Rep. character $\chi_{92}(1,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $2$
Sturm bound $48$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 92.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(48\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(92))\).

Total New Old
Modular forms 39 6 33
Cusp forms 33 6 27
Eisenstein series 6 0 6

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(23\)FrickeDim
\(-\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(3\)
Plus space\(+\)\(3\)
Minus space\(-\)\(3\)

Trace form

\( 6 q + 4 q^{3} - 10 q^{5} - 4 q^{7} + 50 q^{9} - 58 q^{11} + 56 q^{13} - 128 q^{15} - 116 q^{17} + 26 q^{19} + 100 q^{21} + 78 q^{25} + 424 q^{27} + 180 q^{29} - 216 q^{31} - 300 q^{33} - 80 q^{35} - 186 q^{37}+ \cdots - 4674 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(92))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 23
92.4.a.a 92.a 1.a $3$ $5.428$ 3.3.1229.1 None 92.4.a.a \(0\) \(-4\) \(-10\) \(-46\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{3}+(-4-\beta _{1}+3\beta _{2})q^{5}+\cdots\)
92.4.a.b 92.a 1.a $3$ $5.428$ 3.3.28669.1 None 92.4.a.b \(0\) \(8\) \(0\) \(42\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(3+\beta _{2})q^{3}+\beta _{1}q^{5}+(14-\beta _{1})q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(92))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(92)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 2}\)