Defining parameters
Level: | \( N \) | \(=\) | \( 92 = 2^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 92.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(92))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 39 | 6 | 33 |
Cusp forms | 33 | 6 | 27 |
Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(23\) | Fricke | Dim |
---|---|---|---|
\(-\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(3\) |
Plus space | \(+\) | \(3\) | |
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(92))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 23 | |||||||
92.4.a.a | $3$ | $5.428$ | 3.3.1229.1 | None | \(0\) | \(-4\) | \(-10\) | \(-46\) | $-$ | $+$ | \(q+(-1-\beta _{2})q^{3}+(-4-\beta _{1}+3\beta _{2})q^{5}+\cdots\) | |
92.4.a.b | $3$ | $5.428$ | 3.3.28669.1 | None | \(0\) | \(8\) | \(0\) | \(42\) | $-$ | $-$ | \(q+(3+\beta _{2})q^{3}+\beta _{1}q^{5}+(14-\beta _{1})q^{7}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(92))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(92)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 2}\)